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abstract
The largest point mutation, which is seen in the strains H274Y and N294S, makes influenza viruses resistant to some molecule drugs. Recently, there have been a large number of experiments finding many frameworks and catalytic residues considered to prevent the efficacy of anti-flu drugs. In the past, much research focused on the role of drugs in rigid protein rather than in flexible protein. In this study, we used molecular dynamics simulation (MD) combined with structure- and the ligand-based drug design (SBDD and LBDD) method to study the dynamics interaction and protein dynamics correlation statistics between compounds and the framework, catalytic residue in N1. Drug candidates are screened by the predicted IC50 of the docking result made by Support Vector Machine (SVM) and Multiple Linear Regression (MLR) and Genetic function approximation (GFA), p <0.001. Saussureamine C and Diiodotyrosine shown by MD have a protein dynamics correlation similar to that of sialic acid, both can participate in hydrogen bond formation in loop, Framework, and catalytic residues. In silico finding suggested Saussureamine C can generate inhibition on H274Y and N294S mutants and Diiodotyrosine can also generate inhibition on N294S mutants. Therefore, in silicon drug design results, Saussureamine C and Diiodotyrosine may be potential drugs to produce inhibitory effects on N1 mutants and the wild-type.
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Introduction 
Influenza viruses belong to a class of viruses called orthomyxoviruses, divided into A, B, and C types according to their particular antigenicity [1]. Influenza A is the most powerful influenza virus since it can infect cross species. The spherical surface of Influenza A shows two glycoproteins: hemagglutinin (HA) and neuraminidase (NA)[2]. Influenza A viruses infect organs concentrated in the lower respiratory tract. When the virus infects the host, NA will remove sialic acid and destruct its glycoconjugates with mucins in the final step of replication, to accelerate the release and infection of progeny viruses. Subclass NAs (N1-N9) are phylogenetically classified into two groups: group-1 and group-2. Group-1 includes N1, N4, N5 and N8 whereas the rest are classified in group-2 [3].
H1N1, H5N1, and H7N1 belong to the influenza viruses type A and have become the world's largest pandemic threat due to their cross-species transmission characteristics, high prevalence, and high mortality rates. Mutation and antigenic drift allow the influenza viruses type A frequently produce new strains and resistant viruses. In the NA crystal, it is found that residues called catalytic residues-- R118, D151, R152, R224, E276, R292, R371, and Y406-- can directly contact the substrate and produce hydrogen bonds. It is found that another framework residues, (E119, R156, W178, S179, D198, I222, E277, N294, and E425) can stabilize active site of the structure[4]. The major role of Oseltamivir (Tamiflu) is to compete for the binding site of sialic acid in the neuraminidase N1 subtype [5]. Therefore, if a mutation occurs in the binding site, Tamiflu will not easily be accepted by the binding sites, which then leads to a drug resistance [6-12]. In the past, framework residues of H274 and N294 mutants were found to make the virus resistant. Mutation points, such as framework residues H294Y and N294S, are found to cause catalytic residue E276 rotation, the destruction of the bonding of E276 and R224, and destabilization of hydrophobic pocket, disallowing Oseltamivir to combine with N1; thus drug resistance is generated [13]. Although zanamivir can be the last line of defense against the Oseltamivir-resistant viruses, resistance is still inevitable. Furthermore, because of possible side effects of respiratory dysfunction, zanamivir is not recommended for chronic respiratory diseases such as asthma or chronic obstructive pulmonary disease. Therefore, there is a need to design new drugs for N1 mutation points.
In the past, research has focused on resistance mechanisms and mutant analysis [14]. However, there is little research about the dynamics process of N1 mutants and substrates with drug candidates. In the past, structure-based drug design (SBDD)[15] and ligand-based drug design (LBDD) [16] have been widely used in the design of different target drugs to be able to quickly and accurately screen drugs. However, drug binding is a dynamic process so that traditional rigid docking cannot be used to accurately study flexibility of the drug-receptor interaction. Therefore, with the aid of molecular dynamics (MD) simulation, the molecular mechanisms of protein and ligand can be explored in depth so in order to better understand how the drug inhibits activity of proteins. Additionally, it allows the computer to design drugs better. 
In this study, SBDD and LBDD are explored for a fast and accurate screening of the natural compound binding capacity with N1 in the world's largest database of traditional Chinese medicine TCM database@Taiwan[17]. With the help of molecular dynamics, the inhibitory mechanisms can be further explored and we can elucidate how inhibitors suppress the function and role of N1. Besides, molecular dynamics simulations of point mutations are conducted to find out potential binding sites and study their related mechanism of difference formation on the mutant.


