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Multivariate t mixture (TMIX) models have emerged as a powerful tool for robust mod- eling and clustering of heterogeneous continuous multivariate data with observations containing longer than normal tails or atypical observations. In this paper, we explicitly derive the score vector and Hessian matrix of TMIX models to approximate the informa- tion matrix under the general and three special cases. As a result, the standard errors of maximum likelihood (ML) estimators are calculated using the outer-score, Hessian matrix, and sandwich-type methods. We have also established some asymptotic properties under certain regularity conditions. The utility of the new theory is illustrated with the analysis of real and simulated data sets.
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1. [bookmark: Introduction]Introduction


Finite mixture models (FMM) have become one of the most widely used statistical tools for modeling heterogeneous multivariate data arisen from a wide range of research disciplines, such as statistical pattern recognition, econometrics, bioinformatics, and biomedical sciences, to name just a few. For mathematical and computational convenience, the multivariate Gaussian (normal) distribution is the most commonly assumed for mixture components. However, the normality assumption is not always realistically applicable to any data sources. The estimates of component means, variances and covariances, as well as the identification of clustering can be dramatically affected by observations that exhibit atypically longer-than-normal tails in multivariate Gaussian mixture (GMIX) models being fitted. To circumvent such obstacles, Peel and McLachlan [18] proposed multivariate t mixture (TMIX) models and provided the expectation conditional maximization (ECM) algorithm [16] for computing maximum likelihood (ML) estimates of parameters. Conceptually, the TMIX model which, as the name suggests, imposes multivariate t distributions [13] for each component, has long been recognized as a robust approach to handling population heterogeneity and heavy tails in multivariate data.
We say a p-dimensional random vector X follows a multivariate t distribution with location vector µ, positive definite scale-covariance matrix X and degrees of freedom (DOF) ν, denoted by X  ∼ tp(µ, X, ν), if it has the probability density
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[bookmark: _bookmark4],	(1)

where ∆ = (x − µ)⊤X−1(x − µ). The DOF ν, which controls the thickness of the tails, is used to adjust robustness of inference. Assume that y = {y1, . . . , yn} forms a p-dimensional random sample of size n arising from a population with g subclasses C1, . . . , Cg . Each yj follows a g -component TMIX model, denoted by

g
[bookmark: _bookmark5]f (yj; θ) =  πitp(yj; µi, Xi, νi),	(2)
i=1
 (
i
i
=
1    
 
i
)where π (i = 1, . . . , g) are mixing proportions satisfying g π = 1. The TMIX model defined in(2)includes the GMIX model as a limiting case when νi → ∞ for all i. To prevent overfitting, it might be useful in practice to impose some constraints on component parameters. Andrews et al. [2] introduced a ‘tClass’ family of four TMIX models defined
by constraining, or not, X and νi to be equal across components. They found in simulations that an appropriate tClass model can be effectively determined by the penalized likelihood criteria such as Bayesian information criterion (BIC [19]) or integrated completed likelihood (ICL [5]). Moreover, their application to real data indicated that the constrained tClass models with equal covariance matrices and/or equal DOF are more likely to be chosen. In a recent related work, Andrews and McNicholas [1] demonstrated in real-data examples that TMIX models with constrained DOF may yield better clustering performance than the unconstrained ones.
Denote the unique parameters in each component by θi = (µ⊤, f ⊤, νi)⊤, and the entire parameter by θ = {π, θi, . . . , θg },
i	i
where π = (π1, . . . , πg −1)⊤ and fi contains distinct elements in Xi. Accordingly, the log-likelihood function of θ for a set of
observations y is

n
[bookmark: _bookmark6]ℓ(θ; y) =  ln f (yj; θ).	(3)
j=1
Owing to the complexity of the likelihood function which involves logarithms of a sum, the task of obtaining the score vector and Hessian matrix of(3)is tedious and challenging.
Recently, Boldea and Magnus [6] derived the score vector and Hessian matrix for the GMIX model in explicit expressions and utilized the formulae to estimate the information matrix as well as the standard errors of parameters. For fitting the TMIX models, so far the users must resort to the bootstrap technique [4,9] to calculate the standard errors. Unfortunately, such a resampling procedure can be very time-consuming or even infeasible.
In this paper, we carry out analytical derivations of the score vector and Hessian matrix for the four members of tClass models to estimate the information matrix. We offer the closed-form expressions of Hessian matrices under a general case and three special cases, including (i) equal scale-covariance matrix, (ii) equal DOF, and (iii) equal scale-covariance matrix and equal DOF. Having obtained these results, the variance–covariance matrix of ML estimators can be approximated by using either the outer product of score vector, the Hessian matrix or the robust sandwich-type estimation procedure. In addition, we investigate the asymptotic properties of ML estimators, which are useful for estimating the precision of parameters, constructing confidence intervals, and undertaking the hypothesis testing.
The rest of this paper is structured as follows. In Section2, we establish the notation. Section3formulates the main theoretic result inTheorem 1and presents three important special cases inTheorems 2–4. In Section4, we discuss the es- timation of variance–covariance matrix of ML estimators and study their asymptotic properties. An application to uranium exploration data set is illustrated in Section5. Section6conducts simulations to examine the finite-sample behavior of the proposed methods. The performance is also compared with the bootstrap-based procedures. Section7ends this paper with a short discussion. Proofs of the theoretical results are sketched in the supplemental material (seeAppendix A).

