Robust digital design of continuous-time nonlinear control systems using adaptive prediction and random-local-optimal NARMAX model

[bookmark: _GoBack]Zhi-Ren Tsai
Department of Computer Science & Information Engineering, Asia University, Taiwan
Graduate Institute of Biostatistics, China Medical University, Taiwan
ren@asia.edu.tw

Abstract
In this paper the time-delay and uncertainty of continuous-time (CT) systems are considered, and it is suggested that input and output of a discrete-time (DT) Neural Plant Model (NPM) and recursive neural controller have scaling factors which limit the value zone of measured data from a system. Adapted scaling factors cause the tuned parameters to converge to obtain a robust control performance. However, the proposed Random-Local-Optimization (RLO) design for a model/controller uses off-line initialization to obtain a near global optimal model/controller. Other important issues are the considerations of cost, greater flexibility, and highly reliable digital products for these control problems. This issue of DT control design for CT plant is more difficult than that of CT control design for CT plant, because of the need to process the modeling error between the CT plant and DT model. The input-delay, uncertainty, and sampling distortion of a CT nonlinear power system need to be solved by developing a digital model-based controller. Here, this is called the DT tracking control design of CT systems (DT-CT).
Therefore, the DT structure of the adaptive controller for the CT nonlinear power system should be designed as a kind of feed-forward-Recursive-Predictive controller (FRP). First, due to the problem of delays, a digital neural controller with feed-forward of the reference signal and a Nonlinear Auto-Regressive Moving Average eXogenous (NARMAX) neural model design is adopted to reduce this difficulty. The most important contribution is that the more reasonable and systematic two-stage control design, the CT nonlinear delayed system to be controlled is modeled using a NARMAX technique with the first-stage (off-line) method by the proposed global optimal network algorithm and second-stage (on-line) adaptive steps. Second, the dynamic response of the system is controlled by an adaptive NARMAX neural controller via a sensitivity function. A theorizing method is then proposed to replace the sensitivity calculation, which reduces the calculation of Jacobin matrices of the BP method. Finally, the feed-forward input of reference signals helps the digital neural controller to improve the control performance, and the technique works to control the CT systems precisely.

Keywords: Random-local-optimization algorithm, NARMAX model-based neural controller, DT-CT design

1. Introduction
During the past decade optimal control [1, 2] has attracted great attention from both the academic and industrial communities, and there have been many successful applications. Despite this success, it has become evident that many basic and important issues [3] remain to be further addressed. Of these, stability analysis and systematic designs are among the most important issues for optimal control systems [4] and robust control theories [1, 5-8], and there has been significant research on these issues (see [4, 9, 10]). In addition, a neural controller has been suggested as an alternative approach to conventional PID control techniques [11] for complex control systems [1]. Moreover, Neural-Network (NN) based modeling has become an active research field because of its unique merits in solving complex nonlinear system identification and control problems [10]. Neural networks (NNs) or NARMAX neural networks [12] are composed of simple elements operating in parallel, inspired by biological nervous systems. A neural network can be trained to represent a particular function by adjusting the weights between elements. Due to discrete-time (DT) controllers being cheaper and more flexible than continuous-time (CT) controllers, the DT control problem for CT plant is worth studying. In modern control engineering, controllers are commonly implemented directly by the hardware or software of digital computers. However, one important issue has to be faced; that is, the new design (DT-CT design) problem effects a new type of application, and an adaptive NN-model-based design method has not yet been developed to adjust the parameters of a discrete-time (DT) adaptive neural controller such that the original continuous-time (CT) system, with time delays and uncertainties, is uniformly ultimately bounded (UUB) stable.
The study of CT control of CT time-delay systems has received considerable attention in recent years since delay is a major cause of poor performance in many important engineering systems [13-15]. Hence, the future direction of CT time-delay control systems needs to involve the DT control problem. The amount of delay has different impacts on the various approaches [15-19]. As is known, the delay control problem is an important and complex factor in the stability performance of CT nonlinear systems. In general, a delay signal happens in a signal’s long-distance or heat translation.
Based on the timer of the micro-controller or Digital Signal Process (DSP) chip, the effect of delay in neural system identification can be approximated by many tape-delay terms. This reduces the difficulty of delay identification. The DT NARMAX model is general sufficient to approximate an unknown, nonlinear, dynamical and delayed CT system by selecting an appropriate sampling time.
DT control design for DT plant [20] and CT control design for CT plant are two kinds of well-known problems. [20] has inspired consideration of the more difficult problem of DT control design for CT plant, because of the need to process the modeling error between the CT plant and DT model, except for proposing the novel adaptive control law. The modeling and controlling performance can be guaranteed by the appropriate sampler and some theories. The modeling performance of plant is important for this research. The stability of results and the robust control design are related to this precise plant model. Hence, a two-stage training scheme is needed to guarantee a well-behaved model, referred to as a predictive controller. Based on this correct model, the control parameters can be updated by the BP method. That is one contribution of this paper. Another contribution is the proposal of a theorizing method to replace the sensitivity calculation or reduce the calculation of Jacobin matrices of the BP method. That is why the adaptive prediction control method is used to improve the DT control performance of the proposed DT-CT design by tuning the parameters of the model and controller.
The feed-forward term in [20] is derived indirectly by assuming many constraints, and due to the over-fitting and local optimal problems of NN modeling, the method [20] is not suitable for on-line applications because of the need for a lengthy convergence time. Therefore, to satisfy the on-line working requirements for accurate modeling of the plant, the NARMAX plant and control models are trained by initially using off-line methods.
On the other hand, these neural techniques [21-23] have usually been demonstrated under nonlinear control due to their powerful nonlinear modeling capability [24] and adaptability. However, they must exhibit the optimal problem of falling into the local minimum easily by using the Back-Propagation (BP) or Levenberg-Marquardt BP algorithm (LMBP) [25] method. Hence, the RLO algorithm is proposed to improve this drawback. It not only guarantees the gradient decent method [26] against the local optimal solution, but also speeds up the convergence of the Particle Swarm Optimization (PSO) [31, 32].
Inspired by the DT neural controller of [20] only for a DT system, a digital neural control design for a CT system is proposed and an approximate inverse of the delayed plant dynamics is used to act as the NARMAX neural controller. The adaptive controller and NARMAX models are easier to converge than [21-23] by the proposed two-stage scheme. Moreover, the modeling error between the model and physical system is considered in the theorems by Lyapunov functions [27]. This paper concludes with a simulation example and experimental data to demonstrate these techniques.

2. System description
First, consider a general nonlinear system with delays; described as follows:

[bookmark: OLE_LINK1] and , (1)

where shown in Fig. 1 is a controlled plant; the bounded uncertainties create the dynamic quality of the system parameters which refer to electrical elements of the power system; the control input ; is the time delay; is the relational function of the state and system output . Then, is discretized by setting the appropriate sampling time or sampling period (sec) of DTC-CTP design, and , where is a positive integer, to the following DT nonlinear system :

 or

 , (2)

where indicates the signal sequence, the DT state vector is , and the DT control input is . The zero-order-hold control input , where is also the index of the discrete result of referring to the NN model (see Fig.1) of (1).
In this control structure in Fig. 1, the NN plant model is designed to approximate this nonlinear system Eq.(1). This NN plant model, or control model is built following the subsequent mathematical equations.

An NN plant model or control model with layers each having (;) neurons is established to approximate a DT nonlinear system Eq.(2). Superscripts are used to distinguish between these layers. Specifically, the number of the layer is appended as a superscript to the name of the variable. Thus, the weight matrix for the -th () layer is written as and . Moreover, it is assumed that () is the net input and that all the transfer functions of units in the NN system are described by the following function:

 for and ;

 for ;

where and are positive parameters associated with the sigmoid function. The transfer function vector of the -th layer is defined as:

 ,

where () is a transfer function of the -th neuron. The final outputs of the NN plant model and control model can then be inferred as follows: respectively:

, and

,

where is a reference input,

 ,

the adaptive parameter or of neural weights’ and biases’ refers to the iteration and the proposed adaptive laws for the controller and plant models are as follows:

, and .

Although and are the proposed adaptive laws of plant model and control model, respectively, where:

, ,

but implementing needs too many Jacobin matrices’ calculations, so the following adaptive prediction control law is used to replace the above adaptive laws to reduce computing time,

where are learning rates;

is the predictor output, where the tracking error is , and

 , are defined by the user.

 A composite controller, , where is proposed in the next section.

3. Control architecture, neural-model-based controller design and control scheme
3.1 Adaptive digital neural controller design through neural plant model

In this paper an adaptive prediction control structure is proposed, as shown in Fig. 1, where the FRP controller is designed as follows:

 , (3)

where , the switch index And,

 (4)

where , , , , , , as shown in Fig. 1. The feed-forward terms are reference signals , and recursive terms are control signals . The off-line training input of controller is:

,
The on-line recursive input of controller is:

 . The controller has two working phases: is the data vector of the testing phase, and is the data vector of the training phase. The tuned parameter vector of the controller is: of (3).