Result and Discussion
Homology Modeling
The protein structures of mutants H274Y and N294S are created by the homology model. In the homology models of the wild-type, H274Y, and N294S, the mutant models are more accurate than the wild-type’s. In the wild-type, 5.4% of the residues are of the allowed region, 1.4% of the outlier region, 2.9% of H274Y and 2.4% of N294S respectively of the allowed region, and 0.5% of H274Y and N294S of the outlier region (as shown in Figure 1 and Table 2). The residues’ topology often affects demolition and stack of protein structure and molecular complementarity. In the wild-type and mutants, the residues with similar disfavored residue topology include S125, I225, T225, C292, W296, C331, S400, N449, and W455.

Structure based drug design
The homology models of the wild-type and mutants were further used to perform receptor docking (table 1) (Figure 2) where the dock score was used as a primary standard for evaluating ligand binding affinity. The sum of the scoring function of ligand in the individual protein model was used in ranking. Saussureamine C (T1) and Diiodotyrosine (T2) (Figure 3) were both found to generate a high binding affinity in both wild-type and mutants, where the sum of dock score of T1 and T2 was 621.887 and 621.524; this was higher than N1 nature ligand- sialic acid (C). The binding affinity of sialic acid in the wild-type was significantly lower than in the mutants. There were several ligands such as 5-Hyeroxy-L-tryptophan, Tryptophane, Sinapic acid-4-O-sulfate, and Precatorine that performed with a high binding affinity but with a low predicted bioactivity (also listed at Table 1). These ligands were not considered in further MD exploration.

In H274Y, sialic acid generates Hydrogen bonds (H-bond) with I222 and D247, which are classified in the outlier region. There is a structural difference between Neuraminidases Group 1 and Group 2 in the ’150 loop’ (i.e. residue 147-152), in which the ‘150-cavity’ is adjacent to the active site K150. The D151, which is located on 150 loop, adheres to the active site can generate h-bonds with all ligands in each mutant except for the sialic acid in the N294S mutant. Compared to R152, D151 can generate fewer hydrogen bonds. It was found that E276 plays an important role in the drug resistance. The E276 rotation in H274Y mutants makes Oseltamivir unable to be combined in a hydrophobic pocket so that the drug resistance is generated. Sialic acid can produce stable hydrogen bonds in the wild-type. E119 makes participation in the Hydrogen bond formation of D151. Sialic acid can produce H-bonds only with E119 of N294S. In TCM candidate, with the catalytic residues hydrogen bond formation, both T1 and T2 can form hydrogen bonds with D151 in H274Y and N294S mutants, in which sialic acid cannot form H-bond with N294S. On the other hand, T1 can form stable H-bonds with catalytic residues like R118 in the wild-type and H274Y and R152 in N294S. T2 is different with both sialic acid and T1, and it can generate H-bond with framework residue such as E119 in wild-types.