2. [bookmark: Notation][bookmark: _bookmark7]Notation

We begin by defining the notation to be used throughout the paper. Let vec(M ) be the operator that vectorizes a matrix by stacking its columns, and vec(v1, . . . , vg ) be the operator that vectorizes a set of vectors {v1, . . . , vg } with possibly distinct dimensions by stacking them in turn as a pooled column vector. Since the component scale-covariance Xi in(2)is symmetric, we use fi = vech(Xi) to denote the p(p + 1)/2 × 1 vector that contains unique sub-diagonal elements in vec(Xi). In addition, we introduce a p2 × p(p + 1)/2 duplication matrix D such that
Dvech(Xi) = vec(Xi),
which uniquely transforms the half-vectorization of a matrix to its vectorization. Recall from(2)that the mixing proportions πi have to be all positive and sum to one. Let ⊗ be the Kronecker product, which maps two arbitrarily dimensioned matrices into a larger matrix with a specific block structure. Because the differential of(1)involves the first-order and second-order


derivatives of gamma function, we use the notation  DG(x) =  d ln T(x)/dx  to  represent  the  digamma  function,  and TG(x) = d2  ln T(x)/dx2  the trigamma  function.
Following Boldea and Magnus [6], we set πg  = 1 − π1  − · · · − πg −1 and
1	1

 (
i
) (
g
)ai  = π ei,   for i = 1, . . . , g − 1,   and   ag  = − π

1g −1,

where ei denotes the ith column of the identity matrix Ig −1, and 1g −1 is the (g − 1) dimensional vector of ones. The first two derivatives of the logarithm of the mixing proportions are given by
d ln πi  = a⊤dπ  and   d2 ln πi  = −(dπ)⊤aia⊤(dπ).
i	i
For ease of notation, we define ϕij = πifi(yj), where fi(yj) = tp(yj; µi, Xi, νi). We first set up the following notation:

zij  = ϕij

g
 (

) ϕhj,

g
a¯ j  =  zijai,	bij  = X−1(yj  − µ ),

h=1

i=1

1

i	i

2
−1	⊤

hij  = νi + (yj − µi)⊤X− (yj − µ ),	Eij  = X	−

bijb  ,

i	i	i

g

hij	ij

 (
i
) (
ij
) (
ij
)Bij  = X−1 −

p + νi
hij

bijb⊤,

B¯ j  = X−1  −



i=1

zij

p + νi
hij

bijb⊤,

 (
ν
i
)  
 (
2
)Υij = TG    − TG

 p + νi 	2
2	− νi

4
+ hij

2(p + νi)
 (
h
)−	2	,
ij
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 hij 

 p + νi   hij − νi 



and

γij =
 (
ν
)i

+ DG   2

− DG	2

+ ln
g

νi	−


νi	hij
	g

,	(4)
g

Υ ∗	 ν 

 p + ν 	2	

4	2(p + ν)

	∗ 	∗

ij   = TG   2

− TG	2

− ν +

i=1

zij
 (
h
) (
h
)∗	∗2
ij	ij

−
l=1

zljγlj


 (
−
)k=1

(1 − zkj)γkj,

where γ ∗  and h∗  are γij   and hij, respectively, with νi   replaced by  ν.
ij	ij
The score vector is defined by s(θ) = n     s (θ), where s (θ) = ∂ ln f (y ; θ)/∂θ denotes the score vector corresponding
j=1   j	j	j
to the jth observation. The Hessian matrix is defined by H(θ) = n     H (θ), where H (θ) = ∂ s (θ)/∂θ⊤ denotes the Hessian

matrix obtained by the jth observation.

j=1     j	j	j

Before presenting our main results, we establish the following expressions, which are useful forTheorems 1–4. More precisely, they are the first- and second-order partial derivatives of ln fi(yj) with respect to each entry of component
parameters θi = (µ⊤, f ⊤, νi)⊤, given by

i	i
νi + p	1   ⊤

1	p + νi

qj,µi  =

hij

bij,	qj,fi  = − 2 D

vec(Bij),	qj,νi   = − 2 γij,	Qµi µi  = −

hij

Eij,

p + νi  ⊤	−1	

(hij  − p − νi)

Qµi fi   = −

1

2hij

bij   ⊗ (Xi       + Eij) D,	Qµiνi  =
p + νi

2	bij,
 (
h
)ij

       ⊤	−1

−1	 	    ⊤	⊤

−1	

Qfi fi  = 2 D

(Xi      ⊗ Xi     )D −

D
4hij

bijbij   ⊗ (3Xi      + Eij) D,

(hij  − p − νi)  ⊤	⊤	1

 (
2
h
)Qfiνi  =	2
ij

3. [bookmark: Main_results][bookmark: _bookmark9]Main results

3.1. [bookmark: General_result]General result

D  vec(bijbij ),   and   Qνiνi  = − 4 Υij.

 (
j
s
)The score vector for the jth observation can be written as s (θ) = vec(sπ , s1, . . . , g ), where si

= (s⊤

, s⊤ , sj,ν )⊤

j	j	j

j	j,µi

j,fi	i

comprises the first partial derivatives with respect to each entry of θi. The individual Hessian matrix is defined   as
Hππ	π1	πg 
j	Hj	· · · Hj
H1π	11	H1g 

 (

) (
.
)Hj(θ) = 

j	Hj

· · ·	j   


 .
 g π

.	. . .	. 
 (

)g 1	gg

Hj	Hj	· · ·	Hj


We can now state ourTheorem 1, which allows direct calculation of the score vector and Hessian matrix in compact forms.
[bookmark: _bookmark10]Theorem 1. The contribution of the jth observation to the score vector and Hessian matrix with respect to the parameters π and each entry of θi (i = 1, . . . , g) is

sπ	i

ππ	⊤	πi

⊤	iπ

πi⊤

j    = a¯ j,	sj  = zijcij,	Hj       = −a¯ ja¯ j   ,	Hj     = zij(ai  − a¯ j)cij  ,	Hj     = Hj       ,