The proposed on-line digital neural controller has feed-forward terms and recursive structure . Hence, it uses a NARMAX neural model or inverse of the plant dynamics to aid control precision in the face of a delayed plant with uncertainties. Adapting the neural controller can suppress the uncertainty of the plant P shown in Fig. 1. Although the structure of the neural controller is chosen as (3), the neural controller has not been designed because the parameter vector is not specified. is the chosen tape-delay time, is a positive integer. The idea of the inverse-model-based neural controller is proposed by the following simplified relation:

If , , then , (5)

where is the adaptive NARMAX neural model of plant; is the adaptive NARMAX neural controller; is the desired output. According to the idea of Eq.(5), the recursive structure can be designed with tape delays as follows:

, (6)

where are the amount of tape delays of , respectively.

But, due to the parameters of the recursive structure are converged much harder, the weights and biases of this model are trained by the feed-forward structure as follows:

. (7)

[bookmark: OLE_LINK17]The plant output is compared with the desired output to create a tracking error signal . The system errors and are used by the adaptation algorithm to update the parameters of and . Next, the performance index for minimizing the tracking error is designed, as follows:

, (8)

is a simple cost function to be minimized by the proposed algorithm. Then, the on-line BP algorithm adapts the control parameter matrix . That is, the change in control parameters is calculated as

, (9)

where the small positive can be selected as a stable learning rate via the following theorems.

[bookmark: OLE_LINK44][bookmark: OLE_LINK45][bookmark: OLE_LINK46]Theorem 1: If the number of neurons and tape-delay terms of the neural model is sufficient, and the appropriate sampling time is selected to let and the following condition

, (10)
is satisfied, where

;

 is the output of the optimal model, then the trajectories converging to plant output is a uniformly ultimately bounded (UUB) approximation on the bounded error .

3.2 Proof of Theorem 1
First, consider the following ideal Lyapunov candidate [27] for the model part,

 , (11)

[bookmark: OLE_LINK26]where is an actual Lyapunov candidate of reachable and assumptive trajectory , the bounded approximation error

,

and the number of neurons of the neural model is sufficient and the appropriate sampling time is selected to let . The next task is to train this neural model such that is minimized,

. (12)
[bookmark: OLE_LINK20]Then, the following Lyapunov candidate for the controller is designed:

, (13)
[bookmark: OLE_LINK25]thus the change in the Lyapunov function is obtained by:

. (14)
Finally, the update law of the control parameters of the controller is obtained as follows:

. (15)

[bookmark: OLE_LINK24]This study develops some convergence theorems to select appropriate stable learning rates. First, the difference of modeling error can be represented by

, (16)
thus the change in the Lyapunov function is obtained by:

.

[bookmark: OLE_LINK33][bookmark: OLE_LINK32][bookmark: OLE_LINK34]Hence, if and , then , that is or , makes the UUB approximation of this model on the bounded . The proof is thereby completed.

[bookmark: OLE_LINK42]Furthermore, the following theorem for the convergence of the controller is obtained by the same procedure as the above proof.

Theorem 2: If Theorem 1 in Eq.(10) is satisfied, the function in Eq.(15) is computed to let the following condition,

, (17)
be satisfied.

Where ,

with ,

then the nonlinear systems (1) in Fig. 1c are UUB stable, and the tracking errors are bounded via the controller.

Hence, the dynamic response of the system can be controlled using , as shown in Fig. 1. This needs the plant model to adjust control parameters via sensitivity function .

The digital feedback controller includes a delay block D, as shown in Fig. 1. Here, the error is used to estimate , and the proposed predictor of the delayed system can let us cancel some complex computations, such as

 ,

of sensitivity function in the BP algorithm. Hence, the following theorem is proposed to update the control parameters of FRP under the assumption of providing a model which applies a lower prediction error, and a more correct . The prediction error is bounded, due to the previous being bounded at any time. Hence, the prediction error will be bounded by using Theorem 1-2. Furthermore, the following theorem is obtained for the convergence of the adaptive prediction controller by the same procedure as Theorem 1.

Theorem 3: If Theorem 1 in Eq.(10) is satisfied, the predictive function is computed to let the following condition,

, (18)

be satisfied, then the nonlinear systems (1) in Fig. 1a-1b are UUB stable, and the tracking errors are bounded via the predictive controller .

The tracking error is , and , but the parameters of adaptive control are updated by using the predictive offset

,

of the prediction control input , where replaces in the following recursive equation:

 , therefore, only or need to be calculated to update or , respectively, and are defined by the user.

3.3. Two-stage scheme

Fig. 1 shows a block-diagram of an adaptive recursive control system. The system to be controlled is labeled as the plant , which is subject to uncertainties and delays. Due to gradient-descent based training algorithms, let the model/controller converge to a local minimum in the solution space. Hence, the two-stage training algorithm is proposed, as follows.
In the first stage, the measured data is used to train the global optimal NARMAX plant and neural controller by the training-data-shuffle method. This method shuffles the training data to avoid most of the local optimal solutions obtained by the off-line training procedure in next section. The measured data is divided into a training data and other testing data. This testing data is not used for training the NN. However, the final performance of the NN is decided by the testing data and the training data.
In the second stage, the global optimal NARMAX plant model and neural controller is adapted. The two stages are divided into the following five steps:

Step 1: First, the reference signal, , is designed. By the white noise of input for plant, output data is collected and a training-data-shuffle method is used to shuffle the input/output pairs’ data. These shuffled data are ready to train the NARMAX model/controller. Here, the following reasonable conditions need to be taken into account:

, , , and ,(19)

need be satisfied, where is the upper bound of , and is the lower bound of . According to Eq.(19), much of the excessive control effort can be avoided. If Eq.(19) is satisfied, then go to Step 2.

[bookmark: OLE_LINK10]Step 2: The feed-forward structure model is trained/tested off line

(20)

via the shuffled input/output pairs’ data. After system identification is performed, and the digital neural controller for the CT system can be built by using this inverse NARMAX plant model in the next step.
Step 3: In practice, according to the exchanged output/input pairs’ data from Step 2, the off-line stage to train/test the neural controller can be passed through

. (21)
 If Eq.(20) and Eq.(21) work, go to Step 4.

Step 4: Update the on-line weights and biases of the recursive structure model :

 (22)
to approximate the CT nonlinear system by using Remark 1 and Theorem 1. Due to the adaption laws for Eq.(20) and Eq.(22), an exchange for both of them can be designed to switch into the system, as a switching in Fig. 1, when Eq.(22)’s absolute approximation error is too big. If Eq.(20) and Eq.(22) work, then go to Step 5.

Step 5: Adapt the digital neural controller for the modeling error and tracking error by using Remark 1 and Theorem 1-2. Finally, update the on-line parameters of the neural controller

,
(23)
to minimize the tracking error, and finish the above two stages: the off-line stage and on-line stage.
To make sure of the robustness of the control system, the convergence to the global optimal solution of parameters of the model/controller has to be guaranteed. Hence, some random initial weights and biases of the model are designed by Particle Swarm Optimization (PSO) [31, 32] with the parameters of the controller first. The PSO algorithm consists of the velocity

,
and position

,

where is the particle index; is the iteration index; is the velocity of particle; is the position of particle; is the best position found by particle (personal best); is the best position found by the swarm (global best, best of personal best); are the random numbers on the interval [0,1] applied to the particle.

The PSO supplies random initial parameters, hence, it is an initial parameters’ conductor. These initial parameters are then converged locally by the LMBP method and the best solution for the initial model/controller is chosen. Finally, the global optimal solution of parameters can be found every time. Hence, this idea has been named the Random-Local-Optimization (RLO) algorithm. The RLO algorithm is a composite of the LMBP algorithm and a random initialization procedure of evaluating fitness value , where , . The total of absolute training error is obtained by LMBP via the training data, and is the total of absolute testing error of the model/controller output via the testing data input. In this paper, off-line RLO is used as a learning algorithm for the feed-forward structure model Eq.(20) due to the on-line tuning parameters of the recursive structure of the plant model being not converged. After the off-line training stage, in order to tune on-line the parameters of the plant model Eq.(22) recursively, of Eq.(10) needs to be calculated as follows:

. (24)

Similarly, in order to tune the on-line parameters of the controller Eq.(23) recursively, and of Eq.(18) needs to be calculated as follows:

, (25)

where . (26)
Hence, the following algorithm adapts a NARMAX neural controller for a NARMAX neural model of plant.

Step 1: Back propagate through to form and in Eq.(26). If update of Eq.(26), and shift down in Eq.(25), then go to Step 2.

Step 2: Back propagate through to form and in Eq.(25). If update of Eq.(25), and shift down in Eq.(25), then go to Step 3.

