Synthesis of new ent-labdane diterpene derivatives from andrographolide and evaluation on  cytotoxic activities
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a b s t r a c t  

There are  many reports for andrographolide modiﬁcation regarding antitumor effects. Transformation of the ﬁve-membered lactone ring to furan aromatic ring still results in compounds with good cytotoxicity. To determine further the importance of the ﬁve-membered lactone ring and to obtain better lead com- pounds, we  transformed the ﬁve-membered lactone ring in  andrographolide. New types of ent-labdane diterpene derivatives were made, whose cytotoxic activities were measured in  vitro. Preliminary SAR was summarized and two compounds, 7 and 26,  with good cytotoxic activity were obtained, which have the potential to be  developed into new antitumor drugs.
。 2015 Published by  Elsevier Ltd.





Andrographolide(1) is a labdane diterpenoid isolated from the

exocyclic double  bond  (   12(13)

)  was   selectively  reduced.   From

leaves or whole plant of Andrographis paniculata. Previous research shows that andrographolide exhibits a wide spectrum of biological activity, including antibacterial,1  anti-inﬂammatory,2  anti-HIV,3 cardiovascular effects,4  anti-malarial,5   a-glucosidase inhibition,6 and antioxidant.7
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Additionally, andrographolide  and  its  various semi-synthetic ana- logues have been reported  for  antitumor  activity.8,9   There could be great value in discovering a potential antitumor, semi-synthetic drug from  these compounds. Nanduri et al.10 studied the  structure– activity relationship (SAR) of cytotoxic andrographolide derivatives. In their report, the  a-alkylidene-c-butyrolactone moiety of andro- grapholide  was   opened  to   yield   andrographolic  acid,   and   the

⇑ Corresponding authors. Tel./fax: +86  25 83271307 (D.-y.Z.).
E-mail address: zhangdayong@cpu.edu.cn (D.-y. Zhang).

comparing  the   cytotoxic activity  between  the   compounds, the intact  a-alkylidene-c-butyrolactone  moiety  of   andrographolide was  considered the  key  part for  the  cytotoxic activity. However, no  other structural modiﬁcation had  been reported to  verify  the signiﬁcance of the  a-alkylidene-c-butyrolactone moiety of andro- grapholide. Other intriguing studies11–14   revealed labdane-related diterpenes possessed good   antitumor  activity. These   compounds have an  aromatic ring,  including a  furan ring,  and  have a  similar structure  to  andrographolide. To   further  conﬁrm  the    role   of a-alkylidene-c-butyrolactone moiety in cytotoxic activity and  to discover potential antitumor, semi-synthetic analogues of some value, we  designed a synthetic procedure to  obtain the  semi-syn- thetic analogues of furan ring-containing andrographolide.
The  ﬁrst series of  this synthetic process for  andrographolide derivatives are  represented in Scheme 1 by the use  of excess acetic anhydride in  a solvent of DCM (dichloromethane) at reﬂux. Compound 2 can  be  obtained from andrographolide in  very  high yield. Compound 3 was  prepared from 2 using potassium borohy- dride. In this process, acetyl groups at the C-14  position in 2 were removed, and the double bond between C-12 and C-13 was  shifted to C-13  and C-14.  Compound 4 was  obtained from 3 using 5% potassium bicarbonate in methanol at reﬂux. Reduction of 4 with
DIBAl-H  at -80 OC  yielded the target product 5,  this being the
andrographolide derivative containing the desired furan ring. Compounds 6  and 7  were obtained by  esteriﬁcation of  the two
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Scheme 1.  Reagents and conditions: (a)  acetic anhydride, DCM, ZnCl2, reﬂux, 20 min, 74%;  (b)  KBH4, MeOH, rt, 3 h, 89%;  (c)  5% KHCO3, MeOH, reﬂux, 10 h, 81%;  (d)  DIBAl-H, THF, -80 OC, 3 h, 81%;  (e)  DMAP,  DCM,  rt, 8 h, 97–98%, 6–7; EDCI. DMAP.  DCM,  rt, 20–60%, 8–11.



hydroxyl groups at C-3  and C-19  with suitable anhydrides. Additionally, compounds 8–11 were gained from appropriate aro- matic acids.
8(17)

pyridinium dichromate in  N,N-dimethylformamide  at 50 OC.  After hydrolysis by toluenesulfonic acid  in methanol, compound 19 was
prepared from 18.  As a result, new ent-labdane diterpene deriva-

In order to identify the importance of the 4

double bond in

tives containing a carbonyl group at C-3 were obtained.

activity, compound 15 was  designed and synthesized according to
Scheme 2. Compound 12  was  formed after C-3 and C-19  position
8(17)