Ligand based drug design
The most representative descriptors were calculated by the Genetic function approximation (GFA) that generated a confident model with a coefficient of determination (R2) of 0.9884, RMS residual error of 0.0992. The GFA generated descriptors are listed below:

Seven descriptors are calculated and four of them are topology descriptors, which do not rely on a three-dimensional model, including CHI_V_3_C (Connectivity Indices), E_ADJ_mag (Edge Adjacency Magnitude), Kappa_3_AM (Kappa Shape Indices) and SC_2 (Subgraph Counts). Jurs_PNSA_3, dipole descriptors, calculate the atomic charge weighted negative surface area. ES_Sum_sNH2 and ES_Count_sNH2 calculate the sums of the Electrotopological State (E-state) values and the counts of each 
nitrogen-hydrogen single bond. The NH-bond consist hydrogen bond donor property that provide the fundamental element for generating hydrogen bond in N1 hydrophobic pocket. The SVM and MLR models employed the aforementioned descriptors, which GFA’s ***p < 0.001, to generate training, test, and prediction set. The R2 of SVM and MLR model were 0.9337 and 0.9563, respectively (Figure 4). The models of SVM and MLR are both accurate enough (R2>0.6) for prediction. The residuals of predicted IC50 of the training set and test set in SVM and MLR were ±0.6 and ±0.5 (Table 3), respectively; these results suggest that MLR shows more promise in prediction. The predicted IC50 (pIC50) of sialic acid and TCM candidate are listed in Table 1. Although the sum of dock score of Diiodotyrosine (T2) is lower than 5-Hyeroxy-L-tryptophan, the high pIC50 of Diiodotyrosine show a higher bioactivity than 5-Hyeroxy-L-tryptophan. Saussureamine C and Diiodotyrosine, candidates which perform a significant good bioactivity and binding affinity, were further used to perform in silico simulation.