Step 3: Compute . If update weights

, and , then go to Step 1.
To clarify this method, in [20], a robust and adaptive method was used to allow learning to occur on-line, tuning performance as the system runs. But, [20] didn’t consider the prediction, modeling error, global optimal initialization of control parameters, the problem of lengthy convergence time of on-line control, delayed terms, uncertainties in plant and DT-CT problems. Moreover, the choice method of initial parameters of the on-line controller still lacks the ability to overcome the over-fitting problem of the controller. Hence, the off-line stage is proposed for a RLO learning algorithm to choose the initial weights and biases of the on-line neural controller in the simulation example of the power plant, as shown in the following case study.

4. Cases study
First, the conventional PWM buck converter, by using AM-OTS-DS [28, 29] methodology, is modeled to the following equivalent circuit plant:

 (27a)

In this paper the robustness of the above control system is emphasized, so uncertainty , and delay are added to the original control system.

 (27b)

where ; ; is a DC voltage source; ; ; ; ; ; and are the parasitic resistances of the inductor and capacitor, respectively. The element is the static drain to source resistance of the power MOSFET and is the forward voltage of the power diode. is the duty ratio of conventional PWM buck converter. is the state of the system, and the output of this power system is .

The nonlinear, uncertain, hotter circuit’s components, time-delay, and digital control problems of PWM buck converter CT system renders a tracking control problem difficult to analyze. A simulation system in Eq.(27) is built with uncertainty. In this study, it is assumed that the parameters of the circuit’s components are not ideal, and the capacity of the digital controller is limited by using a lower-cost chip. Here, the sampling period is designed for this power system Eq.(27b). Hence, the delay is very large for this system.
Referring to Fig. 1, and the above sections, it can be seen how to model the plant dynamics by considering the modeling error, and how to use the neural model of plant to adapt a neural controller. To compare with other methods, the following cases are introduced:
Case 1: This case is in [29], and its digital controller is a kind of T-S fuzzy controller with integral term.
Case 2: This case is in [31], and its controller is a kind of PID, with PSO to compare with Case 3.
Case 3: This is the control method presented here, and the proposed neural-model-based neural controller is adaptive and globally optimal.
The detail designs of the Case 1−Case 3 are as follows:
Case 1 is a LMI control method of original example for this power plant. The control parameters of Case 1 are as follows:

, , and this T-S fuzzy controller of Case 1 is designed as:

.
Case 2 is an optimal control method. This PID controller is designed as:

.

And, the parameters of PSO of Case 2.
Case 3 is also an optimal control method, but its NARMAX neural control design method is very different from PSO of Case 2. The predictive controller of Case 3 is

, where .

First, the initial state is set to , and the reference signal . Case 3 uses NN structure 5-8-1 of the NARMAX plant model, it has 5 inputs, , 8 tansig(·) neurons in the hidden layer, 1 purelin(·) neuron in the output layer. Also, Case 3 uses NN structure 5-8-1 of the NARMAX controller, it has 5 inputs, , 6 tansig(·) neurons in the hidden layer, and 1 purelin(·) neuron in the output layer.

The weights and biases, , are trained as follows by selecting two suitable scaling factors and of the plant model, whose summation of is updated as shown in Fig. 2a. The summation of the neural control parameters is updated as shown in Fig.2a. The tracking control performance of Case 3 is shown in Fig.2b.

The optimal parameters of the PID controller of Case 2 are obtained by using PSO. The tracking control performance of Case 2 is shown in Fig.3. The tracking control performance of Case 1 is shown in Fig.4.
Finally, the control performances of Case 1−Case 3 are compared, as shown in Fig. 5.
Fig. 2 shows the precise neural control performance of Case 3. Fig. 3 shows the digital PID with PSO control performance of Case 2. Fig. 4 shows the LMI control performance of Case 1.
It is clear that the proposed two-stage scheme, Case 3, has excellent tracking performance when compared with Case 1 and Case 2.

Conclusions
The proposed two-stage adaptive prediction control converges very quickly, works highly effectively, and precisely. It works for nonlinear delayed plants with uncertainty. The recursive and feed-forward control scheme is partitioned into two stages that can be independently optimized. First, an off-line neural model of a continuous-time (CT) nonlinear power plant is made; second, a constrained off-line digital neural controller is generated; then, an adaptive plant model is made, and an adaptive NARMAX neural controller with predictor is generated; finally, all processes may continue concurrently, and robustness and DT-CT problems for a power plant are solved.

Acknowledgment
The author would like to thank the National Science Council for it support under contracts: NSC-97-2218-E-468-009, NSC-98-2221-E-468-022, NSC-99-2628-E-468-023, NSC-100-2628-E-468-001, NSC-101-2221-E-468-024 and Asia University under contract 98-ASIA-02, 100-asia-35 and 101-asia-29.

References
[1] H. Dong, Z. Wang, D.W.C. Ho, H. Gao, “Robust H∞ neural output-feedback control with multiple probabilistic delays and multiple missing measurements,” IEEE Trans. Neural Syst., vol. 18, pp. 712-725, 2010.
[2] L.X. Wang, A Course in Neural Systems and Control, Prentice-Hall, New Jersey, 1997.
[3] Z. Wang, Y. Liu, G. Wei, X. Liu, “A note on control of a class of discrete-time stochastic systems with distributed delays and nonlinear disturbances,” Automatica, vol. 46, pp. 543-548, 2010.
[4] H.O. Wang, K. Tanaka, M.F. Griffin, “An approach to neural control of nonlinear systems: stability and design issues,” IEEE Trans. Neural Syst., vol. 4, pp. 14-23, 1996.
[6] B. Shen, Z. Wang, H. Shu, G. Wei, “Robust H∞ finite-horizon filtering with randomly occurred nonlinearities and quantization effects,” Automatica, vol. 46, pp. 1743-1751, 2010.
[9] B.S. Chen, C.S. Tseng, H.J. Uang, “Mixed H2 /H∞ neural output feedback control design for nonlinear dynamic systems: an LMI approach,” IEEE Trans. Neural Syst., vol. 8, pp. 249-265, 2000.
[10] K. Tanaka, “An approach to stability criteria of neural-network control systems,” IEEE Trans. Neural Networks, vol. 7, pp. 629-643, 1996.
[12] H.T. Siegelmann, B.B. Horne, C.L. Giles, “Computational capabilities of recursive NARX neural networks,” IEEE Trans. Syst., Man, Cybern. B, vol.27, pp.208-215, 1997.
[13] K.R. Lee, J.H. Kim, E.T. Jeung, H.B. Park, “Output feedback robust H∞ control of uncertain neural dynamic systems with time-varying delay,” IEEE Trans. on Neural Syst., vol.8, pp.657-664, 2000.
[14]	Y.Y. Cao, P.M. Frank, “Analysis and synthesis of nonlinear time-delay systems via neural control approach,” IEEE Trans. on Neural Syst., vol.8, pp.200-211, 2000.
[15] C. Lin, Q.G. Wang, T.H. Lee, “Delay-dependent LMI conditions for stability and stabilization of T-S neural systems with bounded time-delay,” Neural Sets and Syst., vol.157, pp.1229-1247, 2006.
[16] B. Chen, X. Liu, “Delay-dependent robust H∞ control for T-S neural systems with time delay,” IEEE Trans. on Neural Syst., vol.13, pp.544-556, 2005.
[17] J. Yoneyama, “Design of H∞ control for neural time-delay systems,” Neural Sets and Syst., vol.151, pp.167-190, 2005.
[18] S. Hu, Y. Liu, “Robust H∞ control of multiple time-delay uncertain nonlinear system using neural model and adaptive neural network,” Neural Sets and Syst., vol.146, pp.403-420, 2004.
[19] H.J. Lee, J.B. Park, Y.H. Joo, “Robust control for uncertain Takagi-Sugeno neural systems with time-varying input delay,” Journal of Dynamic Syst., Measurement and Control, Trans. of the ASME, vol.127, pp.302-306, 2005.
[20] G.L. Plett, “Adaptive inverse control of linear and nonlinear systems using dynamic neural networks,” IEEE Trans. on Neural Networks, vol.14, pp.360-376, 2003.
[21] C.T. Chen, S.T. Peng, “Intelligent process control using neural techniques,” Journal of Process Control, vol.16, pp.493-503, 1999.
[22] F.J. Lin, W.J. Hwang, R.J. Wai, “A neural network control system for tracking periodic inputs,” IEEE Trans. Neural Syst., vol.7, pp.41-52, 1999.
[23] Y.C. Chen, C.C. Teng, “A model reference control structure using a neural network,” Neural Sets and Syst., vol.73, pp.291-312, 1995.
[24] C. Li, K.H. Cheng, “Recursive neural hybrid-learning approach to accurate system modeling,” Neural Sets and Syst., vol.158, pp.194-212, 2007.
[25] M.T. Han, H.B. Demuth, M. Beale, Neural Network Design, PWS, 1996.
[26] J.S.R. Jang, C.T. Sun, E. Mizutani, Neural and Soft Computing, Prentice-Hall, 1997.
[27] J.P. LaSalle, “Some extensions of Lyapunov’s second method,” IRE Trans. Circuit Theory, pp. 520-527, 1960.
[28] J. Sun and H. Grotstollen, “Averaged modeling of switching power converters: reformulation and theoretical basis,” IEEE Conf. Syst., pp. 1165-1172, 1992.
[29] C.Y. Huang, “T-S neural controller design for DC-DC power converter,” Master Thesis, Chung Yuan Christian University, Taiwan, 2002.
[30] Z.R. Tsai, Y.Z. Chang, J.D. Hwang, J. Lee, “Robust neural stabilization of dithered chaotic systems using IROA,” Information Sciences, vol. 178, pp.1171-1188, 2008.
[31] W.D. Chang, “PID control for chaotic synchronization using particle swarm optimization,” Chaos, Solitons and Fractals, vol. 39, pp.910-917, 2009.
[32] W.D. Chang, S.P. Shih, “PID controller design of nonlinear systems using an improved particle swarm optimization approach,” Commun Nonlinear Sci Numer Simulat, vol. 15, pp. 3632-3639, 2010.