Hii

⊤	ik	⊤


where

j    = −zijCij  + zij(1 − zij)cijcij  ,	and	Hj    = −zijzkjcijckj	(for  i  ̸= k),


cij =

qj,µi 
qj,fi

Qµi µi	Qµi fi	Qµiνi 
 (
µ
i
 
f
i
i
 
i
Q 
i 
 
i
) (
Q
) (
Q
)and   Cij  = −  Q ⊤	Qf f	f ν  .

qj,νi

⊤
µiνi

⊤
fiνi

Qνiνi

Proof.  See the Web Appendix A.	Q

3.2. [bookmark: Special_case_I:_equal_scale-covariance_m]Special case I: equal scale-covariance matrix

⊤	⊤
 (
i
)When Xi  = X, we redefine the parameter vector as θ = (π⊤, θ˘ 1 , . . . , θ˘ g , f ⊤)⊤, where θ˘ i  = (µ⊤, νi), for i = 1, . . . , g ,
g      f
and f  = vech(X). The individual score vector and Hessian matrix are sj(θ) = vec(sπ , s1, . . . , s  , s  ) and

Hππ	π1

πg	πf 

j	j	j	j

j	Hj	· · ·   Hj	Hj

H1π	11

1g	1f 

 (

)  j	Hj	· · ·	Hj	Hj   

 .
 (

)Hj(θ) =  .

.	. . .	.

.   ,
 (
.
)

 (
.
) (
.
)  g π	g 1	gg	g f 

 (

)Hj


Hj	· · ·	Hj	Hj   

Hf π	f 1

f g	ff

j	Hj	· · ·	Hj	Hj
respectively. We now stateTheorem 2, which allows us to calculate the score vector and Hessian matrix under the case of
Xi  = X, ∀i.
[bookmark: _bookmark11]Theorem 2. The contribution of the jth observation to the score vector and Hessian matrix with respect to the parameters π, µi,
νi (i = 1, . . . , g), and f is given by

sπ	i

f	1   ⊤

j    = a¯ j,	sj  = zijc˘ij,	sj   = − 2 D

vecB¯ j,
g

Hππ

⊤	πi

⊤	πf	1 	⊤

j       = −a¯ ja¯ j   ,	Hj     = zij(ai  − a¯ j)c˘ij  ,	Hj       = − 2


i=1

zij(ai  − a¯ j)(vecBij)  D,

Hii

⊤	ik	⊤

j   = −zijC˘ij  + zij(1 − zij)c˘ijc˘ij  ,	Hj    = −zijzkjc˘ijc˘kj ,    (for i ̸= k),
if		1	⊤
Hj     = −zij    Aij  + 2 c˘ij{vec(Bij  − B¯ j)}	D,

Hiπ

πi⊤

f π	πf ⊤

f i	if ⊤


and

j     = Hj      ,	Hj     = Hj	,	Hj    = Hj    ,

 1
Hff		1

g
 (
⊗
)−1	

p + νi 	⊤

−1	

j     = D⊤
1

(X−	X
2

g

) −
i=1

zij

4hij

1

bijbij   ⊗ (3X

+ Eij)

 (

)   	
⊤	 	⊤

+ 4
i=1

zij(vecBij)(vecBij)

− 4 (vecB¯ j)(vecB¯ j)
[bookmark: _bookmark12]
D,	(5)

 (
j
,
µ
i
)where c˘ij  = (q⊤

, qj,νi )⊤,

 p     ν	1
 (
+
 
 
i
 

b
⊤
)ij   ⊗ (X−

+ Eij)

 (
i  i
)C˘ij  = −

Qµ µ
 (
i
) (
i
)Q ⊤

Qµ ν 

,   and    Aij	

2hij	
 (
.
)hij  − p − νi	

 (
=
) (

)µiνi	Qνiνi

 −	vec(b   b⊤)⊤ 

 (
2
h
)2	ij   ij
ij


Proof.  See the Web Appendix A.	Q

3.3. [bookmark: Special_case_II:_equal_DOF]Special case II: equal DOF

⊤	⊤
 (
i
)When νi  = ν, we rewrite the parameter vector as θ = (π⊤, θ˜ 1 , . . . , θ˜ g , ν)⊤, where θ˜ i  = (µ⊤, fi)⊤ with fi  = vech(Xi),
 (
j
s
)for i = 1, . . . , g . Consequently, the score vector and Hessian matrix are s (θ) = vec(sπ , s1, . . . ,  g , sν) and

Hππ	π1

πg	πν 

j	j	j	j

j	Hj	· · ·   Hj	Hj
H1π	11	1g	1ν 
  j	Hj	· · ·	Hj	Hj   

 (

) (
,
) (
.
)Hj(θ) = 


.	. . .	.	. 
 (

)

  g π	g 1	gg	gν 
Hj	Hj	· · ·	Hj	Hj   

Hνπ	ν1

νg	νν

j	Hj	· · ·	Hj	Hj
respectively. We can now establishTheorem 3, which can be straightforwardly used to calculate the score vector and Hessian matrix under the case of νi  = ν, ∀i.
[bookmark: _bookmark13]Theorem 3. The contribution of the jth observation to the score vector and Hessian matrix with respect to the parameters π, µi,
Xi (i = 1, . . . , g), and ν is given by

sπ	i

g
 (
1
)ν		∗	ππ	⊤

j    = a¯ j,	sj  = zijc˜ij,	sj    = − 2


i=1

zijγij  ,	Hj       = −a¯ ja¯ j   ,
g

Hπi

⊤	iπ

πi⊤

πν	1 	∗

j     = zij(ai  − a¯ j)c˜ij  ,	Hj     = Hj       ,	Hj       = − 2


i=1

zij(ai  − a¯ j)γij  ,

Hνπ

πν⊤	ii

⊤	ik	⊤

j       = Hj	,	Hj   = −zijC˜ij  + zij(1 − zij)c˜ijc˜ij  ,	Hj    = −zijzkjc˜ijc˜kj	(i ̸= k),
	1   	g			1

