INTRODUCTION
To categorize tumor stages and predict clinical outcomes, numerous biological and image-based biomarkers have been investigated. With the merit of the distinguished spatial resolution, images based on gadolinium-enhanced magnetic resonance imaging (MRI) for tumor staging and treatment planning have been utilized for years. Perfusion-weighted MRI has broadened horizons in obtaining anatomic and pathological information within a single imaging session. For acquiring important information about tissue perfusion, capillary permeability and interstitial space volume, dynamic contrast enhanced MRI (DCE-MRI) has been proposed as a unique technique [1]. DCE-MRI can be used as an imaging biomarker to indicate characteristic features for the tumor stage [2] and tumor treatment response [3]. The methods for DCE-MRI data analysis are classified into two major categories: the quantitative [1] and the semi-quantitative methods [4]. 
     The quantitative method utilizes compartmental models to extract pharmacokinetic parameters. These parameters include Ktrans (transform constant), kep (rate constant) and ve (interstitial volume) to describe tissue permeability. The quantitative analysis might be vulnerable to following factors: (1) the uniform arterial input function (AIF) for tumors may impact the parameter estimation; (2) T1 calculation by the multi-angle method could be deviated by B1 inhomogeneity; and (3) model selection would be a burden [5, 6]. On the other hand, the semi-quantitative indices stemmed directly from the pattern analysis of intensity time curves are easier in the clinical setting. For example, the wash-in slope was applied in the post-therapeutic evaluation for non-small-cell lung cancer [7], and initial area under the time-intensity curve (IAUC) can differentiate the treatment-induced necrosis from recurrent brain tumors [8]. Although semi-quantitative parameters could not be complete surrogates of pharmacokinetic parameters, the wash-in slope obtained from an intensity time curve could be an epitome of blood flow and permeability [9]. It was found that changes in the wash-in slope are correlated with those in Ktrans values [10].
     Because of wide ranges of genotypes and phenotypes, tumors are characterized by heterogeneity [11]. To reveal useful information about tumor details, perfusion variables can be calculated on a pixel by pixel basis for a insightful look into heterogeneity. Histogram analysis is also of high interest to quantify the heterogeneity of intratumoral contrast uptake to evaluate the tumor response to therapy. Chang et al concluded that better responders showed large increases in kurtosis of histogram [12]; Watson et al indicated that the peak in the Ktrans histogram distribution was at higher values in the progressing tumor group when compared with that in the stable ones [13]. 

     Full width at half maximum (FWHM) is an expression of the range of a histogram distribution. When a histogram is with large FWHM, it represents that the data set is spread widely, regardless which kind of distribution they are. From the viewpoint of the tumor composition, it is anticipated that the tumor with heterogeneous composition would be featured by larger FWHM. In practice, however, the histogram from a tumor data set is not a smooth curve, and most of them display saw-tooth shape. The FWHM may not be easily defined under the circumstance. In this study, we proposed a new method called modified-full width half maximum (mFWHM) to represent the extent of a sawtooth-shaped histogram by an area-defined measurement, and we evaluated the tumor response to treatment by this parameter. The kurtosis of histogram [12] and the commonly used quantitative parameter, averaged Ktrans within a whole tumor, were also calculated for comparison.  All of these parameters were tested for the diagnosis ability.
MATERIALS AND METHODS 

Subjects 
The study protocol was approved by the local human experiments and ethics committee. From January 2009 to December 2009, a total of 25 patients (11 males and 14 females) with brain tumors were selected for this study. Their age ranged from 14 to 83 years (mean 48.92±14.74 years). Further patient details are given in Table 1. The radiotherapy delivered to brain tumors was 54-66 Gy with 1.8-2 Gy per fraction. Metastatic lesions were treated at 37.5 Gy to the whole brain, followed by additional sequential tumor bed boost of 18-25 Gy. DCE-MRI scans were performed before conducting the radiotherapy and after one month completing the course of radiotherapy. Patients were followed by regular checkups of contrast-enhanced computer tomography (CT) or contrast-enhanced MRI, and all selected patients had biopsy reports. The survival status of every patient was surveyed to the date of May 31, 2012. The possibility of pseudo-progression condition was excluded in this study by follow-up CT/MRI and the physician's reasonable judgments [14]. 