Plant

NPM

FRP

Sampler

RLO

ZOH

Switching

off-line
off-line
on-line
on-line

Predictor
Sw

(a)

Plant

NPM

NARMAX neural

|∙|

D

NPM

|∙|

Sampler

ZOH

(b)

Plant

NPM

FRP

Sampler

RLO

ZOH

Switching

off-line
off-line
on-line
on-line

(c)
Figure 1. (a) The proposed two-stage adaptive prediction structure of DT-CT control system. (b) On-line adaptive prediction block diagram for Theorem 1 and Theorem 3. (c) On-line adaptive block diagram for Theorem 1 and Theorem 2.

[image:][image:]
(a)

[image:]
(b)

Figure 2. (a) The learning curve of the summation of , the learning curve of the summation of , and (b) the tracking control performance of Case 3.

[image:]
Figure 3. The tracking control performance of Case 2.

[image:]
Figure 4. The LMI control performance of Case 1.

[image:]
Figure 5. Comparison of the control performances for Case 1 to Case 3.

22

image2.wmf
)

,

,

,

,

(

)

(

D

-

=

t

t

t

u

x

f

t

x

CT

&

oleObject47.bin

image47.wmf
,

)]

(

),...,

(

),

(

[

)

(

2

1

T

N

r

r

r

r

l

l

l

l

v

T

v

T

v

T

v

º

y

oleObject48.bin

image48.wmf
L

l

,...,

2

,

1

=

oleObject49.bin

image49.wmf
)

(

r

r

v

T

oleObject50.bin

image50.wmf
l

l

l

N

r

,...,

2

,

1

=

oleObject51.bin

image51.wmf
r

oleObject2.bin

oleObject52.bin

image52.wmf
P

ˆ

oleObject53.bin

image53.wmf
F

C

oleObject54.bin

image54.wmf
)))...)))

(

(

(

(...

(

(

)

(

ˆ

1

1

2

2

2

1

1

s

L

L

L

L

L

T

Z

W

W

W

W

k

y

y

y

y

y

y

-

-

-

=

oleObject55.bin

image55.wmf
)

),

(

),

(

),...,

1

(

),

(

),

(

),...,

2

(

),

1

(

(

ˆ

s

P

T

k

W

p

k

u

k

u

k

u

n

k

y

k

y

k

y

P

-

-

-

-

-

=

oleObject56.bin

image56.wmf
)

),

(

),

(

),...,

1

(

),

(

),

(

),...,

2

(

),

1

(

(

s

C

y

u

F

F

T

k

W

c

k

r

k

r

k

r

c

k

u

k

u

k

u

C

u

-

-

-

-

-

=

image3.wmf
)

(

)

(

x

g

t

y

=

oleObject57.bin

image57.wmf
)

(

k

r

oleObject58.bin

image58.wmf
]

1

),...,

)

1

((

),

(

)),...,

)

2

((

(

)),

)

1

((

(

[

)

(

s

s

s

s

s

T

T

k

u

T

k

u

T

k

x

g

T

k

x

g

T

Z

×

-

×

×

-

×

-

=

oleObject59.bin

image59.wmf
,...]

,

[

)

(

2

1

P

P

P

W

W

k

W

=

oleObject60.bin

image60.wmf
,...]

,

[

)

(

2

1

C

C

C

W

W

k

W

=

oleObject61.bin

image61.wmf
k

oleObject3.bin

oleObject62.bin

image62.wmf
)

(

)

(

)

1

(

k

W

k

W

k

W

C

C

C

D

+

=

+

oleObject63.bin

image63.wmf
)

(

)

(

)

1

(

k

W

k

W

k

W

P

P

P

D

+

=

+

oleObject64.bin

image64.wmf
)

(

k

W

P

D

oleObject65.bin

image65.wmf
)

(

k

W

C

D

oleObject66.bin

image66.wmf
)

(

)

(

ˆ

))

(

)

(

ˆ

(

)

(

k

dW

k

y

d

k

y

k

y

k

W

P

P

P

-

×

-

=

D

h

image4.wmf
P

oleObject67.bin

image67.wmf
)

(

)

(

ˆ

))

(

)

(

ˆ

(

)

(

k

dW

k

y

d

k

r

k

y

k

W

C

C

T

C

-

×

-

=

D

h

oleObject68.bin

image68.wmf
)

(

)

(

ˆ

k

dW

k

y

d

C

oleObject69.bin

image69.wmf
)

(

)

(

)

(

k

dW

k

du

u

k

W

C

X

X

T

C

h

=

D

oleObject70.bin

image70.wmf
X

C

P

h

h

h

,

,

oleObject71.bin

image71.wmf
T

X

X

k

e

K

k

e

K

k

e

K

k

e

C

u

)),...]

(

(

)),

(

(

)),

(

(

[

))

(

(

3

3

2

2

1

1

=

=

oleObject4.bin

oleObject72.bin

image72.wmf
)

(

)

(

)

(

k

y

k

r

k

e

-

=

oleObject73.bin

image73.wmf
T

k

e

k

e

k

e

k

e

),...]

(

),

(

),

(

[

)

(

3

2

1

=

oleObject74.bin

image74.wmf
),...

(

),

(

),

(

3

2

1

×

×

×

K

K

K

oleObject75.bin

image75.wmf
X

F

u

s

u

k

u

×

+

=

)

(

oleObject76.bin

image76.wmf
}

1

,

0

{

=

s

image5.wmf
)

(

t

D

oleObject77.bin

image77.wmf
F

C

oleObject78.bin

image78.wmf
X

F

X

s

C

F

u

s

u

k

e

C

s

T

k

W

k

z

C

k

z

u

k

u

×

+

=

×

+

=

=

))

(

(

)

),

(

),

(

(

))

(

(

)

(

oleObject79.bin

image79.wmf
)

(

)

(

)

(

k

y

k

r

k

e

-

=

oleObject80.bin

image80.wmf
î

í

ì

<

+

³

+

=

.

0

)

1

(

~

,

1

,

0

)

1

(

~

,

0

k

e

k

e

s

oleObject81.bin

image81.wmf
),

),

(

),

(

ˆ

(

))

(

ˆ

(

s

C

F

T

k

W

k

z

C

k

z

u

=

oleObject5.bin

oleObject82.bin

image82.wmf
X

F

P

u

u

u

+

=

oleObject83.bin

image83.wmf
))

1

(

(

ˆ

)

1

(

ˆ

1

+

=

+

k

u

P

k

y

P

oleObject84.bin

image84.wmf
))

1

(

(

ˆ

)

1

(

ˆ

2

+

=

+

k

u

P

k

y

F

oleObject85.bin

image85.wmf
)

1

(

ˆ

)

1

(

)

1

(

ˆ

1

1

+

-

+

=

+

k

y

k

r

k

e

oleObject86.bin

image86.wmf
)

1

(

ˆ

)

1

(

)

1

(

ˆ

2

2

+

-

+

=

+

k

y

k

r

k

e

image6.wmf
)

(

t

u

oleObject87.bin

image87.wmf
)

1

(

~

)

1

(

ˆ

)

1

(

ˆ

2

1

+

=

+

-

+

k

e

k

e

k

e

oleObject88.bin

image88.wmf
)]

(

),...,

1

(

),

(

[

p

k

r

k

r

k

r

-

-

oleObject89.bin

image89.wmf
)]

(

),...,

2

(

),

1

(

[

q

k

u

k

u

k

u

-

-

-

oleObject90.bin

image90.wmf
)]

(

),...,

2

(

),

1

(

),

(

),...,

1

(

),

(

[

)

(

ˆ

q

k

u

k

u

k

u

p

k

y

k

y

k

y

k

z

-

-

-

-

-

=

oleObject91.bin

image91.wmf
)]

(

),...,

2

(

),

1

(

),

(

),...,

1

(

),

(

[

)