Hiν	 		∗

νi	iν⊤

νν	∗

where

j    = −zij

Rij  + 2 c˜ij

1 −
i=1

zij

γij

,	Hj    = Hj     ,   and   Hj     = − 4 Υij ,

c˜ij  =

qj,µ  ,

C˜ij  = −

Qµ µ	µ f 

,	Rij  = −

Qµ ν  ,

 (
i
)qj,fi

Q ⊤	f f

Qf ν

 (
i  
 
i
Q  
i 
 
i
) (
i
)µi fi	Q i i	i
 (
ij
)and γ ∗  is γij  in (4) with νi  replaced by ν.
Proof.  See the Web Appendix A.	Q

3.4. [bookmark: Special_case_III:_equal_scale-covariance]Special case III: equal scale-covariance matrix and equal  DOF

We discuss the case where both of the component scale-covariance matrices and component DOFs are equal, that  is,
Xi   = X and νi   = ν, for i  = 1, . . . , g . To this end, we redefine the parameter vector as θ = (π⊤, µ⊤,. . . , µ⊤, f , ν)⊤.
1	g
g      f
Accordingly, the score vector and Hessian matrix are sj(θ) = vec(sπ , s1, . . . , s  , s  , sν) and

Hππ	π1


πg	πf

πν 

j	j	j	j	j

j	Hj	· · ·   Hj	Hj	Hj

H1π	11

1g	1f

1ν 

  j	Hj	· · ·	Hj	Hj	Hj   
  .	.	. .	.	.	. 
 (

) (

).	.	.
.	.	.

Hj(θ) =  g π	g 1

gg	g f

gν  ,

H	H

· · ·	H

H	H   

  j	j


j	j	j   


  f π	f 1

f g	ff

f ν 

Hj	Hj	· · ·	Hj	Hj	Hj   

Hνπ	ν1

νg	νf	νν

j	Hj	· · ·	Hj	Hj	Hj
respectively. We summarize the results in the following theorem.
Theorem 4.  The contribution of the jth observation to the score vector and Hessian matrix with respect to the parameters π,
µi (i = 1, . . . , g), X, and ν is given by


sπ	i

(ν + p)

f	1   ⊤

g
 (
1
)ν		∗

 (
h
)j    = a¯ j,    sj  = zij	∗
ij

bij,	sj  = − 2 D

vecB¯j,	sj    = − 2


i=1

zijγij ,




Hππ


⊤	πi

ν + p ⊤

g
 (
1
)πν		∗

 (
h
)j       = −a¯ ja¯ j   ,	Hj     = zij(ai  − a¯ j)	∗
ij
g

bij ,	Hj     = − 2


i=1

zij(ai  − a¯ j)γij  ,

πf	1  

⊤	ii	⊤

Hj     = − 2


i=1

zij(ai  − a¯ j)(vecBij)

D,	Hj  = −zijQµi µi + zij(1 − zij)qj,µi qj,µi ,

Hik

⊤	if

	1   ⊤	⊤

j   = −zijzikqj,µi qj,µk ,	Hj   = −zij

Aij  + 2 qj,µi vec(Bij  − B¯ j)	D,

	1		g			1

Hiν	⊤

1 −  z

γ ∗   ,	Hνν  = −

Υ ∗ ,

j    = zij

Qµi,ν − 2 qj,µi

ij	ij
i=1

j	4   ij

Hf ν

	ij  − p − ν		

 (
h
∗
) (
1
) (
g
) (
T      

) (
g
) (
T
) (
∗
)j     = D

i=1

zij
 (
2
h
)∗2
ij

vec(bijbij) + 4


k=1

(1 − zkj)γkj vecB¯j      ,

Hiπ

πi⊤	νπ

πν⊤	f π

πf ⊤	νi

iν⊤	νf

f ν⊤	ff	∗	∗

j     = Hj      , Hj	= Hj	, Hj	= Hj	, Hj     = Hj      , Hj     = Hj	, and Hj     are given in (5), where γij   and hij  are γij       and hij
defined in (4) with νi  replaced by ν.
Proof. The proof is essentially similar to that ofTheorems 2and3.	Q

4. [bookmark: Variance_matrix_and_asymptotic_propertie][bookmark: _bookmark14]Variance matrix and asymptotic properties

We discuss the estimation of variance–covariance matrix of ML estimators, denoted by θˆ , along with its asymptotic properties. Under suitable regularity conditions for the correctly specified model, the information matrix is defined as
I = −E[H(θ)] = E[s(θ)s(θ)⊤].
However, the above two expectations cannot be obtained analytically under the TMIX models. Further, we are not always sure that the model is correctly specified.
In principle, the information matrix can be estimated by

n
 (
I
)n	
1 =
j=1

sj(θˆ )sj(θˆ )⊤,

which is based on the outer product of first-order derivatives, or the empirical information matrix