     For judging the tumor response to treatment, we used Response Evaluation Criteria in Solid Tumor (RECIST) [15]. This criteria has four response categories: complete response (CR), partial response (PR, partial response, 30% decrease in the sum of the longest diameter of target lesions), progressive disease (PD, 20% increase in the sum of the longest diameter of target lesions), and stable disease (SD, small changes that do not meet above criteria). Patients with PD were classified into the non-responder group, whereas those with SD and PR were regarded as the responder group. No patient was in CR condition in this study. Finally, there were 11 patients in the non-responder group and the other 14 patients in the responder group. 
MRI Acquisition 

The DCE-MR imaging was conducted using an eight-channel head coil on a 3T system (Signa; General Electric, Milwaukee, WI). A three-dimensional spoiled gradient-echo sequence with ASSET (array spatial sensitivity encoding technique) acceleration of 2 and NEX (number of average) of 0.75 was performed on all patients in the axial plane. Scan parameters were TR/TE/flip angle=5.8 msec/2.2 msec/30°, a field-of-view (FOV) = 256 mm × 256 mm, and an acquisition matrix = 256×192. Twelve slices with a thickness of 7 mm were acquired. Sixty dynamic phases were obtained with a temporal sampling interval of 5.22 s and the total acquisition time of 313 s. The bolus injection of 0.1 mmol/kg of the contrast agent (Gd, Magnevist, Schering, Berlin, Germany) was administered after the 8th set of dynamic images at a rate of 3 ml/sec followed by a 20 ml saline flush at the same rate through a 20 to 22-gauged intravenous needle in the antecubital vein by the power bolus injector. The definition of region of interest (ROI) of tumor was performed by one experienced radiologist. Then, ROIs were ready for the following data analysis. 

Data analysis 

Pharmacokinetic Model 

Following the work of Tofts and Kermode [1], the time course of contrast agent concentration in the tissue could be characterized as the following equation: 
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where Ktrans is the transfer constant for transporting from plasma to extravascular extracellular space (EES), and Cp(t) is the tracer concentration in arterial blood plasma at time t. It is referred to as the AIF. In this study, the middle cerebral arteries were not visible within the images, so the AIF was measured in the superior sagittal sinus (SSS) instead [16]. The kep represents the rate constant for transporting from the EES to plasma. The tissue concentration time curve was expressed as proposed by Medved et al [17]: 
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where r is the longitudinal relaxivity of the Gd-DTPA, and it is 4.94 s-1mM-1 at 3T [18]. T1,ref is the spin-lattice relaxation time for a reference tissue. In this study, the white matter was regarded as the reference tissue and its T1 was set as 1084 msec at 3T [19]. S(t) is the signal after contrast agent injection at time t. Sref(0) and S(0) are the signals before contrast agent injection in a reference tissue and a tissue of interest, respectively. The averaged Ktrans was obtained by averaging the contrast agent concentration at each time point over all pixel and then fitted the dynamic concentration data. 
Semi-quantitative analysis 

Once the lesion was identified, a curve of signal intensity as a function of time at each pixel could be obtained from the series of successive images. All curves were modified to enhancement ratio according to the equation: 
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The maximum enhancement ratio of each pixel was obtained when S(t) reached the maximum signal intensity. Then the wash-in slope was determined by the following equation: 

[image: image7.png] QUOTE  

          
[image: image8.wmf]maximum enhancement ratio

wash-in slope=

peak time (t) - start time (t)

                (4)

where peak time (t) is the time at the maximum signal intensity, and start time (t) is the time at the arrival of the contrast agent. In order to remove the interference of normal tissue enhancements and the influence of random noise, following criteria for the pixel selection were used: (1) enhancement ratio less than 30% should be excluded [20]; (2) only pixels with at least three data points continually increasing after starting point of bolus injection were included [4]. For pixels satisfying the selection criteria were illustrated in a histogram. The bin size for every histogram was set as 1, i.e, 1% signal change per sec. 
Kurtosis 

The kurtosis is used to describe the peakedness of data distribution. The definition of kurtosis is as following: 
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where n is the number of data points, xi is the wash-in slope for each data point, and 
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 and s are the mean and the standard deviation of data, respectively. The kurtosis is 3 if the data are of a normal distribution. 
Modified-FWHM 

The FWHM is an expression of the extent of a function, defined by the difference between the two values of the independent variable at which the dependent variable is equal to half of its maximum value. For a normal distribution with a smooth curve, FWHM is equal to 2.35 times of standard deviation, and 76% of data are distributed within the range of FWHM. In order to resolve the problem of saw-toothed curves, which rendered FWHM hard to be defined, a modified-FWHM (mFWHM) was proposed. It was defined as the difference between the two extreme values of the independent variable at which 38% of histogram area ranging from two sides of the median. (Fig. 1). It objectively represents the extent of a saw-tooth shaped histogram by an area-defined measurement.

