Robust digital design of continuous-time nonlinear control systems using adaptive prediction and random-local-optimal NARMAX model
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Abstract
In this paper the time-delay and uncertainty of continuous-time (CT) systems are considered, and it is suggested that input and output of a discrete-time (DT) Neural Plant Model (NPM) and recursive neural controller have scaling factors which limit the value zone of measured data from a system. Adapted scaling factors cause the tuned parameters to converge to obtain a robust control performance. However, the proposed Random-Local-Optimization (RLO) design for a model/controller uses off-line initialization to obtain a near global optimal model/controller. Other important issues are the considerations of cost, greater flexibility, and highly reliable digital products for these control problems. This issue of DT control design for CT plant is more difficult than that of CT control design for CT plant, because of the need to process the modeling error between the CT plant and DT model. The input-delay, uncertainty, and sampling distortion of a CT nonlinear power system need to be solved by developing a digital model-based controller. Here, this is called the DT tracking control design of CT systems (DT-CT).
Therefore, the DT structure of the adaptive controller for the CT nonlinear power system should be designed as a kind of feed-forward-Recursive-Predictive controller (FRP). First, due to the problem of delays, a digital neural controller with feed-forward of the reference signal and a Nonlinear Auto-Regressive Moving Average eXogenous (NARMAX) neural model design is adopted to reduce this difficulty. The most important contribution is that the more reasonable and systematic two-stage control design, the CT nonlinear delayed system to be controlled is modeled using a NARMAX technique with the first-stage (off-line) method by the proposed global optimal network algorithm and second-stage (on-line) adaptive steps. Second, the dynamic response of the system is controlled by an adaptive NARMAX neural controller via a sensitivity function. A theorizing method is then proposed to replace the sensitivity calculation, which reduces the calculation of Jacobin matrices of the BP method. Finally, the feed-forward input of reference signals helps the digital neural controller to improve the control performance, and the technique works to control the CT systems precisely.
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1. Introduction
During the past decade optimal control [1, 2] has attracted great attention from both the academic and industrial communities, and there have been many successful applications. Despite this success, it has become evident that many basic and important issues [3] remain to be further addressed. Of these, stability analysis and systematic designs are among the most important issues for optimal control systems [4] and robust control theories [1, 5-8], and there has been significant research on these issues (see [4, 9, 10]). In addition, a neural controller has been suggested as an alternative approach to conventional PID control techniques [11] for complex control systems [1]. Moreover, Neural-Network (NN) based modeling has become an active research field because of its unique merits in solving complex nonlinear system identification and control problems [10]. Neural networks (NNs) or NARMAX neural networks [12] are composed of simple elements operating in parallel, inspired by biological nervous systems. A neural network can be trained to represent a particular function by adjusting the weights between elements. Due to discrete-time (DT) controllers being cheaper and more flexible than continuous-time (CT) controllers, the DT control problem for CT plant is worth studying. In modern control engineering, controllers are commonly implemented directly by the hardware or software of digital computers. However, one important issue has to be faced; that is, the new design (DT-CT design) problem effects a new type of application, and an adaptive NN-model-based design method has not yet been developed to adjust the parameters of a discrete-time (DT) adaptive neural controller such that the original continuous-time (CT) system, with time delays and uncertainties, is uniformly ultimately bounded (UUB) stable.
The study of CT control of CT time-delay systems has received considerable attention in recent years since delay is a major cause of poor performance in many important engineering systems [13-15]. Hence, the future direction of CT time-delay control systems needs to involve the DT control problem. The amount of delay has different impacts on the various approaches [15-19]. As is known, the delay control problem is an important and complex factor in the stability performance of CT nonlinear systems. In general, a delay signal happens in a signal’s long-distance or heat translation.
Based on the timer of the micro-controller or Digital Signal Process (DSP) chip, the effect of delay in neural system identification can be approximated by many tape-delay terms. This reduces the difficulty of delay identification. The DT NARMAX model is general sufficient to approximate an unknown, nonlinear, dynamical and delayed CT system by selecting an appropriate sampling time.
DT control design for DT plant [20] and CT control design for CT plant are two kinds of well-known problems. [20] has inspired consideration of the more difficult problem of DT control design for CT plant, because of the need to process the modeling error between the CT plant and DT model, except for proposing the novel adaptive control law. The modeling and controlling performance can be guaranteed by the appropriate sampler and some theories. The modeling performance of plant is important for this research. The stability of results and the robust control design are related to this precise plant model. Hence, a two-stage training scheme is needed to guarantee a well-behaved model, referred to as a predictive controller. Based on this correct model, the control parameters can be updated by the BP method. That is one contribution of this paper. Another contribution is the proposal of a theorizing method to replace the sensitivity calculation or reduce the calculation of Jacobin matrices of the BP method. That is why the adaptive prediction control method is used to improve the DT control performance of the proposed DT-CT design by tuning the parameters of the model and controller.
The feed-forward term in [20] is derived indirectly by assuming many constraints, and due to the over-fitting and local optimal problems of NN modeling, the method [20] is not suitable for on-line applications because of the need for a lengthy convergence time. Therefore, to satisfy the on-line working requirements for accurate modeling of the plant, the NARMAX plant and control models are trained by initially using off-line methods.
On the other hand, these neural techniques [21-23] have usually been demonstrated under nonlinear control due to their powerful nonlinear modeling capability [24] and adaptability. However, they must exhibit the optimal problem of falling into the local minimum easily by using the Back-Propagation (BP) or Levenberg-Marquardt BP algorithm (LMBP) [25] method. Hence, the RLO algorithm is proposed to improve this drawback. It not only guarantees the gradient decent method [26] against the local optimal solution, but also speeds up the convergence of the Particle Swarm Optimization (PSO) [31, 32].
Inspired by the DT neural controller of [20] only for a DT system, a digital neural control design for a CT system is proposed and an approximate inverse of the delayed plant dynamics is used to act as the NARMAX neural controller. The adaptive controller and NARMAX models are easier to converge than [21-23] by the proposed two-stage scheme. Moreover, the modeling error between the model and physical system is considered in the theorems by Lyapunov functions [27]. This paper concludes with a simulation example and experimental data to demonstrate these techniques.