 (
I
n
)2  = −H(θˆ ) = −

n


j=1

Hj(θˆ ),

which is based on second-order derivatives. Under correct model specification, both In−1  and In−1  are consistent estimators
1	2
of the variance–covariance matrix of θˆ , denoted by var(θˆ ). Whether or not the model is correctly specified, a consistent
estimator of var(θˆ ) can be obtained using the so-called ‘‘sandwich’’ triple product matrix [12,20], given by

In−1

n−1

n    n−1

3	= I2      I1I2      .
The robust property of the sandwich estimator lies in the fact that it provides valid standard errors even if the assumed model is misspecified.
To demonstrate the asymptotic properties, we have to assume the following regularity conditions:
(C1)The parameter space for θ are compact subspaces of Rm, where m is the number of model parameters. (C2)The true value of   θ is in the interior of parameter space for θ.
(C3)The second partial derivatives of f (yj; θ) with respect to θ exist almost surely in a neighborhood of true value of θ and are continuous for all  yj.
(C4)E [sj(θ)sj(θ)⊤] and −E[Hj(θ)] are positive definite in a neighborhood of the true value of θ.
(C5)There exists a function   K(yj) such that E[K(Yj)] < ∞ and each element of Hj(θ) is bounded in absolute value by   K(yj)
uniformly in some neighborhood of true value of θ.
(C6)The identifiability condition satisfies such that f (yj; θ) = f (yj; θ∗ ) almost surely implies θ =  θ∗  with  additional restriction π1 ≥ π2 ≥ · · · ≥ πg .
[bookmark: _bookmark15]Theorem 5.  Under the above regularity conditions, it follows that, as n → ∞,
p
(i) θˆ  → θ, meaning that θˆ  is a consistent estimator of θ.


p	p	−1	−1
(ii) (1/n)In   → I∞  = E[sj(θ)sj(θ)⊤] and (1/n)In   → I∞  = E[−Hj(θ)], implying that the inverse matrices In	and In
1	1	2	2	1	2
are consistent estimators of the asymptotic variance of  θˆ .
(iii) √n(θˆ − θ)  d     N  (0, I∞−  I∞I∞    ).
1	−1
→  m	2	1	2
Proof.  See the Web Appendix B.	Q

As a consequence, we establish the following corollary, which can be applied to set up the rejection regions of hypothesis tests.

[bookmark: _bookmark16]Corollary 1. Suppose that Conditions (C1)–(C6) hold. Let g(θ) be a continuous and differentiable function from Rm to Rk, and
 (
χ
 
2
)r    denote the chi-square distribution with DOF  r. ByTheorem  5, we have

1	d
(i)  (θˆ − θ)⊤In−  (θˆ − θ) → χ 2 .
3	m
 (
1
) (

) (
1
)(ii)  √ng(θˆ ) − g(θ)  d     N   0, g˙ (θ)(I∞−  I∞I∞−  )g˙ (θ)⊤, where g˙ (θ) = ∂g(θ)/∂θ.
→  k	2	1	2
1	−1	d
 (
3
) (
k
)(iii)  g(θˆ ) − g(θ)⊤g˙ (θˆ )In−  g˙ (θˆ )⊤   g(θˆ ) − g(θ) → χ 2.
Proof.  See the Web Appendix B.	Q

5. [bookmark: An_illustrative_example][bookmark: _bookmark17]An illustrative example

We illustrate our theoretical results developed in Section3using the ‘‘uranium exploration’’ data previously analyzed by Cook and Johnson [8], and Genest and Rivest [10]. The data were collected from the hydrogeochemical stream and sediment reconnaissance (HSSR) project sponsored by the US Department of Energy. The object of this project involves extensive field work on collecting petroleum samples to explore the extent of uranium potential in the United States. This particular data set, which is available in the copula R package [11], consists of log concentrations of seven chemical measurements
from n = 655 petroleum samples collected near Grand Junction, Colorado.
To compare the performance of GMIX and TMIX models, we fit the following six scenarios with the number of components
g = 2–6 to the data.
(i)GMIX-V: GMIX model with different variance–covariance matrices; (ii)GMIX-E: GMIX model with equal variance–covariance matrix;
(iii)TMIX-VV: TMIX model with different scale-covariance matrices and DOFs; (iv)TMIX-VE: TMIX model with different scale-covariance matrices but equal DOF; (v)TMIX-EV: TMIX model with equal scale-covariance matrix but different DOFs; (vi)TMIX-EE: TMIX model with equal scale-covariance matrix and equal DOF.
 (
1
)The ML estimates of mixture parameters are obtained by adopting the ECM algorithm of Peel and McLachlan [18]. The standard errors of parameter estimates are computed via the proposed information-based asymptotic (‘A’) methods and the resampling-based bootstrap (‘B’) approaches. Specifically, Method (A1) uses In−1   based on the outer product of score vectors, Method (A2) uses In−1  based on the Hessian matrix, and Method (A3) adopts In−1 , which is the so-called sandwich
2	3
variance matrix. Method (B1) performs the parametric bootstrap by drawing samples from the model with   parameters
fixed at their estimates obtained from ML estimation of the raw data; Method (B2) proceeds the nonparametric bootstrap by drawing samples from the empirical distribution of the raw data. Method (B3) carries out the weighted likelihood boot- strap [17], where the weights are generated from a Dirichlet distribution with uniform probabilities. The bootstrap results are calculated based on 500 samples for each method.
Table 1lists the ML estimates of the TMIX-VE model with g = 2 selected using both BIC and ICL together with their standard errors obtained from three asymptotic and three bootstrap methods. For comparison purpose, the results for the GMIX-V model are also reported. In the table, all estimates and standard errors (expect for π1 and ν) have been multiplied  by 100 for ease of presentation. To save space, we omit the estimates of the off-diagonal entries of Xi. Observing the table,   we first see the estimates of mean vectors under both scenarios are quite similar, while the corresponding standard errors under TMIX are much smaller than those under GMIX. This reveals that the TMIX model can reduce the effect caused by
outlying observations so as to provide more precise estimates.
Focusing on the asymptotic standard errors, there are more than half of the 30 cases under the TMIX model whose standard errors computed by In−1   (Hessian) lie in between those computed based on In−1   (outer score) and In−1   (robust
2	1	3
sandwich). This finding is in accordance with the prediction in Boldea and Magnus [6] concerning the ordering of  three
asymptotic standard errors. However, the desired phenomenon does not happen under the GMIX model due primarily to model  misspecification.