Statistical Analysis 

The post- to pre-radiotherapy ratio of parameters, including krutosis, mFWHM and Ktrans, were defined as therapeutic kurtosis ratio (TKR), therapeutic mFWHM ratio (TMR) and therapeutic permeability ratio (TPR), respectively. Differences in all parameters (TKR, TMR, TPR) between non-responders and responders were assessed using the unpaired Student t-test (two-tailed). Receiver operating characteristics (ROC) analysis was used to test the capability of all parameters to differentiate between the non-responder group and the responder group. The ROC curve can be used to help identify a cut-off point that provides optimal sensitivity and specificity. The area under the ROC curve (AUC) measured the predictive accuracy of parameters. To assess the ability of TMR to evaluate the risk of disease progression and patient survival, the Kaplan-Meier survival curves were constructed for comparing as follows: (1) between patients whose TMR larger than cut-off point and TMR less than or equal to cut-off point (based on ROC analysis); (2) between the non-responder group (based on RECIST) and  patients whose TMR greater than cut-off point  (based on ROC analysis) ; (3) between the responder group (based on RECIST) and patients whose TMR less than or equal to cut-off point (based on ROC analysis). The log-rank test was used to test the difference between groups. A p-value less than 0.05 was considered significant in all of the statistical analysis. All data were processed by in-house software of Matlab (The MathWorks, Natick, MA, USA) scripts. 
RESULTS
All DCE-MRI exams for 25 patients were completed successfully. The interval between the first and second MR studies was 86.16±6.85 days (media 87 days). The median survival time in the non-responder group was 10 months while the median survival time in the responder group was 36 months. 

     An example of a non-responder from patient No. 1 with metastasized adenocarcinoma is shown in Figure 2. The tumor size was enlarged (Figs.2a and b, red dashed line) and the histogram got wider after the complete course of radiotherapy (Fig. 2c). It implies an increase in the degree of heterogeneity. The mFWHM expanded by a factor of 2.01 after radiotherapy (TMR=2.01).
     Brain images of a responder from patient No. 23 with grade III glioma are shown in Fig. 3. Tumor size was shrunk (Figs. 3a and 3b, red dash line) and the histogram become narrower after the complete course of radiotherapy (Fig. 3c). It reflects a decrease in the degree of heterogeneity in tumor compositions. The mFWHM decreased by a factor of 0.79 after radiotherapy (TMR=0.79).

     Averages and standard deviations for TKR, TMR and TPR in the non-responder group and the responder group are shown in Fig. 4. The TKR value of the non-responder (1.12±0.33) was slightly higher than that of the responder (0.94±0.28), but this difference was not significant (P= 0.18). The TMR for the non-responder and the responder were 1.78±0.57 and 0.8±0.27, respectively. It was significantly higher in the non-responder than that in the responder (P <0.001). The TPR for the non-responder and the responder were 1.48±0.46 and 0.71±0.57, respectively. The difference in TPR between two groups was also statistically significant (P<0.01). These results implied that tumors in non-responders exhibited increases not only in the degree of heterogeneity, but also in the averaged permeability of vessels. Although the principles of mFWHM and Ktrans are different, both methods could reach the goal of evaluating the therapeutic effect. 

     The performance of every evaluated parameter is demonstrated by ROC curves (Fig. 5). With the optimal cut-off point being 1.03, TKR distinguished the non-responder from the responder with an AUC of 0.64 (Fig. 5a). The sensitivity and specificity of TKR were 64% and 64%, respectively. With 0.95 as the optimal cut-off point for TMR, the non-responder and the responder can be differentiated by the AUC of 0.96 (Fig. 5b). The corresponding sensitivity and specificity for TMR were 100% and 86%, respectively. With 0.8 as the optimal cut-off point for TPR, the AUC was 0.89 (Fig 5c). It yielded 100% and 79% in sensitivity and specificity, respectively. In summary, the highest AUC value of TMR demonstrated that mFWHM had a better capability of monitoring therapeutic responses in comparison with the kurtosis and Ktrans. 
     The Kaplan-Meier curves for patients grouped according to the optimal cut-off point of 0.95 for TMR are shown in Fig. 6 (a). With P of 0.03, it indicated a significant difference between the population survival curves for TMR. Comparisons of the Kaplan-Meier curves between the non-responder group and patients with TMR>0.95 and between the responder group and patients with TMR≦0.95 are displayed in Fig. 6 (b) and Fig. 6 (c), respectively. With P larger than 0.05, there was no significant difference between non-responder group and patients with TMR>0.95 (P=0.55) and between responder group and patients with TMR≦0.95 (P=0.84). The correspondence of survival curves between RECIST grouping and TMR grouping means TMR does not contradict RECIST. A summary of the statistical analysis for all parameters is listed in Table 2. 
DISCUSSION
In this study, we successfully differentiated the response to radiotherapy by using the mFWHM of wash-in slope histogram acquired from DCE-MRI. In the field of radiotherapy, DCE-MRI variables are assessed as predictors in response to radiotherapy [21]. Imaging before the radiotherapy, it could help to manage the therapy planning to improve outcome. Imaging after the radiotherapy, DCE-MRI could be applied to monitor the tumor response. The dose escalation or salvage surgery is on the list of priority if patients are diagnosed with high flare-up risks. Therefore, sequential DCE-MRI exams seem appreciated before and after a complete course of radiotherapy. 