2. System description
First, consider a general nonlinear system with delays; described as follows:
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where  shown in Fig. 1 is a controlled plant; the bounded uncertainties   create the dynamic quality of the system parameters which refer to electrical elements of the power system; the control input ;  is the time delay;  is the relational function of the state  and system output . Then,  is discretized by setting the appropriate sampling time or sampling period  (sec) of DTC-CTP design, and , where  is a positive integer, to the following DT nonlinear system :
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 ,                       (2)








where  indicates the signal sequence, the DT state vector is , and the DT control input is . The zero-order-hold control input , where  is also the index of the discrete result  of  referring to the NN model  (see Fig.1) of (1).
In this control structure in Fig. 1, the NN plant model is designed to approximate this nonlinear system Eq.(1). This NN plant model, or control model is built following the subsequent mathematical equations.












An NN plant model or control model with  layers each having  (; ) neurons is established to approximate a DT nonlinear system  Eq.(2). Superscripts are used to distinguish between these layers. Specifically, the number of the layer is appended as a superscript to the name of the variable. Thus, the weight matrix for the -th () layer is written as  and . Moreover, it is assumed that  ( ) is the net input and that all the transfer functions   of units in the NN system are described by the following function:  



   for    and ;


           for  ;



where   and   are positive parameters associated with the sigmoid function. The transfer function vector of the -th layer is defined as:


 ,





where  () is a transfer function of the -th neuron. The final outputs of the NN plant model  and control model  can then be inferred as follows: respectively:



, and

,

where  is a reference input,

 ,



the adaptive parameter or   of neural weights’ and biases’ refers to the iteration  and the proposed adaptive laws for the controller and plant models are as follows:


,   and .


Although  and  are the proposed adaptive laws of plant model and control model, respectively, where:


,  ,


but implementing  needs too many Jacobin matrices’ calculations, so the following adaptive prediction control law is used  to replace the above adaptive laws to reduce computing time, 


where  are learning rates; 

is the predictor output, where the tracking error is , and


 ,  are defined by the user.


 A composite controller, , where  is proposed in the next section.

3. Control architecture, neural-model-based controller design and control scheme
3.1 Adaptive digital neural controller design through neural plant model

In this paper an adaptive prediction control structure is proposed, as shown in Fig. 1, where the FRP controller  is designed as follows:

 ,            (3)


where , the switch index  And,

                              (4)








where ,  , ,  , ,  , as shown in Fig. 1. The feed-forward terms are reference signals , and recursive terms are control signals . The off-line training input of controller is:

,
The on-line recursive input of controller is:




 . The controller has two working phases: is the data vector of the testing phase, and is the data vector of the training phase. The tuned parameter vector of the controller is:  of (3).






The proposed on-line digital neural controller  has feed-forward terms   and recursive structure  . Hence, it uses a NARMAX neural model or inverse of the plant dynamics to aid control precision in the face of a delayed plant with uncertainties. Adapting the neural controller can suppress the uncertainty of the plant P shown in Fig. 1. Although the structure of the neural controller is chosen as (3), the neural controller has not been designed because the parameter vector  is not specified.  is the chosen tape-delay time,  is a positive integer. The idea of the inverse-model-based neural controller is proposed by the following simplified relation:



If , , then ,            (5)




where  is the adaptive NARMAX neural model of plant;  is the adaptive NARMAX neural controller;  is the desired output. According to the idea of Eq.(5), the recursive structure  can be designed with tape delays as follows:

,     (6)


where  are the amount of tape delays of , respectively.