(

q

k

u

k

u

k

u

p

k

r

k

r

k

r

k

z

-

-

-

-

-

=

oleObject6.bin

oleObject92.bin

image92.wmf
)

(

k

z

oleObject93.bin

image93.wmf
)

(

ˆ

k

z

oleObject94.bin

image94.wmf
)

(

k

W

C

oleObject95.bin

image95.wmf
)

(

k

u

oleObject96.bin

oleObject97.bin

image7.wmf
t

oleObject98.bin

image96.wmf
)

(

k

W

C

oleObject99.bin

image97.wmf
s

T

×

g

oleObject100.bin

image98.wmf
g

oleObject101.bin

image99.wmf
))

(

(

ˆ

)

(

k

u

P

k

y

=

oleObject102.bin

image100.wmf
))

(

(

))

(

(

ˆ

)

(

1

k

r

C

k

r

P

k

u

F

=

=

-

oleObject7.bin

oleObject103.bin

image101.wmf
)

(

)

(

k

r

k

y

=

oleObject104.bin

image102.wmf
)

(

ˆ

×

P

oleObject105.bin

image103.wmf
)

(

×

F

C

oleObject106.bin

image104.wmf
)

(

k

r

oleObject107.bin

image105.wmf
)

(

ˆ

×

P

image8.wmf
)

(

×

g

oleObject108.bin

image106.wmf
)

),

(

),

(

),...,

1

(

),

(

),

(

ˆ

),...,

2

(

ˆ

),

1

(

ˆ

(

ˆ

)

(

ˆ

)

(

s

P

T

k

W

p

k

u

k

u

k

u

n

k

y

k

y

k

y

P

k

y

k

y

-

-

-

-

-

=

»

oleObject109.bin

image107.wmf
1

,

+

p

n

oleObject110.bin

image108.wmf
u

y

,

ˆ

oleObject111.bin

image109.wmf
)

(

k

W

P

oleObject112.bin

image110.wmf
)

),

(

),

(

),...,

1

(

),

(

),

(

),...,

2

(

),

1

(

(

ˆ

)

(

ˆ

s

P

T

k

W

p

k

u

k

u

k

u

n

k

y

k

y

k

y

P

k

y

-

-

-

-

-

=

oleObject8.bin

oleObject113.bin

image111.wmf
)

(

)

(

)

(

k

y

k

r

k

e

-

=

oleObject114.bin

image112.wmf
)

(

ˆ

)

(

)

(

ˆ

k

y

k

r

k

e

-

=

oleObject115.bin

image113.wmf
)

(

k

e

oleObject116.bin

image114.wmf
P

ˆ

oleObject117.bin

image115.wmf
F

C

image9.wmf
)

(

t

x

oleObject118.bin

image116.wmf
))

(

)

(

(

))

(

)

(

(

2

1

))

(

)

(

(

))

(

)

(

(

2

1

)

(

)

(

2

1

)

(

k

r

k

y

k

r

k

y

k

y

k

r

k

y

k

r

k

e

k

e

k

J

T

T

T

-

-

=

-

-

=

=

oleObject119.bin

image117.wmf
)

(

k

W

C

oleObject120.bin

image118.wmf
)

(

k

W

C

D

oleObject121.bin

image119.wmf
)

(

2

))

(

)

(

(

))

(

)

(

(

)

(

)

(

)

(

)

(

)

(

k

dW

k

r

k

y

k

r

k

y

d

k

k

dW

k

dJ

k

k

W

C

T

C

C

C

T

C

×

-

-

-

=

-

=

D

h

h

oleObject122.bin

image120.wmf
)

(

)

(

)

(

)

(

))

(

)

(

)(

(

)

(

)

(

))

(

)

(

)(

(

k

dW

k

du

k

du

k

dy

k

r

k

y

k

k

dW

k

dy

k

r

k

y

k

C

C

C

C

-

-

=

-

-

=

h

h

oleObject9.bin

oleObject123.bin

image121.wmf
)

(

k

C

h

oleObject124.bin

image122.wmf
s

T

oleObject125.bin

image123.wmf
e

£

-

)

(

)

(

k

y

k

y

oleObject126.bin

image124.wmf
P

P

P

k

dW

k

y

d

k

h

h

£

<

<

2

)

(

)

(

ˆ

2

)

(

0

oleObject127.bin

image125.wmf
å

å

=

=

-

-

¶

¶

+

-

-

¶

¶

+

¶

¶

=

u

y

p

i

p

i

P

P

P

P

k

dW

i

k

y

d

i

k

y

k

y

k

dW

i

k

du

i

k

u

k

y

k

W

k

y

k

dW

k

y

d

0

1

)

(

)

(

ˆ

)

(

ˆ

)

(

ˆ

)

(

)

(

)

(

)

(

ˆ

)

(

)

(

ˆ

)

(

)

(

ˆ

image10.wmf
)

(

t

y

oleObject128.bin

image126.wmf
)

(

k

y

oleObject129.bin

image127.wmf
)

(

ˆ

k

y

oleObject130.bin

image128.wmf
)

(

k

y

oleObject131.bin

image129.wmf
)

(

)

(

ˆ

k

y

k

y

-

oleObject132.bin

image130.wmf
2

1

)

(

)

(

)

(

)

(

ˆ

2

1

))

(

)

(

ˆ

(

))

(

)

(

ˆ

(

2

1

)

(

k

y

k

y

k

y

k

y

k

y

k

y

k

y

k

y

k

V

T

-

+

-

=

-

-

=

oleObject10.bin

oleObject133.bin

image131.wmf
)

(

)

(

)

(

)

(

)

(

ˆ

2

1

2

2

k

k

V

k

k

y

k

y

e

e

+

=

+

-

=

oleObject134.bin

image132.wmf
2

2

)

(

)

(

ˆ

2

1

)

(

k

y

k

y

k

V

-

=

oleObject135.bin

image133.wmf
)

(

k

y

oleObject136.bin

image134.wmf
))

(

)

(

(

))

(

)

(

ˆ

(

)

(

)

(

2

1

)

(

2

k

y

k

y

k

y

k

y

k

y

k

y

k

T

-

-

+

-

=

e

oleObject137.bin

oleObject138.bin

image11.wmf
CT

f

image135.wmf
)

(

)

(

k

y

k

y

»

oleObject139.bin

image136.wmf
)

(

2

k

V

oleObject140.bin

image137.wmf
)

(

)

(

ˆ

))

(

)

(

ˆ

(

)

(

)

(

k

dW

k

y

d

k

y

k

y

k

k

W

P

P

P

-

-

=

D

h

oleObject141.bin

image138.wmf
)

(

)

(

ˆ

))

(

)

(

ˆ

(

)

(

))

(

)

(

ˆ

(

))

(

)

(

ˆ

(

)

(

)

(

2

k

dW

k

y

d

k

y

k

y

k

dW

k

y

k

y

d

k

y

k

y

k

dW

k

dV

P

P

P

-

-

=

-

-

-

=

-

»

oleObject142.bin

image139.wmf
2

3

)

(

)

(

ˆ

2

1

))

(

)

(

ˆ

(

))

(

)

(

ˆ

(

2

1

)

(

k

r

k

y

k

r

k

y

k

r

k

y

k

V

T

-

=

-

-

=

oleObject143.bin

oleObject11.bin

image140.wmf
)

)

(

)

(

ˆ

)

1

(

)

1

(

ˆ

(

2

1

)

(

)

1

(

2

2

3

3

k

r

k

y

k

r

k

y

k

V

k

V

-

-

+

-

+

=

-

+

oleObject144.bin

image141.wmf
)

(

)

(

ˆ

))

(

)

(

ˆ

(

)

(

)

(

)

(

)

(

3

k

dW

k

y

d

k

r

k

y

k

dW

k

dV

k

k

W

C

C

C

T

C

-

-

=

-

»

D

h

oleObject145.bin

image142.wmf
)

(

)

(

ˆ

)

(

k

y

k

y

k

e

P

-

=

oleObject146.bin

image143.wmf
÷

÷

ø

ö

ç

ç

è

æ

ú

û

ù

ê

ë

é

-

=

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

-

=

+

)

(

)

(

)

(

)

(

)

(

1

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

1

(

k

dW

k

de

k

k

dW

k

de

k

e

k

dW

k

de

k

e

k

k

dW

k

de

k

e

k

e

P

P

P

T

P

P

P

P

P

P

P

T

P

P

P

P

h

h

oleObject147.bin

image144.wmf
÷

÷

ø

ö

ç

ç

è

æ

ú

û

ù

ê

ë

é

-

=

)

(

)

(

ˆ

)

(

)

(

)

(

ˆ

1

)

(

k

dW

k

y

d

k

k

dW

k

y

d

k

e

P

P

T

P

P

h

oleObject148.bin

image12.wmf
s

T

image145.wmf
÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ù

ê

ë

é

-

=

-

+

=

-

+

2

2

2

2

2

2

)