Scheme 5 shows the synthetic route of furan-andrographolide with an  additional hydroxyl at C-12.  The  hydroxyl groups at C-3

of 5 was protected by acetyl. Compound 13 without the 4

double

and C-19  on  andrographolide were ﬁrst protected with acetonide

bond was obtained after 12 reacting with excess potassium perman- ganate. At the same time, by-product 14 was formed. Product 15 was gained by deprotecting the acetyl of 13 under basic conditions.
The  synthetic pathway of  new ent-labdane diterpene deriva- tives containing hydroxyl at C-7  is represented in  Scheme 3. Compound 16 was  prepared by combining 6 with selenium dioxide and t-butyl hydroperoxide. The  synthesis of  16  could determine the activity of the hydroxyl at C-7.
The synthetic pathway of andrographolide derivatives contain- ing a carbonyl group at C-3 is represented in Scheme 4. With excess triphenylchloromethane catalyzed by  N,N-diisopropylethylamine, compound 17 was  yielded from 5. Under the trityl protecting group at C-19  oxygen, compound 18  was  obtained from 17  with excess

to  produce compound 20.  With a 1.2  times equivalent amount of pyridinium dichromate, allylic  hydroxyl at C-14  in  compound 20 was  relocated to C-12. As a result, the key intermediate, compound
21  was  formed. Compound 22  is the de-protect product of com- pound 21.  The lactone group in 22  was  reduced to  furanolabdane
23, with DIBAl-H. So far, furanoandrographolide containing hydro- xyl groups at C-12  was  produced. Propionylation of C-3, C-12,  and C-19  hydroxyl groups produced compound 24.  In  addition, com- pound 22  was  reported to  have good  antitumor activity in  vitro, but  derivative effects have rarely carried out,   so  compound 26 was  synthesized.
New   ent-labdane diterpene  derivatives and  andrographolide were tested for  antitumor activity in  vitro using the method of

Y. Luo et  al. / Bioorg.  Med.  Chem.  Lett.  25  (2015) 2421–2424	2423


O




H HO 	H
HO
5

O



a
H AcO 	H
AcO
12

targeting the ﬁve-membered lactone is  an  unfavorable transfor- mation.  The   new  ent-labdane  diterpene,  compound  5,   which contains  furan  in   the  C-ring,    still    possessed  some  cytotoxic activity   compared   to   andrographolide.   However,   cytotoxic activity of the new ent-labdane diterpene compound 6, which contained C-12  hydroxyl group, was   lost,   emphasizing that the C-12   hydroxyl group  was   unfavorable for  activity in  this new ent-labdane  diterpene  containing furan  in   the  C-ring.   Activity of  compound 15  was  lost  in  comparison to  compound 5,  which
8(17)
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activity.  Compound  16   had  better  activity than  compound 6,
which illustrated that introducing a  hydroxyl group at C-7  was beneﬁcial to its  activity.
Compounds 6,  7,  8,  9,  10,  and 11  were esteriﬁed compounds at C-3,  C-19  of  compounds 5.  Compounds 6  and 7  contained an aliphatic chain compared with 5. The  cytotoxic activity of 6  was the same as  5,  but 7  had stronger activity, which signiﬁcantly exceeded that  of   andrographolide. These suggested that  the
introduction of  an  electron-withdrawing group at C-3  and C-19

15 	13

14 	could greatly enhance activity. Compounds 8, 9, 10,  and 11  pos-
sessed aromatic rings at C-3  and C-19   in  comparision with  5.

Scheme 2.  Reagents and  conditions: (a)   Ac2O,  DMAP,   CH2Cl2,  rt, 5 h,  98%;   (b)

KMnO4, MgSO4       2

The  order of  activity is  as  follows: 11 > 8 > 9,  which shows that
3

rt, 2 h, 84%.

. 7H  O, TBAB, benzene/water, 60 OC, 12 h,  21%;  (c)  5% KHCO  , MeOH,

the activity of compounds containing an  electron-donating group
at the para position of  the benzene ring  were better than com- pounds without  groups or  an  electron-withdrawing  group. The
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activity of  10  was   lost   compared with 9,  which indicates com- pounds possessing aromatic esters both at C-3  and C-19  could lose  activity.
Compound   22    (14-deoxy-12-hydroxyandrographolide) had good  cytotoxicity, and compound 26,  which contained an  acetyl group at C-3, C-12  and trityl at C-19, showed good  cytotoxic activ- ity.  This  proved that the structure of 14-deoxy-12-hydroxyandro-

EtCOO	6

EtCOO	16

grapholide was  an  excellent nucleus.
Therefore, the preliminary SAR of this new ent-labdane diter-

Scheme 3.  Reagents and conditions: (a)  SeO2, t-BuOOH, DCM,  rt, 12 h,  73%.