     The wash-in slope, one of the semi-quantitative parameters extracted from DCE-MRI, provides information concerning the microvessel permeability, since it is in harmonic with the true underlying physiology [9]. The wash-in slope could reflect the early enhancement from the early vascular phase, which corresponds well with the blood flow as well as the total vascular surface area exposed to the contrast agent [8]. For non-responders with the increased vascularity due to angiogenesis, the progressive tumors usually accompany higher wash-in slopes. When compared with quantitative parameters, such as Ktrans, wash-in slope is more straightforward. Without the need of a sophisticated image processing, AIF selection and model fitting, wash-in slope is a useful and effective method for evaluating tumor responses. 
     The results address that mFWHM provides a quantitative way to evaluate changes in the width of a histogram, and it accurately monitors the tumor response to therapies. For patients in the non-responder group, tumors become more aggressive and exhibited increases in heterogeneities.  Heterogeneities will yield the wider distribution of wash-in slopes, which contribute to the larger mFWHM of the histogram. Therefore, the non-responder would exhibit a larger mFWHM of histogram after radiotherapy. This phenomenon was observed for all non-responders in this study. On the contrary, in responders, the tumors compositions would transfer to less heterogeneous, and histograms became narrower after radiotherapy. This incident occurred in 12 of 14 responders in our study. It reveals that the mFWHM of the wash-in slope histogram is a simple approach to investigating tumor heterogeneities. Moreover, the diagnosis ability still can stay good under an easier and direct assessment. 

     The RECIST could be used for monitoring therapeutic responses of solid tumors, including brain tumors [22, 23]. Indeed, enlargement of the tumor size is a direct indicator for progressive disease [15]. DCE-MRI reflects further information about the tumor progression by expressing heterogeneities. Heterogeneity might be a well-recognized characteristic of malignant tumors [24]. Comparisons of survival curves revealed there was a significant difference between patients stratified according to the optimal cut-off point of 0.95 for TMR. The correspondence of survival curves between RECIST grouping method and TMR grouping method means TMR does not contradict RECIST. TMR could be complementary to RECIST in clinical, especially when the physiological changes precede the anatomical changes. 

     The kurtosis of histogram was used for comparison in this study. A previous study showed that breast cancer patients responsive to the chemotherapy had an increase in kurtosis [12]. In our results from brain tumors, however, there was a decrease in kurtosis for the responders. This variation is due partly to different kinds of tumors employed in two studies. It reveals that using kurtosis for tumor heterogeneity assessment may have pitfalls. Generally speaking, kurtosis would reflect the degree of peakedness, which is varied for different probability distribution. However, distributions with the same kurtosis can have different range of histogram, and vice versa [25]. The mFWHM directly describes the distribution width in histogram, and is easy to implement in clinical data. Therefore, mFWHM may be considered a better indicator to quantify the degree of heterogeneity for histogram analysis. 
     Both mFWHM and Ktrans demonstrated good abilities to differentiate non-responders from responders. As shown by the statistics, mFWHM had a smaller P-value (<0.001) and achieved a higher level of competence in differentiating non-responders from responders than Ktrans (P<0.01). Moreover, for the ROC curve analysis, the AUC of 0.96 for mFWHM was higher than the AUC of 0.89 for Ktrans, which resulted in the higher sensitivity and specificity of TMR. These imply that mFWHM has potential to improve the diagnostic accuracy. However, larger sample size may be needed in future study to distinguish the performances of these two methods. Information provided by mFWHM is from a different physiological aspect of Ktrans. The TMR delineates the change in heterogeneity after radiotherapy while TPR shows the change in permeability after radiotherapy. Our results showed that this simple model-free parameter could be used as an imaging biomarker in clinical applications. 
     There are limitations to this study. First, this retrospective study involves small sample size. Since TMR demonstrates the ability to differentiate non-responders from responders, it is suggested that further large-scaled studies and longitudinal investigation might prove the potential capability of this new method. Second, types of brain tumors are not all the same in the present analysis. In fact, we emphasize that histogram changes derived from wash-in slopes are correlated with therapeutic effects, instead of tumor grading. Thus, further prospective studies on respective tumor types are recommended. Third, mFWHM is not applied in the Ktrans histogram in this study. The mFWHM is a newly proposed idea to explain the tumor heterogeneity. The goal of this study is the comparison between the mFWHM incorporating into the wash-in histogram and the commonly used averaged Ktrans. The combination of mFWHM and the Ktrans histogram would be our next step in clinical. 
CONCLUSIONS
In this study, we demonstrated that pixel-by-pixel histogram analysis of DCE-MRI could evaluate heterogeneities in brain tumors and the response to radiotherapies. The wash-in slope provides useful information on the microvasculature without complicated calculation and fitting models. The mFWHM derived from the wash-in slopes histogram reflects tumor heterogeneities, and the ability to depict the patient survival probability from TMR corresponds well with that from RECIST. The results reveal that, in brain tumors, the progression might be exhibited not only by tumor sizes, but also by tumor heterogeneities. 
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Table 1. The summary of diagnosis for each subject
	