[bookmark: _bookmark18]ML estimation results under the TMIX-VE and GMIX-V models for the uranium exploration data.
	Parameter
	Estimate
	Asymptotic
	
	
	
	
	
	Bootstrap
	

	
	
	(A1)
	
	(A2)
	
	(A3)
	
	(B1)
	
	(B2)
	
	(B3)
	

	Ta	G	T
	G
	T
	G
	T
	G
	T
	G
	T
	G
	T
	G

	Weight
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	π1
	0.420
	0.431
	0.028
	0.024
	0.032
	0.027
	0.045
	0.036
	0.024
	0.023
	0.084
	0.099
	0.074
	0.084

	Group 1
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	µ11
	61.058
	62.766
	0.785
	0.993
	0.854
	1.052
	1.198
	1.758
	0.808
	0.872
	1.524
	4.158
	1.592
	3.736

	µ12
	147.969
	148.184
	1.439
	1.488
	1.455
	1.389
	1.698
	1.476
	1.381
	1.378
	1.587
	2.115
	1.634
	2.281

	µ13
	97.457
	98.295
	0.823
	0.901
	0.863
	0.864
	1.289
	1.301
	0.741
	0.801
	1.669
	2.296
	1.731
	2.133

	µ14
	424.798
	425.001
	0.706
	0.664
	0.616
	0.590
	0.673
	0.703
	0.651
	0.562
	1.082
	2.567
	1.105
	2.397

	µ15
	192.972
	194.374
	0.949
	1.017
	0.932
	0.997
	1.083
	1.364
	0.865
	0.867
	1.266
	2.651
	1.201
	2.270

	µ16
	93.186
	95.227
	0.935
	1.017
	0.991
	0.973
	1.582
	1.538
	0.772
	0.876
	2.475
	3.173
	2.376
	3.114

	µ17
	362.319
	363.165
	0.853
	0.822
	0.773
	0.754
	0.878
	0.915
	0.700
	0.735
	0.964
	1.737
	1.040
	2.107

	σ111
	1.031
	1.641
	0.137
	0.185
	0.150
	0.219
	0.206
	0.354
	0.124
	0.175
	0.382
	1.605
	0.372
	1.706

	σ122
	4.198
	4.483
	0.516
	0.461
	0.426
	0.412
	0.408
	0.447
	0.454
	0.404
	0.425
	0.739
	0.422
	1.070

	σ133
	1.157
	1.353
	0.135
	0.125
	0.138
	0.158
	0.183
	0.267
	0.119
	0.123
	0.232
	0.357
	0.223
	0.367

	σ144
	0.745
	0.722
	0.080
	0.072
	0.088
	0.074
	0.126
	0.104
	0.087
	0.079
	0.166
	0.887
	0.173
	0.972

	σ155
	1.484
	1.785
	0.193
	0.212
	0.179
	0.212
	0.207
	0.309
	0.167
	0.188
	0.240
	1.222
	0.222
	1.170

	σ166
	1.241
	1.580
	0.151
	0.166
	0.167
	0.180
	0.248
	0.276
	0.147
	0.156
	0.429
	0.701
	0.410
	0.587

	σ177
	1.127
	1.152
	0.131
	0.120
	0.131
	0.121
	0.152
	0.164
	0.129
	0.106
	0.169
	0.912
	0.165
	0.757

	Group 2
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	µ21
	102.528
	102.548
	2.556
	2.797
	2.713
	2.276
	4.145
	2.636
	2.352
	2.292
	7.507
	8.485
	6.954
	6.640

	µ22
	153.610
	151.224
	1.329
	1.689
	1.271
	1.369
	1.416
	1.402
	1.215
	1.313
	2.396
	2.589
	2.194
	2.100

	µ23
	106.066
	106.187
	0.682
	0.848
	0.713
	0.771
	0.900
	0.978
	0.609
	0.735
	1.015
	1.466
	0.988
	1.252

	µ24
	423.668
	420.297
	0.836
	1.531
	0.723
	0.949
	0.774
	1.019
	0.732
	0.910
	1.629
	2.607
	1.663
	1.975

	µ25
	212.881
	211.714
	1.471
	1.842
	1.572
	1.479
	2.263
	1.587
	1.412
	1.405
	4.951
	4.802
	4.534
	3.720

	µ26
	109.130
	107.533
	0.901
	1.218
	0.920
	1.023
	1.111
	1.239
	0.848
	0.976
	1.283
	2.212
	1.309
	1.995

	µ27
	372.190
	370.472
	1.161
	1.517
	1.108
	1.208
	1.308
	1.246
	0.985
	1.277
	2.028
	2.427
	1.826
	2.009

	σ211
	11.840
	14.603
	1.442
	1.586
	1.058
	1.115
	1.153
	1.084
	1.132
	1.172
	1.995
	2.767
	1.876
	2.092