But, due to the parameters of the recursive structure are converged much harder, the weights and biases  of this model are trained by the feed-forward structure as follows:

.       (7)





[bookmark: OLE_LINK17]The plant output is compared with the desired output to create a tracking error signal . The system errors  and  are used by the adaptation algorithm to update the parameters of  and . Next, the performance index for minimizing the tracking error is designed, as follows:

,     (8)


is a simple cost function to be minimized by the proposed algorithm. Then, the on-line BP algorithm adapts the control parameter matrix . That is, the change in control parameters  is calculated as



,      (9)

where the small positive  can be selected as a stable learning rate via the following theorems.
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,                            (10)
is satisfied, where 

;




 is the output of the optimal model, then the trajectories  converging to plant output  is a uniformly ultimately bounded (UUB) approximation on the bounded error .

3.2 Proof of Theorem 1
First, consider the following ideal Lyapunov candidate [27] for the model part,



 ,     (11)
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,



and the number of neurons of the neural model is sufficient and the appropriate sampling time  is selected to let . The next task is to train this neural model such that  is minimized,

 

.    (12)
[bookmark: OLE_LINK20]Then, the following Lyapunov candidate for the controller is designed:

,                  (13)
[bookmark: OLE_LINK25]thus the change in the Lyapunov function is obtained by:

.             (14)
Finally, the update law of the control parameters of the controller is obtained as follows:

.                   (15)

[bookmark: OLE_LINK24]This study develops some convergence theorems to select appropriate stable learning rates. First, the difference of modeling error  can be represented by



,     (16)
thus the change in the Lyapunov function is obtained by:



.
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[bookmark: OLE_LINK42]Furthermore, the following theorem for the convergence of the controller is obtained by the same procedure as the above proof.


Theorem 2: If Theorem 1 in Eq.(10) is satisfied, the function  in Eq.(15) is computed to let the following condition, 

,                         (17)
be satisfied.

Where ,  

with   , 

then the nonlinear systems (1) in Fig. 1c are UUB stable, and the tracking errors  are bounded via the controller.





Hence, the dynamic response of the system  can be controlled using , as shown in Fig. 1. This  needs the plant model  to adjust control parameters via sensitivity function  . 


The digital feedback controller includes a delay block D, as shown in Fig. 1. Here, the error  is used to estimate , and the proposed predictor of the delayed system can let us cancel some complex computations, such as

 ,





of sensitivity function   in the BP algorithm. Hence, the following theorem is proposed to update the control parameters of FRP under the assumption of providing a model which applies a lower prediction error, and a more correct . The prediction error  is bounded, due to the previous  being bounded at any time. Hence, the prediction error  will be bounded by using Theorem 1-2. Furthermore, the following theorem is obtained for the convergence of the adaptive prediction controller by the same procedure as Theorem 1.


Theorem 3: If Theorem 1 in Eq.(10) is satisfied, the predictive function  is computed to let the following condition, 

,                          (18)


be satisfied, then the nonlinear systems (1) in Fig. 1a-1b are UUB stable, and the tracking errors  are bounded via the predictive controller .



The tracking error is , and , but the parameters of adaptive control  are updated by using the predictive offset 

,



of the prediction control input , where  replaces  in the following recursive equation:






  , therefore, only  or   need to be calculated to update  or , respectively, and  are defined by the user.

3.3. Two-stage scheme

Fig. 1 shows a block-diagram of an adaptive recursive control system. The system to be controlled is labeled as the plant , which is subject to uncertainties and delays. Due to gradient-descent based training algorithms, let the model/controller converge to a local minimum in the solution space. Hence, the two-stage training algorithm is proposed, as follows. 
In the first stage, the measured data is used to train the global optimal NARMAX plant and neural controller by the training-data-shuffle method. This method shuffles the training data to avoid most of the local optimal solutions obtained by the off-line training procedure in next section. The measured data is divided into a training data and other testing data. This testing data is not used for training the NN. However, the final performance of the NN is decided by the testing data and the training data.
In the second stage, the global optimal NARMAX plant model and neural controller is adapted. The two stages are divided into the following five steps:



Step 1: First, the reference signal, , is designed. By the white noise of input  for plant, output data  is collected and a training-data-shuffle method is used to shuffle the input/output pairs’ data. These shuffled data are ready to train the NARMAX model/controller. Here, the following reasonable conditions need to be taken into account: 




, , , and ,(19)





need be satisfied, where  is the upper bound of , and  is the lower bound of . According to Eq.(19), much of the excessive control effort  can be avoided. If Eq.(19) is satisfied, then go to Step 2.