Molecular dynamics simulation
The analysis results of 12 groups of protein-ligand complex interaction mechanisms were further explored by molecular dynamics simulation (including: unbound-wild-type(U-WT), unbound-H274Y(U-H274Y), unbound-N294S (U-N294S) complex; Sialic acid-wild-type(C-WT), Sialic acid-H274Y(C-H274Y), Sialic acid-N294S (C-N294S) complex; Saussureamine C-wild-type(T1-WT), Saussureamine C-H274Y(T1-H274Y), Saussureamine C-N294S (T1-N294S) complex; Diiodotyrosine-wild-type (T2-WT), Diiodotyrosine-H274Y (T2-H274Y), Diiodotyrosine-N294S (T2-N294S) complex). Root-mean-square deviation (RMSD) show that ligand unbound wild-type, H274Y and N294S are relatively more stable than ligand bound N1 (Figure 5A). After 25ns, the RMSD of Sialic acid bound wild-type N1 rises from 0.2 nm to 0.25 nm. Like unbound H274Y, sialic acid, bound H274Y does not produce prompting changes in 80ns, and N294S maintains at 0.3nm in 80ns (as shown in Figure 5B). T1 bound wild-type rises to 0.25 nm in 5ns. After 45ns, T1-H274Y rises from 0.15nm to 0.3nm and then declines to 0.2nm till 80ns. T1-N294S maintains between 0.2nm and 0.25nm (as shown in Figure 5C). T2-H274Y increases from 0.25nm to 0.4nm at 42nsd. T2-N294S decreases from 0.28nm to 0.2nm at 40nsd (as shown in Figure 5D). N294S is less stable than H274Y and the wild-type no matter in the ligand bound or the unbound (as shown in Figure 6A-D). The Radius of gyration (Rg) of C-N294S is very close to C-WT and C-H274Y. Several key residues have been found to be important in maintaining ligand binding affinity. To maintain a high binding affinity, in the rigid docking, hydrogen bonds, or pi-pi interaction must be generated and maintained, andnew hydrogen bonds or pi-pi interactions must also be generate. Although docking only sialic acid does not react and produce D151 hydrogen bonds, in MD, only C-WT, C-N294S, T1-H274Y, T1-N294S, and T2-H274Ycan produce hydrogen binds, in which C-WT can generate hydrogen binds with relatively high frequency (Figure 7). C-H274Y, T1-WT, T2-WT, and T2-N294S cannot produce ligand-D151 hydrogen bond. Furthermore, sialic acid can generate stable hydrogen bonds with high frequency with I149, K150, and D151 in the wild-type and produce H-bonds with resistance residue E276 (i.e. which is also found in docking). This can explain why sialic acid can be identified by N1 in nature. Interestingly, sialic acid can generate H-bonds with low frequency only with D151 in H274Y and N294S. In addition to through D151, sialic acid maintains the stability in binding in mutants, sialic acid also produces hydrogen bonds with low frequency with two catalytic residues, E276 and R292. In the '150 loop', T1 can only participate in the formation of hydrogen bonds with low frequencies in the wild-type. T1 can participate in more hydrogen bond formations in mutant species for the 150 loop. T1 participates in formations of hydrogen bonds with low frequency (< 5%) in D151 and I149; and in N294S, T1 can generate hydrogen bonds with higher frequency with D151 and R152 than H274 (>5%). T1 can also be involved in a number of non- hydrogen loop 150 formation. The catalytic residue is such as R118, R371(>90% in wild-type), Y406; the framework residue is such as E119 and R156. T2 concentrates hydrogen bonds in D151 and R152 in the 150 loop and generates in the wild-type > 40% and > 50% hydrogen bonds respectively in N294S and R152, and in H274Y >15% hydrogen bonds with D151. D151 of the wild-type and mutants produces large amounts of hydrogen bonds with T2 in docking. But in the MD process, only H274Y hydrogen bonds are kept. T2 E119 hydrogen bonds generated in the wild-type docking are maintained in MD and in H274Y and N294S, new E119 hydrogen bonds are also generated. In WT, R118 new high-frequency hydrogen bonds are generated (>40%). In other north 150 loop residue, T2 can produce hydrogen bonds for less frameworks or catalyst residues than T1 and T2 can only produce> 40% and > 60% hydrogen bonds with R156 in the wild-type and N294S.
In the wild-type N1 protein, U-WT, T1-WT (R2 = 0.7136), and T2-WT (R2 = 0.6159) have similar mechanisms of action (Figure 8); C-WT and U-WT have different mechanisms of action (R2 = 0.4293); and T1 and T2 also retain similar mechanisms of action (R2 = 0.7004). In the N1 protein of H274Y mutants, besides from the similarity of T1-H274Y and T2-H274Y drops (R2 <0.5), other ligand-bound complexes retain high similarity (R2> 0.5). C-H274Y generates mechanisms similar to unbound H274Y, T1, and T2 in H274Y mutation compounds. The T2 of H274Y mutants maintains high similarity with C-WT and T1-WT in the wild-type (R2 = 0.7085 and R2 = 0.6076). Also, T1 of H274Y produces high similarity to T2 of the WT independently (R2 = 0.6798). In the N294S mutation species, T1 and T2 also decrease like H274Y and retain similarity between C and T1 (R2 = 0.585), showing that in different mutants, T1 can produce an effect similar to C but in the wild-type, both T1 and T2 cannot produce the same effect with C (R2 = 4.593 and R2 = 0.3272).


Conclusion
In this study, the N1 wild-type and the homology model of mutants are used in combination with LBDD by SBDD. Sialic acid is as the control for screening the TCM candidate. In the core of docking and MD for 150 loops, 150 cavities, 8 catalytic residues, and 11 framework residues, the effect of suppressing of TCM in N1 is studied. In the changes of protein structure, combined with wild-type results, it is speculated that although Saussureamine C (T1) and Diiodotyrosine (T2) have a high degree of similarity to unbound N1 in the wild-type, indicating that Saussureamine C and Diiodotyrosine cannot produce an inhibitory effect on N1 wild-type, Saussureamine C and oseltamivir can produce hydrogen bonds with N347s like Saussureamine C and oseltamivir. R371 is the key residue that the oseltamivir wild-type produces usual bidentate interaction (which only Saussureamine C and oseltamivir can perform such interaction) and Saussureamine C can produce hydrogen bonds with >80% frequency with R371. Since Saussureamine C may be able to produce the wild-type N1 suppression effect similarly to oseltamivir, in the perspective of structural dynamics connection, Saussureamine C is capable of mutant inhibition to H274Y and N294S, and Diiodotyrosine is capable of mutant inhibition to N294S mutants. Diiodotyrosine can produce stable hydrogen bonds with the wild-type and R156 of N294S. In the past, it was considered more important that the formation of stable hydrogen bonds with R156 than with the 150 loop, which produces better inhibitory effects for mutants and wild-types than the past inhibitor such as Oseltamivir. In the 150 loop, Diiodotyrosine can also generate stable hydrogen bonds for the wild-type and mutants. Therefore, Saussureamine C and Diiodotyrosine may be effective in generating potential drugs with inhibitory effect for N1 mutants and wild-types.