	σ222
	4.350
	6.263
	0.440
	0.528
	0.389
	0.479
	0.409
	0.599
	0.392
	0.487
	0.468
	0.882
	0.461
	0.806

	σ233
	1.274
	1.810
	0.133
	0.171
	0.112
	0.142
	0.117
	0.163
	0.114
	0.151
	0.150
	0.263
	0.151
	0.211

	σ244
	1.489
	3.121
	0.150
	0.224
	0.141
	0.239
	0.201
	0.535
	0.136
	0.229
	0.274
	1.113
	0.268
	0.910

	σ255
	5.309
	7.240
	0.649
	0.755
	0.452
	0.549
	0.411
	0.638
	0.475
	0.531
	0.858
	1.158
	0.884
	0.827

	σ266
	2.214
	3.405
	0.253
	0.359
	0.192
	0.263
	0.184
	0.362
	0.201
	0.261
	0.200
	0.493
	0.222
	0.386

	σ277
	3.225
	5.054
	0.326
	0.411
	0.284
	0.387
	0.311
	0.508
	0.320
	0.390
	0.367
	0.883
	0.401
	0.753

	DOF
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	ν	7.026	–	0.706
	–
	0.256
	–
	0.146
	–
	0.766
	–
	1.081
	–
	0.851
	–


[bookmark: _bookmark19]All estimates and standard errors (expect for π1  and ν) have been multiplied by 100.
a  T: TMIX-VE; G: GMIX-V.

6. [bookmark: Simulation][bookmark: _bookmark20]Simulation

Two simulation studies are carried out in this section to examine the finite-sample performance of the proposed theoretic results. In the first simulation, we generate data from a mixture of bivariate t distributions with g = 2 components and  n = 200, 500 and 1000 sample sizes. The presumed mixture parameters are given by
π1  = π2 = 0.5,	µ1  = (0, 0)⊤,	µ2  = (5, 5)⊤,
 (
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Table 1
)

X1 =

1     0
0    1

,	X2 =

2     1
1    2

,	ν1 = 3,	ν2  = 6.

A total of R = 10 000 replications are taken for approximating the true standard errors. To assess how close the estimated standard errors to the actual standard errors of parameter estimators, we evaluate the root mean square error (RMSE) of the standard errors of the parameter estimates. Let θˆk  and sk  be the ML estimate and standard error of the parameter θk,
(k)
respectively, and θˆ (r) and s	denote the corresponding estimates in the r th replication.   Treating
k	k
 	

 1  R    	1    R	2

  
 (
SE
(
θ
ˆ
k
)
 
=

)

R
r =1

θˆ (r) −

 θˆ
R
r =1


 (
k
)(r)
k

as the ‘‘true’’ value of sk for sufficiently large replicates R, the RMSE for sk can be calculated as

RMSE =	SE2(sk) + BIAS2(sk),

 (
k
)where SE2(sk) = 


R
r =1

(s(r)

− s¯


(r)
k

)2/R and BIAS(sk) = s¯


(r)
k

− SE(θˆk) with s¯


(r)
k


R
 (
= 

)r =1


(r)
sk

/R.


[bookmark: _bookmark21]Table 2
Simulation results: RMSE of the estimated standard errors.

Parameter	n = 200			n = 500			n = 1000			 (A1)	(A2)	(A3)		(A1)	(A2)	(A3)		(A1)	(A2)	(A3)
	π1
	0.0016
	0.0019
	0.0300
	0.0006
	0.0007
	0.0044
	0.0003
	0.0003
	0.0006

	µ11
	0.4178
	0.4189
	0.4164
	0.0263
	0.0266
	0.0263
	0.0029
	0.0028
	0.0031

	µ12
	0.4164
	0.4175
	0.4145
	0.0271
	0.0273
	0.0272
	0.0029
	0.0029
	0.0031

	σ111
	0.0706
	0.0721
	0.1065
	0.0209
	0.0211
	0.0255
	0.0102
	0.0102
	0.0118

	σ121
	0.0582
	0.0600
	0.0697
	0.0110
	0.0107
	0.0139
	0.0052
	0.0050
	0.0058

	σ122
	0.0708
	0.0733
	0.1000
	0.0215
	0.0218
	0.0269
	0.0102
	0.0102
	0.0117

	ν1
	22.8313
	8.7452
	13.1705
	0.4395
	0.4537
	0.5611
	0.1313
	0.1309
	0.1623

	µ21
	0.3936
	0.3953
	0.4090
	0.0240
	0.0242
	0.0272
	0.0043
	0.0043
	0.0045

	µ22
	0.3966
	0.3983
	0.4344
	0.0233
	0.0235
	0.0247
	0.0042
	0.0041
	0.0044

	σ211
	0.1119
	0.1290
	1.2753
	0.0416
	0.0468
	0.2462
	0.0206
	0.0200
	0.0242

	σ212
	0.0914
	0.0955
	0.6824
	0.0316
	0.0327
	0.1144
	0.0158
	0.0156
	0.0178

	σ222
	0.1113
	0.1270
	1.1788
	0.0402
	0.0450
	0.2461
	0.0202
	0.0199
	0.0238

	ν2
	402.7064
	191.1218
	1488.1187
	61.0349
	37.2372
	304.7826
	10.5527
	3.6279
	5.4754



Table 2reports the RMSE of the estimated standard errors. We see that Method (A2) based on the Hessian matrix typically outperforms Methods (A1) and (A3). Additionally, the RMSE can be apparently decreased as the sample size n increases, confirming the consistent estimation of standard errors.
In the second simulation, we investigate the asymptotic properties described in Section4for dealing with hypothesis testing problems in finite samples. We generate random samples from a mixture of two-component bivariate t distributions with the following parameter settings:
π1  = π2 = 0.5,	µ1  = (0, 0)⊤,	µ2  = (2, 2)⊤,

X1 =

0.1	0  
0	0.1

,	X2 =

3     1
1    3

ν1  = ν2  = 5.