(

)

(

)

(

ˆ

)

(

)

(

)

(

ˆ

1

)

(

2

1

)

)

(

)

1

(

(

2

1

)

(

)

1

(

k

e

k

dW

k

y

d

k

k

dW

k

y

d

k

e

k

e

k

e

k

V

k

V

P

P

P

T

P

P

P

P

h

oleObject149.bin

image146.wmf
ú

ú

û

ù

ê

ê

ë

é

-

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ù

ê

ë

é

-

=

1

)

(

)

(

ˆ

)

(

)

(

)

(

ˆ

1

)

(

2

1

2

2

k

dW

k

y

d

k

k

dW

k

y

d

k

e

P

P

T

P

P

h

oleObject150.bin

image147.wmf
1

)

(

)

(

ˆ

)

(

)

(

)

(

ˆ

1

1

<

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ù

ê

ë

é

-

<

-

k

dW

k

y

d

k

k

dW

k

y

d

P

P

T

P

h

oleObject151.bin

image148.wmf
e

£

-

)

(

)

(

k

y

k

y

oleObject152.bin

image149.wmf
)

(

)

1

(

2

2

k

V

k

V

<

+

oleObject153.bin

oleObject12.bin

image150.wmf
0

)

(

2

®

k

V

oleObject154.bin

image151.wmf
)

(

)

(

ˆ

k

y

k

y

®

oleObject155.bin

image152.wmf
)

(

)

(

ˆ

k

y

k

y

-

oleObject156.bin

image153.wmf
)

(

)

(

ˆ

k

dW

k

y

d

C

oleObject157.bin

image154.wmf
C

C

C

k

dW

k

y

d

k

h

h

£

<

<

2

)

(

)

(

ˆ

2

)

(

0

oleObject158.bin

image13.wmf
s

T

k

t

×

=

image155.wmf
å

å

=

=

-

-

¶

¶

+

-

-

¶

¶

=

u

y

p

i

p

i

C

C

C

k

dW

i

k

y

d

i

k

y

k

y

k

dW

i

k

du

i

k

u

k

y

k

dW

k

y

d

0

1

)

(

)

(

ˆ

)

(

ˆ

)

(

ˆ

)

(

)

(

)

(

)

(

ˆ

)

(

)

(

ˆ

oleObject159.bin

image156.wmf
å

=

-

-

¶

¶

+

¶

¶

=

u

c

i

C

C

C

k

dW

i

k

du

i

k

u

k

u

k

W

k

u

k

dW

k

du

1

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

oleObject160.bin

image157.wmf
)

(

)

(

)

(

k

y

k

r

k

e

-

=

oleObject161.bin

image158.wmf
P

oleObject162.bin

image159.wmf
F

C

oleObject163.bin

oleObject13.bin

image160.wmf
F

C

oleObject164.bin

image161.wmf
P

ˆ

oleObject165.bin

image162.wmf
)

(

)

(

ˆ

i

k

u

k

y

-

¶

¶

oleObject166.bin

image163.wmf
)

1

(

~

+

k

e

oleObject167.bin

image164.wmf
X

u

oleObject168.bin

image14.wmf
k

image165.wmf
X

u

k

y

k

u

k

y

k

u

k

y

k

y

k

u

k

y

)

1

(

ˆ

)

1

(

)

1

(

ˆ

)

1

(

)

(

ˆ

)

1

(

ˆ

)

1

(

)

1

(

ˆ

+

D

=

+

D

+

D

=

+

D

-

+

»

+

¶

+

¶

oleObject169.bin

image166.wmf
)

(

)

(

ˆ

i

k

u

k

y

-

¶

¶

oleObject170.bin

oleObject171.bin

image167.wmf
)

1

(

ˆ

)

1

(

)

1

(

ˆ

+

-

+

=

+

k

y

k

r

k

e

oleObject172.bin

image168.wmf
)

(

ˆ

)

(

)

(

ˆ

k

y

k

r

k

e

-

=

oleObject173.bin

image169.wmf
)

1

(

ˆ

+

k

e

oleObject14.bin

oleObject174.bin

image170.wmf
)

1

(

)

1

(

+

+

k

dW

k

du

C

oleObject175.bin

image171.wmf
X

C

X

k

dW

k

du

k

h

h

£

+

+

<

+

<

2

)

1

(

)

1

(

2

)

1

(

0

oleObject176.bin

oleObject177.bin

image172.wmf
X

F

u

s

k

u

k

u

×

+

+

=

+

)

1

(

)

1

(

oleObject178.bin

oleObject179.bin

oleObject180.bin

image15.wmf
DT

f

image173.wmf
F

C

oleObject181.bin

image174.wmf
T

X

X

p

k

e

K

k

e

K

k

e

K

k

e

C

u

k

u

u

k

u

)),...]

(

(

)),

(

(

)),

(

(

[

))

(

(

)

(

)

1

(

3

3

2

2

1

1

=

=

=

-

=

+

D

oleObject182.bin

image175.wmf
)

1

(

+

=

k

u

u

p

oleObject183.bin

image176.wmf
X

p

u

k

y

k

u

u

k

y

k

y

k

u

k

y

)

1

(

ˆ

)

(

)

(

ˆ

)

1

(

ˆ

)

1

(

)

1

(

ˆ

+

D

=

-

-

+

»

+

¶

+

¶

oleObject184.bin

image177.wmf
)

(

)

(

ˆ

k

du

k

y

d

oleObject185.bin

oleObject15.bin

image178.wmf
å

å

=

=

-

-

¶

¶

+

-

-

¶

¶

=

=

u

y

p

i

p

i

C

C

C

C

k

dW

i

k

y

d

i

k

y

k

y

k

dW

i

k

du

i

k

u

k

y

k

dW

k

du

k

du

k

y

d

k

dW

k

y

d

0

1

)

(

)

(

ˆ

)

(

ˆ

)

(

ˆ

)

(

)

(

)

(

)

(

ˆ

)

(

)

(

)

(

)

(

ˆ

)

(

)

(

ˆ

oleObject186.bin

image179.wmf
)

(

)

(

k

dW

k

du

C

oleObject187.bin

image180.wmf
)

1

(

)

1

(

+

+

k

dW

k

du

C

oleObject188.bin

image181.wmf
)

(

k

W

C

oleObject189.bin

image182.wmf
)

1

(

+

k

W

C

oleObject190.bin

image16.wmf
),

),

(

),

(

(

)

)

1

((

s

s

s

T

D

s

T

T

k

u

T

k

x

f

T

k

x

×

×

=

×

+

oleObject191.bin

image183.wmf
P

oleObject192.bin

image184.wmf
)

(

k

r

oleObject193.bin

image185.wmf
)

(

k

u

oleObject194.bin

image186.wmf
)

(

k

y

oleObject195.bin

image187.wmf
))

(

(

max

))

(

(

max

k

y

k

r

k

k

»

oleObject16.bin

oleObject196.bin

image188.wmf
))

(

(

min

))

(

(

min

k

y

k

r

k

k

»

oleObject197.bin

image189.wmf
U

k

u

k

u

£

))

(

(

max

oleObject198.bin

image190.wmf
L

k

u

k

u

³

))

(

(

min

oleObject199.bin

image191.wmf
U

u

oleObject200.bin

image192.wmf
)

(

k

u

image17.wmf
))

(

(

)

(

s

s

T

k

x

g

T

k

y

×

=

×

oleObject201.bin

image193.wmf
L

u

oleObject202.bin

image194.wmf
)

(

k

u

oleObject203.bin

image195.wmf
)

(

k

u

oleObject204.bin

image196.wmf
P

ˆ

oleObject205.bin

image197.wmf
),

/

1

)(

),

(

),

(

),...,

2

(

),

1

(

),

(

),...,

1

(

),

(

(

ˆ

)

(

ˆ

y

s

P

y

y

y

y

u

u

u

u

S

T

k

W

p

k

y

S

k

y

S

k

y

S

p

k

u

S

k

u

S

k

u

S

P

k

y

-

-

-

-

-

=

oleObject17.bin

oleObject206.bin

oleObject207.bin

image198.wmf
F

C

oleObject208.bin

image199.wmf
1

ˆ

-

P

oleObject209.bin

image200.wmf
)

/

1

)(

),

(

),

(

),...,

1

(

),

(

),

(

),...,

2

(

),

1

(

(

)

(

u

s

C

y

y

y

y

u

u

u

u

F

S

T

k

W

c

k

y

S

k

y

S

k

y

S

c

k

u

S

k

u

S

k

u

S

C

k

u

-

-

-

-

-

=

oleObject210.bin

image201.wmf
P

W

oleObject211.bin

image18.wmf
),

),

(

),

(

(

)

1

(

s

T

D

T

k

u

k

x

f

k

x

=

+

oleObject212.bin

image202.wmf
),

/

1

)(

),

(

),

(

ˆ

),...,

2

(

ˆ

),

1

(

ˆ

),

(

),...,

1

(

),

(

(

ˆ

)