methods
2.1	Structure-based drug design
The homology models of wild-type N1 (H1N1), H274Y N1 (H5N1), and N294S N1 (H5N1) as well as their mutant models were respectively established with the protein desired in the experiment from the protein data bank download influenza A virus neuraminidase (PDB: 2HTY [18]; 3CL0 and 3CL2 [19]). Multiple alignment scoring matrices employed BLOSUM as primary algorithms with 10 gap open penalty. RAMPAGE was used to verify validity of the predicted N1 model [20]. Sialic acid were used to control and establish binding sites. The world's largest Chinese medicine database, TCM Database@taiwan [17, 21], was used to provide about 60,000 TCM compounds and N1s to conduct small molecule docking. In the setting of docking, first, CHARMm was used to add hydrogen atoms of sixty thousand TCM compounds. Then Lipinski’s Rule of Five was conducted to select the drug-like compounds. 
Then LigandFit algorithm was used for protein-ligand receptor matching [22]. In LigandFit, Monte Carlo simulation was used to produce a number of different ligand docking poses.Smart minimization was started by employing force-field CHARMm. Minimized docking poses were then clustered with 1.0 RMS Threshold for Diversity. A large number of the complexes after Docking obtained were respectively scored and selected according to dock scores, the bioactivity predicted by the similarity and ligand-based control. Scoring functions such as dock score and PMF and the related N1-ligand complex were further chosen to produce scaffold for molecular dynamics simulation. Dock Score = - (ligand/receptor interaction energy + ligand internal energy). Finally, the Top 2 candidate was selected and its docking pose and inhibition were studied with the control, respectively for H274Y, N294S, and wt-H1N1. Protocol used in this study was referred to our previous studies [23-25] .
2.2	Ligand-based drug design
Bioactivity Prediction by Support Vector Machine (SVM) and Multiple Linear Regression (MLR). 28 existing N1 inhibitor structures were used to conduct the experiment and pIC50 was obtained to calculate individual physical property [26]. After calculation, 552 descriptors were obtained. Then the descriptors with higher correlation were selected through genetic function approximation (GFA) and sorted on square correlation coefficient (R2) [27]. Seven descriptors were obtained after the calculation of the model with the highest R2 and merged with pIC50, and then the training set and the test set were randomly assigned. The Support Vector Machine (SVM) and Multiple Linear Regression (MLR) models were used to analyze descriptors[23]. The nonlinear functions and predictions are determined by:









The SVM method with non-linear functions and the MLR method with linear functions were used to build models to predict the biochemical activity of TCM compounds. In this study, LibSVM[28] and MATLAB-r2010a were used to respectively build SVM and MLR models. The predicted bioactivity obtained by SVM and MLR prediction was compared with the observed bioactivity to calculate square correlation coefficient (R2), with R2> 0.5 classified as having credibility. Finally, the data were combined with structure based screening to select the candidate.