MTT15 against four cancer cell lines (human bladder cancer cell line NTUB1, cis-platin-resistant human bladder cancer cell  line  NP14, human  breast  cancer MCF-7,  human   breast   cancer  (MDA-MB-
231). All tested samples were dissolved in DMSO (0.1%). cis-platin was  used as  positive control. The  results expressed as  IC50  values
(drug concentration  causing 50%  growth inhibition) in  lM  are
shown in Table  1.
With 15  compounds under examination for  possible cytotoxic activities, 7  and 26  displayed good   cytotoxic effects more than andrographolide and cis-platin. Cytotoxicity of compound 11  was superior to andrographolide against MCF-7 and NTUB1 cells. Compounds 9, 16  and 22  showed better cytotoxic activities than andrographolide against NTUB1 cells, while compound 8 displayed

pene can  be  summarized as follows:

1.  Transformation  of  the  hydroxyl group at C-3  to  a  carbonyl group could result in a decrease of cytotoxic activity.
2.  Esteriﬁcation  at   C-3    and   C-19    could   enhance   activity.
Introducing electron-withdrawing aliphatic esters at C-3  and C-19  could signiﬁcantly enhance activity. When an  aromatic ester is introduced at C-19,  the order of activity is such: elec- tron-donating group at the para position of  aromatic ring>no group at the para position of aromatic ring>electron-with- drawing  group  at   the   para   position  of    aromatic   ring. Introducing aromatic esters both at C-3  and C-19  could lose activity.
3.  For  the  compounds esteriﬁed at  C-3  and C-19,   introducing hydroxyl groups at C-7 could enhance the activity.
4.  The 48(17)double bond had great inﬂuence on cytotoxic activity,
8(17)

better cytotoxic activity than andrographolide for NP14.
Cytotoxic activity  of  compound 4  was   lost   compared to 1,

while breakage of the 4
of activity.

double bond could result in the loss

which  illustrated  the  removal  of   the  C-14    hydroxyl  group

5.  Introducing hydroxyl groups at C-12  decreases activity.
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Scheme 4.  Reagents and conditions: (a)  TrCl, DIPEA, DCM,  rt, 18 h,  81%;  (b)  PDC, DMF,  50 OC, 18 h,  66%;  (c)  p-toluenesulfonic acid, MeOH, rt, 3 h, 94%.
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Scheme 5.  Reagents and conditions: (a)  2,2-dimethoxypropane, p-toluenesulfonic acid, toluene-DMSO = 7:1, reﬂux, 3 h, 95%;  (b)  PDC, DCM, rt, 5 h, 80%;  (c)  AcOH-H2O = 3:1, rt, 2 h, 90%;  (d)  DIBAl-H,  THF, -80 OC, 3 h, 30%;  (e)  propionic anhydride, DMAP,  DCM, 77%;  (f) TrCl, DIPEA, DCM, 18 h, rt, 80%;  (g)  acetic anhydride, DMAP,  DCM, 8 h, rt, 98%.



Table 1
Cytotoxic activity against four human cancer cellsa

	Compds
	Cytotoxic activity in 48 hb  (lM)
	

	 	NTUB1
	MCF-7	M231
	NP14

	4
	>100
	NAc
	NA
	>100

	5
	39.80
	79.51
	>100
	53.31

	6
	42.88
	>100
	40.41
	94.17

	7
	11.25
	22.92
	2.64
	4.43

	8
	>100
	36.76
	35.03
	18.64

	9
	23.82
	62.11
	37.47
	80.91

	10
	>100
	>100
	>100
	>100

	11
	26.34
	25.17
	28.55
	40.38

	15
	>100
	>100
	56.26
	>100

	16
	29.59
	44.01
	40.92
	27.72

	19
	63.08
	87.28
	71.24
	43.24

	22
	14.93
	78
	27.60
	49.43

	23
	>100
	>100
	>100
	>100

	24
	89.74
	>100
	>100
	43.11

	26
	8.45
	6.41
	6.37
	14.31

	Andrographolide
	32.52
	30.82
	16.55
	21.24

	cis-Platin
	5.38
	63.37
	>100
	65.27



a  Inhibition of  cell growth by  the listed compounds was determined using MTT
assay.
b  Data represent the mean value of three independent determinations.
c  NA means not active.

6.  Actually, introduction  of furan ring  by  replacing a-alkylene-c- butyrolactone moiety might affect the antitumor activity more or less,  since a Michael receptor is lost,  that is why compounds
22  and 26  display better antitumor activities than compounds
23  and 24.

In  conclusion,  a  new  kind  of  ent-labdane  diterpenoid  was formed after transformation of the C-ring to a furan-ring in andro- grapholide, which was  the main structure in the synthesis of many derivatives. Those  structures still possessed certain cytotoxic activ- ity,  and it  is  suggested that the antitumor mechanism of  andro- grapholide is  determined by  multiple parts of  the structure, not
just part of  a-alkylene-c-butyrolactone.  At  the same time, the
structure of  14-deoxy-12-hydroxyandrographolide was  an  excel- lent  nucleus  with  great  potential  for   modiﬁcation.   Two   com- pounds, 7  and 26  displayed good   cytotoxic activity, which may serve as potential lead  compounds in the development of new anti- tumor drugs.
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