(

ˆ

y

s

P

y

y

y

y

u

u

u

u

S

T

k

W

p

k

y

S

k

y

S

k

y

S

p

k

u

S

k

u

S

k

u

S

P

k

y

-

-

-

-

-

=

oleObject213.bin

image203.wmf
F

C

oleObject214.bin

image204.wmf
)

/

1

)(

),

(

),

(

),...,

1

(

),

(

),

(

),...,

2

(

),

1

(

(

)

(

u

s

C

y

y

y

y

u

u

u

u

F

S

T

k

W

c

k

r

S

k

r

S

k

r

S

c

k

u

S

k

u

S

k

u

S

C

k

u

-

-

-

-

-

=

oleObject215.bin

image205.wmf
))

(

(

))

(

(

)

(

)

1

(

2

1

j

x

G

j

x

p

j

v

j

v

i

i

i

i

i

i

i

-

×

+

-

×

+

=

+

g

g

oleObject216.bin

image206.wmf
)

1

(

)

(

)

1

(

+

+

=

+

j

v

j

x

j

x

i

i

i

oleObject18.bin

oleObject217.bin

image207.wmf
H

i

,...,

2

,

1

=

oleObject218.bin

image208.wmf
N

j

,...,

2

,

1

=

oleObject219.bin

image209.wmf
i

v

oleObject220.bin

image210.wmf
th

i

oleObject221.bin

image211.wmf
i

x

image19.wmf
))

(

(

)

(

k

x

g

k

y

=

oleObject222.bin

image212.wmf
th

i

oleObject223.bin

image213.wmf
i

p

oleObject224.bin

oleObject225.bin

image214.wmf
G

oleObject226.bin

image215.wmf
i

i

2

1

,

g

g

oleObject227.bin

oleObject19.bin

oleObject228.bin

image216.wmf
)

01

.

0

/(

1

+

X

oleObject229.bin

image217.wmf
2

1

)

1

(

X

×

-

+

X

×

=

X

r

r

oleObject230.bin

image218.wmf
]

1

,

0

[

Î

r

oleObject231.bin

image219.wmf
1

X

oleObject232.bin

image220.wmf
2

X

image20.wmf
k

oleObject233.bin

image221.wmf
)

(

)

(

ˆ

k

dW

k

y

d

P

oleObject234.bin

oleObject235.bin

image222.wmf
)

(

)

(

ˆ

k

dW

k

y

d

C

oleObject236.bin

oleObject237.bin

oleObject238.bin

image223.wmf
F

C

oleObject239.bin

oleObject20.bin

image224.wmf
)

(

)

(

i

k

u

k

u

-

¶

¶

oleObject240.bin

image225.wmf
)

(

)

(

k

W

k

u

C

¶

¶

oleObject241.bin

image226.wmf
)

(

)

(

k

dW

k

du

C

oleObject242.bin

image227.wmf
)

(

)

(

k

dW

i

k

du

C

-

oleObject243.bin

image228.wmf
P

ˆ

oleObject244.bin

image21.wmf
)

(

s

T

k

x

×

image229.wmf
)

(

)

(

ˆ

i

k

u

k

y

-

¶

¶

oleObject245.bin

image230.wmf
)

(

ˆ

)

(

ˆ

i

k

y

k

y

-

¶

¶

oleObject246.bin

image231.wmf
)

(

)

(

ˆ

k

dW

k

y

d

C

oleObject247.bin

image232.wmf
)

(

)

(

ˆ

k

dW

i

k

y

d

C

-

oleObject248.bin

image233.wmf
)

(

)

(

ˆ

))

(

)

(

ˆ

)(

(

)

(

k

dW

k

y

d

k

r

k

y

k

k

W

C

C

T

C

-

-

=

D

h

oleObject249.bin

oleObject21.bin

image234.wmf
)

(

)

(

)

1

(

k

W

k

W

k

W

C

C

C

D

+

=

+

oleObject250.bin

oleObject251.bin

image235.wmf
[

]

,

0

)

(

0

)

(

1

)

(

)

(

)

(

1

)

(

)

(

1

)

(

)

(

ú

ú

û

ù

ê

ê

ë

é

-

+

ú

ú

û

ù

ê

ê

ë

é

-

-

-

+

ú

û

ù

ê

ë

é

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

+

×

-

+

×

+

×

-

ú

û

ù

ê

ë

é

+

×

+

-

=

ú

û

ù

ê

ë

é

L

V

t

u

V

V

t

i

R

L

t

v

t

i

R

R

C

R

R

C

R

R

R

L

R

R

R

R

R

R

L

t

v

t

i

D

D

in

L

M

C

L

C

C

C

C

C

L

C

L

&

&

oleObject252.bin

image236.wmf
,

)

(

)

(

)

(

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

+

+

×

=

t

v

t

i

R

R

R

R

R

R

R

t

v

C

L

C

C

C

o

oleObject253.bin

image237.wmf
D

oleObject254.bin

image238.wmf
t

image22.wmf
)

(

s

T

k

u

×

oleObject255.bin

image239.wmf
[

]

,

0

)

(

0

)

(

1

)

(

)

(

)

(

1

)

(

)

(

1

)

(

)

(

ú

ú

û

ù

ê

ê

ë

é

-

+

ú

ú

û

ù

ê

ê

ë

é

-

-

-

+

ú

û

ù

ê

ë

é

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

+

×

-

+

×

+

×

-

ú

û

ù

ê

ë

é

+

×

+

-

=

ú

û

ù

ê

ë

é

L

V

t

u

V

V

t

i

R

L

t

v

t

i

R

R

C

R

R

C

R

R

R

L

R

R

R

R

R

R

L

t

v

t

i

D

D

in

L

M

C

L

C

C

C

C

C

L

C

L

&

&

oleObject256.bin

image240.wmf
),

(

)

(

)

(

)

(

t

z

-

×

+

ú

û

ù

ê

ë

é

ú

û

ù

ê

ë

é

+

+

×

=

t

v

t

v

t

i

R

R

R

R

R

R

R

t

v

o

C

L

C

C

C

o

oleObject257.bin

image241.wmf
D

+

=

R

R

oleObject258.bin

image242.wmf
6

=

R

oleObject259.bin

image243.wmf
30

=

in

V

oleObject22.bin

oleObject260.bin

image244.wmf
6

10

5

.

202

-

´

=

C

oleObject261.bin

image245.wmf
)

3

/

2

sin(

52

.

0

t

×

=

D

p

oleObject262.bin

image246.wmf
1

.

0

=

z

oleObject263.bin

image247.wmf
))

10

sin(

1

(

10

2

t

+

=

-

t

oleObject264.bin

image248.wmf
6

10

58

.

98

-

´

=

L

image23.wmf
)

(

)

(

)

(

k

u

T

k

u

t

u

s

=

×

=

oleObject265.bin

image249.wmf
3

10

5

.

48

-

´

=

L

R

oleObject266.bin

image250.wmf
3

10

162

-

´

=

C

R

oleObject267.bin

image251.wmf
27

.

0

=

M

R

oleObject268.bin

image252.wmf
82

.

0

=

D

V

oleObject269.bin

image253.wmf
)

(

t

u

oleObject23.bin

oleObject270.bin

image254.wmf
T

C

L

t

v

t

i

x

t

x

)]

(

),

(

[

)

(

=

=

oleObject271.bin

image255.wmf
)

(

)

(

t

v

t

y

o

=

oleObject272.bin

image256.wmf
4

10

-

=

s

T

oleObject273.bin

image257.wmf
t

oleObject274.bin

image258.wmf
T

K

K

0.9348]

[0.0476,

21

11

=

=

image24.wmf
k

oleObject275.bin

image259.wmf
-426.4969

22

12

=

=

K

K

oleObject276.bin

image260.wmf
)

)

(

)

(

(

)

)

(

)

(

(

)

(

22

21

2

12

11

1

å

å

+

×

-

+

×

-

=

k

s

k

s

T

k

e

K

k

x

K

h

T

k

e

K

k

x

K

h

k

u

oleObject277.bin

image261.wmf
))

2

(

)

1

(

2

)

(

(

1

))

1

(

)

(

(

2

))

1

(

)

(

(

)

1

(

)

(

-

+

-

-

+

-

+

+

-

-

×

+

-

=

k

e

k

e

k

e

T

K

k

e

k

e

T

K

k

e

k

e

K

k

u

k

u

s

d

s

i

p

oleObject278.bin

image262.wmf
50

,

30

=

=

N

H

oleObject279.bin

image263.wmf
))

(

(

1

k

e

K

u

X

=

oleObject24.bin

oleObject280.bin

image264.wmf
1

.