2.3	Molecular Dynamics Simulation
Full atom molecular dynamics simulations were performed on Gromacs platform [29]. Cubic box was generated for immersing buffer solution, coupled ligand-N1 complex and uncoupled N1 (solvated with TIP3P water model). Ligands were prepared by via SwissParam, force field CHARMm and parameters were added through pdb2gmx protocol[30]. The distance was set to 1.2nm between the complex and the edge of cubic box and 0.145M NaCl ion were added to neutralize the complex system. Max(|Fn|)<ε was defined for determining minimization which was calculated by steepest descent algorithm(i.e. time steps was set to 5000). Restrained dynamics production generated by energy-minimization after 5000 time steps. Dynamics production utilized methods such as Particle-Mesh Ewald (PME), Berendsen weak thermal coupling methods, and NVT equilibration. Calculation of electrostatic interaction employed PME. The total simulation time was set to 80ns under 2fs PME option where the cut off was set to 1.0nm. Simulation trajectories analysis was conducted by secondary structure database (DSSP) to analyze protein secondary structure change. Plugin program g_gyrate, g_sas[31], g_rms, g_rmsf was used to measure the radius of gyration, solvent accessible surface area, root mean square derivation, and root mean square fluctuation, respectively.
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Table
Table 1 Candidates were selected based on the DockScore, which are higher than Sialic Acid amount wide type and two mutants of N1. Sum of DockScore of candidates show that the score are higher than control. The predicted value from SVM and MLR models denote Saussureamine C and Diiodotyrosine with high activity values are higher than Sialic Acid.
	Name
	SVM
	MLR
	 
	WT
	H274Y
	N294S
	Sum

	
	pIC50
	
	Dock Score

	Saussureamine C (T1)
	6.2 
	7.5
	
	219.6
	207.7
	194.6
	621.9

	5-Hyeroxy-L-tryptophan 
	4.2 
	4.1 
	
	220.6
	211.5
	189.6
	621.8

	Diiodotyrosine (T2)
	5.8 
	6.3
	
	216.8
	215.7
	189.0
	621.5

	Tryptophane
	4.2 
	4.1
	
	219.3
	213.6
	186.4
	619.3

	Sinapic acid-4-O-sulfate
	4.7 
	0.1 
	
	190.8
	208.4
	205.5
	604.8

	Precatorine
	4.4 
	2.7 
	
	207.6
	181.2
	185.3
	574.1

	Sialic Acid (C)*
	4.8
	3.8
	
	125.9
	180.7
	185.1
	491.7


*Control




Table 2. Homology model validation and protein-ligand interaction detail. Hydrogen bond and pi-pi interaction of each complex is listed below.
	Index
	Residue
	WT
	H274Y
	
	N294S

	
	
	Eva
	C
	T1
	T2
	Eva
	C
	T1
	T2
	
	Eva
	C
	T1
	T2

	118
	ARG
	
	
	HH
	
	
	
	HH
	
	
	
	
	
	

	119
	GLU
	
	
	
	H
	
	
	
	
	
	
	HH
	
	

	120
	PRO
	a
	
	
	
	
	
	
	
	
	
	
	
	

	125
	SER
	o
	
	
	
	o
	
	
	
	
	a
	
	
	

	145
	SER
	a
	
	
	
	
	
	
	
	
	
	
	
	

	151
	ASP
	
	HH
	HHH
	H
	
	HH
	HHH
	HHH
	
	a
	
	HH
	HH

	152
	ARG
	
	
	
	
	
	H
	
	HH
	
	
	
	HH
	

	156
	ARG
	
	HH
	
	HHP
	
	
	
	
	
	
	H
	
	P

	178
	TRP
	
	
	
	H
	
	
	
	
	
	
	
	
	

	180
	SER
	
	
	
	
	
	
	
	
	
	
	
	
	HH

	200
	GLY
	a
	
	
	
	
	
	
	
	
	
	
	
	

	201
	GLY
	
	
	
	
	a
	
	
	
	
	
	
	
	

	202
	ALA
	
	
	
	
	
	
	
	
	
	a
	
	
	

	222
	ILE
	o
	
	
	
	
	HHH
	
	
	
	
	
	
	

	223
	ILE
	
	
	
	
	o
	
	
	
	
	o
	
	
	

	225
	THR
	a
	
	
	
	
	
	
	
	
	
	
	
	