	Patient
	Age
	Gender
	#WHO classification 
	Location
	The longest diameter of tumor pre-RT (cm)
	The longest  diameter of tumor post-RT

(cm)

	*Non-responder
	
	
	
	
	
	
	

	
	1
	58
	M
	Metastasis of lung cancer
	Right frontal
	2.1
	3.2

	
	2
	49
	F
	Metastasis of lung cancer
	Right parietal
	3.1
	5.2

	
	    3
	16
	F
	II
	Right cerebellar peduncle
	1.5
	2.1

	
	4
	46
	F
	II
	Right frontal-temporal
	4.4
	5.9

	
	5
	38
	F
	III
	Right frontal
	2.1
	2.9

	
	    6
	43
	F
	III
	Right frontal
	2.1
	4

	
	7
	50
	F
	III
	Right parietal
	3.2
	4.2

	
	8
	53
	M
	III
	Right frontal
	3.4
	4.5

	
	9
	48
	M
	IV
	Left frontal
	3.2
	4.1

	
	10
	49
	M
	IV
	Right basal ganglion
	2.1
	4.3

	
	11
	51
	M
	IV
	Right parieto-occipital
	1.6
	4.3

	**Responder 
	
	
	
	
	
	
	

	
	    12
	14
	F
	II
	Right cerebellum
	1.9
	1.5

	
	13
	48
	F
	II
	Right frontal
	2.3
	1.4

	
	14
	43
	M
	II
	Left frontal
	4.6
	4.1

	
	15
	66
	M
	II
	Left frontal
	2.4
	1.7

	
	16
	41
	F
	III
	Right fronto-temporal
	2.9
	2.1

	
	17
	34
	F
	III
	Right frontal
	3.3
	2.9

	
	18
	47
	F
	III
	Right parietal
	3.6
	3.5

	
	19
	48
	F
	III
	Right frontal
	1.7
	1.6

	
	20
	48
	M
	III
	Left frontal
	1.9
	1.8

	
	21
	57
	M
	III
	Left parietal
	3
	2.4

	
	22
	57
	M
	III
	Left parietal
	2
	1.7

	
	    23
	67
	M
	III
	Right parietal
	2
	1.7

	
	24
	83
	F
	III
	Left frontal
	1.9
	1.8

	
	25
	69
	F
	IV
	Left parietal
	3.6
	2


# WHO is the abbrevaition of world health organization.
* Non-responder was defined by progressive disease (PD) of RECIST.
** Responder was defined by stable disease (SD) and partial response (PR) of RECIST.

Table 2
Summary of the statistic results for all parameters
	Statistic methods

	T-test

	
	
	TKR
	TMR
	TPR

	
	non-responder
	1.12±0.33
	1.78±0.57
	1.48±0.46

	
	Responder
	0.94±0.28
	0.8±0.27
	0.71±0.57

	
	p-value
	0.18
	<0.001*
	<0.01*

	ROC test
	
	
	
	

	
	cut-off point
	1.03
	0.95
	0.8

	
	Sensitivity
	64%
	100%
	100%

	
	Specificity
	64%
	86%
	79%

	
	AUC
	0.64
	0.96
	0.89


*The p-value is significant 
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