In this experiment, we evaluate the empirical powers of correctly rejecting the erroneous specification of the following three hypotheses:
(Test 1)   H0  : µ1  = µ2       versus     H1  : µ1  ̸=  µ2;
(Test 2)    H0   : X1   = X2       versus     H1   : X1   ̸= X2;  and
(Test 3)    H0   : µ1   = µ2  and X1   = X2       versus     H1   :  either µ1   ̸= µ2  or X1   ̸= X2.
According toCorollary 1(iii), we adopt the following test statistics for the above three hypotheses:
 (
1
)λh  = gh(θˆ )⊤g˙h(θˆ )V (θˆ )g˙h(θˆ )⊤−  gh(θˆ ),    (h = 1, 2, 3) at the significance level of 0.05,   where

g1(θˆ ) =

µˆ 11  − µˆ 21
µˆ 12  − µˆ 22

,	g2(θˆ ) =

σˆ111  − σˆ211 σˆ121  − σˆ221 σˆ122  − σˆ222

,	g3(θˆ ) =

g1(θˆ ) ,
g2(θˆ )


and g˙h(θˆ ) is the first partial derivative of gh(θ) with respect to each entry of parameters. A total of 500 replications are run for each of considered sample sizes n = 50, 100, 150, 250 and 500. For comparison purpose, the covariance matrix of ML estimators V (θˆ ) is evaluated based on Methods (A1) In−1 , (A2) In−1   and (A3) In−1 , and three bootstrap-based methods,
1	2	3
namely (B1) parametric, (B2) nonparametric and (B3) weighted nonparametric.
Table 3summarizes the empirical powers for the three test statistics calculated based on six kinds of covariance estimators  V (θˆ ) over  500  replications.  The  results  indicate  that  the  information-based  estimators  typically  yield  higher
powers for testing the hypotheses than the bootstrap methods when the sample sizes are relatively small (n = 50 and 100). For determining the homogeneity of two component scale-covariance matrices (Test 2), a larger sample is required to yield a higher statistical power of the test. For example, when n = 50, the test statistic λ2 developed based on the outer-score (A1) and the bootstrap methods gives low statistical power to detect the heterogeneity of scale covariances of the   data.
It is noteworthy to mention that the powers grow monotonically when the sample size increases. As expected, the tests using the six methods have high powers near one for large sample sizes (n = 250 and 500). We remark that the bootstrap methods may suffer from the singularity of component covariance matrices, and thus additional samples will be regenerated
to complete the required bootstrapping replications. In contrast, the information-based methods are very efficient to implement without any computational problems under all our considered scenarios.

[bookmark: _bookmark22]Empirical powers for the simulation experiments.
	Test
	Sample size
	Asymptotic
	
	
	
	Bootstrap
	

	
	
	(A1)
	(A2)
	(A3)
	
	(B1)
	(B2)
	(B3)
	

	1
	50
	0.976
	0.990
	0.972
	
	0.872
	0.830
	0.854
	

	
	100
	1.000
	0.998
	0.994
	
	0.996
	0.994
	0.998
	

	
	150
	1.000
	0.998
	0.996
	
	1.000
	0.996
	1.000
	

	
	250
	1.000
	0.998
	0.998
	
	1.000
	1.000
	1.000
	

	
	500
	1.000
	1.000
	1.000
	
	1.000
	1.000
	1.000
	

	2
	50
	0.492
	0.840
	0.838
	
	0.514
	0.482
	0.536
	

	
	100
	0.928
	0.992
	0.982
	
	0.832
	0.704
	0.736
	

	
	150
	0.994
	0.998
	0.998
	
	0.978
	0.912
	0.950
	

	
	250
	1.000
	1.000
	0.998
	
	1.000
	0.996
	0.998
	

	
	500
	1.000
	1.000
	1.000
	
	1.000
	1.000
	1.000
	

	3
	50
	0.994
	0.986
	0.994
	
	0.932
	0.964
	0.966
	

	
	100
	1.000
	0.998
	1.000
	
	0.998
	1.000
	1.000
	

	
	150
	1.000
	0.998
	1.000
	
	1.000
	1.000
	1.000
	

	
	250
	1.000
	1.000
	1.000
	
	1.000
	1.000
	1.000
	

	
	500
	1.000
	1.000
	1.000
	
	1.000
	1.000
	1.000
	



7. [bookmark: Discussion][bookmark: _bookmark23]Discussion

We have established the asymptotic information-based methods, which rely on the analytical expressions of score vector and Hessian matrix, for computing the standard errors of TMIX parameters. The results are fundamental ingredients for answering inferential questions such as the selection of significant variables, the construction of valid confidence intervals, or the comparison of component parameters. Our proposed methods are more economical and convenient to use than the computationally intensive bootstrap procedures, which may be prohibited in certain circumstances due to unduly heavy computational cost. Numerical results also indicate that the proposed methods work reasonably well and can offer credible results.
The utility of our new theory can be extended to parsimonious TMIX model constructed by introducing some constraints on the component scale-covariance matrices Xi such as eigenvalue decomposition [3,7] or factor-analytic representation [1,15]. Nowadays, the occurrence of missing values is common and often inevitable in large data sets. Estimating standard errors in mixture models with missing values [14] is a nontrivial and challenging task. Therefore, it is of great interest to broaden the current approach in handling missing data problems.
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