	226
	THR
	
	
	
	
	a
	
	
	
	
	a
	
	
	

	227
	GLU
	
	
	
	HH
	
	
	
	
	
	
	
	
	

	228
	GLU
	
	
	
	
	
	
	
	
	
	
	
	
	H

	235
	ASN
	
	
	
	
	a
	
	
	
	
	
	
	
	

	247
	ASP
	o
	
	
	
	
	H
	
	
	
	
	
	
	

	248
	GLY
	a
	
	
	
	
	
	
	
	
	
	
	
	

	249
	GLN
	a
	
	
	
	
	
	
	
	
	
	
	
	

	270
	ALA
	o
	
	
	
	
	
	
	
	
	
	
	
	

	271
	PRO
	a
	
	
	
	
	
	
	
	
	
	
	
	

	276
	GLU
	
	H
	
	
	
	
	
	
	
	
	
	
	

	277
	GLU
	
	
	
	
	
	HHHH
	
	
	
	
	
	
	

	291
	CYS
	a
	
	
	
	
	
	
	
	
	
	
	
	

	292
	CYS
	
	HH
	
	P
	a
	
	
	
	
	a
	
	
	

	293
	ARG
	
	
	
	
	
	
	
	
	
	
	HH
	
	

	295
	TRP
	a
	
	
	
	
	
	
	
	
	
	
	
	

	296
	TRP
	
	
	
	
	a
	
	
	
	
	a
	
	
	

	310
	LEU
	
	
	
	
	a
	
	
	
	
	
	
	
	

	330
	ASP
	a
	
	
	
	
	
	
	
	
	
	
	
	

	331
	LYS
	a
	
	
	
	a
	
	
	
	
	
	
	
	

	343
	SER
	a
	
	
	
	
	
	
	
	
	
	
	
	

	344
	ASN
	
	
	
	
	a
	
	
	
	
	
	H
	
	H

	345
	GLY
	a
	
	
	
	
	
	
	
	
	
	
	
	

	347
	ASN
	a
	
	
	
	
	
	
	
	
	
	
	
	

	368
	ARG
	
	
	
	
	
	
	HHH
	HHH
	
	
	HHH
	
	

	371
	ARG
	
	H
	HHH
	
	
	
	
	
	
	
	
	
	

	384
	ASP
	
	
	
	
	
	
	
	
	
	a
	
	
	

	387
	ASP
	a
	
	
	
	
	
	
	
	
	
	
	
	

	388
	ASN
	a
	
	
	
	
	
	
	
	
	
	
	
	

	400
	SER
	
	
	
	
	a
	
	
	
	
	a
	
	
	

	402
	TYR
	
	
	
	
	
	
	
	
	
	
	H
	
	H

	404
	SER
	a
	
	
	
	
	
	
	
	
	
	
	
	

	406
	TYR
	
	H
	
	
	
	
	
	
	
	
	
	
	

	448
	VAL
	
	
	
	
	
	
	
	
	
	o
	
	
	

	449
	ASNa
	o
	
	
	
	a
	
	
	
	
	
	
	
	

	451
	SER
	a
	
	
	
	
	
	
	
	
	
	
	
	

	453
	THR
	a
	
	
	
	
	
	
	
	
	
	
	
	

	455
	TRP
	
	
	
	
	a
	
	
	
	
	a
	
	
	

	456
	TRP
	a
	
	
	
	
	
	
	
	
	
	
	
	


Eva: Evaluation of residues.
a:449ASN(H274Y)/VAL(wt)
H: hydrogen bond.
P: pi-pi interaction.