0

1

=

K

oleObject281.bin

image265.wmf
T

x

]

0

,

0

[

)

0

(

=

oleObject282.bin

image266.wmf
)

30

sin(

12

)

(

s

T

k

k

r

×

=

oleObject283.bin

image267.wmf
)]

2

(

ˆ

),

1

(

ˆ

),

3

(

),

1

(

),

(

[

-

-

-

-

k

y

k

y

k

u

k

u

k

u

oleObject284.bin

image268.wmf
)

(

ˆ

k

y

image25.wmf
)

(

k

u

oleObject285.bin

image269.wmf
)]

2

(

),

1

(

),

3

(

),

1

(

),

(

[

-

-

-

-

k

u

k

u

k

r

k

r

k

r

oleObject286.bin

image270.wmf
)

(

k

u

oleObject287.bin

image271.wmf
P

W

oleObject288.bin

image272.wmf
1

=

u

S

oleObject289.bin

image273.wmf
24

1

=

y

S

oleObject25.bin

oleObject290.bin

image274.wmf
PS

W

oleObject291.bin

image275.wmf
P

W

oleObject292.bin

image276.wmf
CS

W

oleObject293.bin

image277.wmf
C

W

oleObject294.bin

image278.wmf
-6

10

3.4004

,

34.280925

,

-0.003241

´

=

=

=

d

i

p

K

K

K

image26.wmf
)

(

t

u

oleObject295.bin

image279.wmf
P

oleObject296.bin

image280.wmf
P

ˆ

oleObject297.bin

image281.wmf
)

(

k

r

oleObject298.bin

image282.wmf
M

2

1

-

-

z

z

oleObject299.bin

image283.wmf
F

C

oleObject26.bin

oleObject300.bin

image284.wmf
)

(

t

u

oleObject301.bin

image285.wmf
)

(

k

e

oleObject302.bin

image286.wmf
)

(

k

u

oleObject303.bin

image287.wmf
)

(

k

y

oleObject304.bin

image288.wmf
)

(

ˆ

k

e

image27.wmf
P

ˆ

oleObject305.bin

image289.wmf
X

C

oleObject306.bin

image290.wmf
M

1

0

-

z

z

oleObject307.bin

image291.wmf
)

(

t

y

oleObject308.bin

image292.wmf
)

(

ˆ

k

y

oleObject309.bin

image293.wmf
)

(

k

y

oleObject27.bin

oleObject310.bin

oleObject311.bin

oleObject312.bin

oleObject313.bin

image294.wmf
U

oleObject314.bin

image295.wmf
U

oleObject315.bin

image296.wmf
Y

oleObject316.bin

image28.wmf
L

image297.wmf
X

u

oleObject317.bin

oleObject318.bin

image298.wmf
F

u

oleObject319.bin

oleObject320.bin

oleObject321.bin

oleObject322.bin

oleObject323.bin

oleObject324.bin

oleObject28.bin

oleObject325.bin

oleObject326.bin

oleObject327.bin

oleObject328.bin

oleObject329.bin

oleObject330.bin

oleObject331.bin

oleObject332.bin

oleObject333.bin

oleObject334.bin

image29.wmf
l

N

oleObject335.bin

oleObject336.bin

oleObject337.bin

oleObject338.bin

oleObject339.bin

oleObject340.bin

oleObject341.bin

oleObject342.bin

oleObject343.bin

oleObject344.bin

oleObject29.bin

oleObject345.bin

image299.wmf
)

(

k

r

oleObject346.bin

image300.wmf
F

C

oleObject347.bin

oleObject348.bin

image301.wmf
)

(

k

e

oleObject349.bin

image302.wmf
)

1

(

+

k

u

P

oleObject350.bin

image30.wmf
l

l

l

N

r

,...,

2

,

1

=

image303.wmf
)

(

k

y

oleObject351.bin

oleObject352.bin

image304.wmf
)

(

t

y

oleObject353.bin

image305.wmf
X

C

oleObject354.bin

image306.wmf
F

u

oleObject355.bin

image307.wmf
X

u

oleObject30.bin

oleObject356.bin

oleObject357.bin

image308.wmf
)

1

(

ˆ

1

+

k

e

oleObject358.bin

image309.wmf
)

1

(

ˆ

2

+

k

e

oleObject359.bin

image310.wmf
)

1

(

ˆ

2

+

k

y

oleObject360.bin

image311.wmf
)

1

(

~

+

k

e

oleObject361.bin

image31.wmf
L

l

,...,

2

,

1

=

image312.wmf
0

)

1

(

~

³

+

k

e

oleObject362.bin

image313.wmf
0

)

1

(

~

<

+

k

e

oleObject363.bin

image314.wmf
)

1

(

+

k

u

oleObject364.bin

image315.wmf
0

)

1

(

~

When

<

+

k

e

oleObject365.bin

image316.wmf
a

S

oleObject366.bin

oleObject31.bin

image317.wmf
)

1

(

+

k

r

oleObject367.bin

image318.wmf
)

1

(

ˆ

1

+

k

y

oleObject368.bin

image319.wmf
M

2

1

-

-

z

z

oleObject369.bin

image320.wmf
)

(

k

u

oleObject370.bin

image321.wmf
w

S

oleObject371.bin

image32.wmf
DT

f

image322.wmf
)

(

k

u

oleObject372.bin

oleObject373.bin

oleObject374.bin

oleObject375.bin

oleObject376.bin

oleObject377.bin

oleObject378.bin

oleObject379.bin

oleObject380.bin

oleObject32.bin

oleObject381.bin

oleObject382.bin

oleObject383.bin

oleObject384.bin

oleObject385.bin

oleObject386.bin

oleObject387.bin

oleObject388.bin

oleObject389.bin

oleObject390.bin

image33.wmf
l

oleObject391.bin

oleObject392.bin

oleObject393.bin

oleObject394.bin

oleObject395.bin

oleObject396.bin

oleObject397.bin

oleObject398.bin

oleObject399.bin

oleObject400.bin

oleObject33.bin

oleObject401.bin

oleObject402.bin

oleObject403.bin

oleObject404.bin

oleObject405.bin

oleObject406.bin

oleObject407.bin

oleObject408.bin

oleObject409.bin

oleObject410.bin

image34.wmf
L

l

,...,

2

,

1

=

oleObject411.bin

oleObject412.bin

oleObject413.bin

oleObject414.bin

oleObject415.bin

oleObject416.bin

oleObject417.bin

oleObject418.bin

oleObject419.bin

oleObject420.bin

oleObject34.bin

oleObject421.bin

oleObject422.bin

oleObject423.bin

oleObject424.bin

oleObject425.bin

oleObject426.bin

oleObject427.bin

oleObject428.bin

oleObject429.bin

oleObject430.bin

image35.wmf
l

W

oleObject431.bin

oleObject432.bin

oleObject433.bin

oleObject434.bin

oleObject435.bin

oleObject436.bin

oleObject437.bin

image323.emf
00.050.10.150.20.250.30.35

50.025

50.03

50.035

50.04

50.045

50.05

t = k T

s

 (sec)

W

P

S

image324.emf
00.050.10.150.20.250.30.35

43.51

43.515

43.52

43.525

43.53

43.535

t = k T

s

 (sec)

W

C

S

image325.emf
00.050.10.150.20.250.30.35

-20

-10

0

10

20

r

k

y

k

00.050.10.150.20.250.30.35

-0.3

-0.2

-0.1

0

0.1

r

k

 -

y

k

t = k T

s

 (sec)

oleObject35.bin

image326.wmf
P

W

oleObject438.bin

image327.wmf
C

W

oleObject439.bin

image328.emf
00.050.10.150.20.250.30.35

-20

-10

0

10

20

r

k

y

k

00.050.10.150.20.250.30.35

-0.5

0

0.5

1

1.5

r

k

 -

y

k

t = k T

s

 (sec)

image329.emf
00.050.10.150.20.250.30.35

-15

-10

-5

0

5

10

15

r

k

y

k

00.050.10.150.20.250.30.35

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

r

k

 -

y

k

t = k T

s

 (sec)

image330.emf
00.050.10.150.20.250.30.35

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t = k T

s

 (sec)

r

k

 -

y

k

Case 1

Case 2

Case 3

image36.wmf
l

l

C

l

P

W

W

W

Î

}

,

{

oleObject36.bin

image1.wmf
:

P

image37.wmf
r

v

oleObject37.bin

image38.wmf
l

l

l

N

r

,...,

2

,

1

=

oleObject38.bin

image39.wmf
)

(

r

r

v

T

oleObject39.bin

image40.wmf
,

1

)

/

exp(

1

2

)

(

÷

÷

ø

ö

ç

ç

è

æ

-

-

+

×

=

q

v

v

T

r

r

r

l

oleObject40.bin

oleObject41.bin

image41.wmf
L

l

¹

oleObject1.bin

oleObject42.bin

image42.wmf
,

)

(

r

r

r

v

v

T

=

oleObject43.bin

image43.wmf
L

L

L

N

r

,...,

2

,

1

=

oleObject44.bin

image44.wmf
q

oleObject45.bin

image45.wmf
l

oleObject46.bin

image46.wmf
l