Table 3. Bioactivity predicted by SVM and MLR. 
	Name
	Observed pIC50
	SVM
	MLR

	
	
	Predicted pIC50
	Residual
	Predicted pIC50
	Residual

	1a
	4.67
	4.67
	0.00
	4.51
	0.16

	1c
	4.74
	4.69
	0.05
	4.55
	0.19

	1d
	4.63
	4.75
	-0.12
	4.67
	-0.04

	1e
	4.65
	4.83
	-0.18
	4.86
	-0.21

	1g
	4.37
	4.39
	-0.02
	4.45
	-0.08

	2a
	5.12
	5.01
	0.11
	5.03
	0.09

	2b
	5.23
	5.01
	0.22
	5.19
	0.04

	2c
	4.97
	4.95
	0.02
	4.82
	0.15

	2d
	5.06
	5.08
	-0.02
	5.10
	-0.04

	2e
	5.12
	5.16
	-0.04
	5.23
	-0.11

	2f
	5.10
	5.16
	-0.06
	5.28
	-0.18

	2g
	4.89
	4.77
	0.12
	5.05
	-0.16

	3b
	6.19
	5.60
	0.59
	5.78
	0.41

	3c
	5.72
	5.73
	-0.01
	5.74
	-0.02

	3d
	5.61
	5.62
	-0.01
	5.64
	-0.03

	3e
	5.73
	5.73
	0.00
	5.75
	-0.02

	3f
	5.79
	5.81
	-0.02
	5.94
	-0.15

	4a
	6.28
	6.31
	-0.03
	6.29
	-0.01

	4b
	6.68
	6.32
	0.36
	6.35
	0.33

	4c
	6.55
	6.53
	0.02
	6.45
	0.10

	4d
	6.09
	6.40
	-0.31
	6.33
	-0.24

	4e
	5.99
	6.53
	-0.54
	6.28
	-0.29

	4f
	6.85
	6.61
	0.24
	6.74
	0.11

	GS4071
	7.70
	7.68
	0.02
	7.72
	-0.02

	4g*
	6.01
	6.01
	0.00
	6.07
	-0.06

	1b*
	4.69
	4.65
	0.04
	4.71
	-0.02

	1f*
	4.91
	4.82
	0.09
	4.89
	0.02

	3a*
	5.92
	5.64
	0.28
	5.73
	0.19

	3g*
	5.54
	5.40
	0.14
	5.75
	-0.21


*: test set.
Residual=observed pIC50-predicted pIC50


Figure

[image: C:\Users\User\Desktop\N1validation\ALL-01.tif]
` 1. Homology model validation of (A) wild-type, (B) H274Y and (C) N294S N1 structure.


[image: D:\N1\DOCKINGPOSE2-01.tif]
Figure 2. Docking pose of wild-type, H274Y and N294S N1. Figures only show the residues which perform interaction with ligand. Ligands are colored in orange whereas residues are colored in green.
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	Saussureamine C (T1)
	
	Diiodotyrosine (T2)
	
	Sialic Acid



Figure 3 The chemical scaffold of two candidates and Sialic Acid.
24


[image: G:\N1\rmsf and svmmlr\N1_RMSF\SVMMLR\3-01.tif]
Figure 4. The relationship between observed and predicted activities of SVM and MLR models



[image: H:\bryan N1\永揚\RMSD.tif]
Figure 5. Root mean square derivation (RMSD) analysis of (A-D) N1 protein and (E-G) ligand. 

[image: H:\bryan N1\永揚\all_added gyration-01.tif]
Figure 6. Frequency Distribution of root mean square derivation (RMSD), Radius of gyration (Rg) and Solvent accessible surface area (SAS) analysis of N1 protein. 

[image: H:\bryan N1\永揚\Hbond_frequency.tif]
Figure 7. Frequency of Hydrogen bond formation between ligand and N1 protein. Seven catalytic residues (R118, D151, R152, E276, R292, R371, and Y406) are shown. Other framework residue (E119, R156, W178, I222, E227, E277, N294, and E425) are shown. Catalytic residues R224 and framework residue S179 and D198 did not generated hydrogen bond with ligand within 80ns. 


[image: C:\Users\User\Desktop\N1_RMSF\未命名-1-01.tif]
Figure 8. Protein RMSF correlation analysis, correlation between each complex are calculated and demonstrated in red (R2<0.5), white (R2=0.5) and blue (R2>0.5) colors.
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