[bookmark: OLE_LINK10]Step 2: The feed-forward structure model  is trained/tested off line

(20)



via the shuffled input/output pairs’ data. After system identification  is performed, and the digital neural controller  for the CT system can be built by using this inverse NARMAX plant model  in the next step.
Step 3: In practice, according to the exchanged output/input pairs’ data from Step 2, the off-line stage to train/test the neural controller can be passed through

. (21)
      If Eq.(20) and Eq.(21) work, go to Step 4.


Step 4: Update the on-line weights and biases  of the recursive structure model :

 (22)
to approximate the CT nonlinear system by using Remark 1 and Theorem 1. Due to the adaption laws for Eq.(20) and Eq.(22), an exchange for both of them can be designed to switch into the system, as a switching in Fig. 1, when Eq.(22)’s absolute approximation error is too big. If Eq.(20) and Eq.(22) work, then go to Step 5.

Step 5: Adapt the digital neural controller for the modeling error and tracking error by using Remark 1 and Theorem 1-2. Finally, update the on-line parameters of the neural controller  

,
(23)
to minimize the tracking error, and finish the above two stages: the off-line stage and on-line stage.
To make sure of the robustness of the control system, the convergence to the global optimal solution of parameters of the model/controller has to be guaranteed. Hence, some random initial weights and biases of the model are designed by Particle Swarm Optimization (PSO) [31, 32] with the parameters of the controller first. The PSO algorithm consists of the velocity

,
and position

,











where  is the particle index;  is the iteration index;  is the velocity of  particle;  is the position of  particle; is the best position found by  particle (personal best); is the best position found by the swarm (global best, best of personal best); are the random numbers on the interval [0,1] applied to the  particle.






The PSO supplies random initial parameters, hence, it is an initial parameters’ conductor. These initial parameters are then converged locally by the LMBP method and the best solution for the initial model/controller is chosen. Finally, the global optimal solution of parameters can be found every time. Hence, this idea has been named the Random-Local-Optimization (RLO) algorithm. The RLO algorithm is a composite of the LMBP algorithm and a random initialization procedure of evaluating fitness value , where , . The total of absolute training error  is obtained by LMBP via the training data, and  is the total of absolute testing error of the model/controller output via the testing data input. In this paper, off-line RLO is used as a learning algorithm for the feed-forward structure model Eq.(20) due to the on-line tuning parameters of the recursive structure of the plant model being not converged. After the off-line training stage, in order to tune on-line the parameters of the plant model Eq.(22) recursively,  of Eq.(10) needs to be calculated as follows:

.           (24)

Similarly, in order to tune the on-line parameters of the controller Eq.(23) recursively, and of Eq.(18) needs to be calculated as follows:

,               (25)

where  .                                  (26)
Hence, the following algorithm adapts a NARMAX neural controller for a NARMAX neural model of plant.





Step 1: Back propagate through  to form  and  in Eq.(26). If update  of Eq.(26), and shift  down in Eq.(25), then go to Step 2.





Step 2: Back propagate through  to form  and  in Eq.(25). If  update of Eq.(25), and shift  down in Eq.(25), then go to Step 3.

Step 3: Compute . If update weights


, and , then go to Step 1.
To clarify this method, in [20], a robust and adaptive method was used to allow learning to occur on-line, tuning performance as the system runs. But, [20] didn’t consider the prediction, modeling error, global optimal initialization of control parameters, the problem of lengthy convergence time of on-line control, delayed terms, uncertainties in plant and DT-CT problems. Moreover, the choice method of initial parameters of the on-line controller still lacks the ability to overcome the over-fitting problem of the controller. Hence, the off-line stage is proposed for a RLO learning algorithm to choose the initial weights and biases of the on-line neural controller in the simulation example of the power plant, as shown in the following case study.

4. Cases study
First, the conventional PWM buck converter, by using AM-OTS-DS [28, 29] methodology, is modeled to the following equivalent circuit plant:




                       (27a)


In this paper the robustness of the above control system is emphasized, so uncertainty , and delay  are added to the original control system.




                   (27b)















where  ;  ;  is a DC voltage source;  ;  ; ; ; ; and  are the parasitic resistances of the inductor and capacitor, respectively. The element  is the static drain to source resistance of the power MOSFET and  is the forward voltage of the power diode.  is the duty ratio of conventional PWM buck converter.  is the state of the system, and the output of this power system is .


The nonlinear, uncertain, hotter circuit’s components, time-delay, and digital control problems of PWM buck converter CT system renders a tracking control problem difficult to analyze. A simulation system in Eq.(27) is built with uncertainty. In this study, it is assumed that the parameters of the circuit’s components are not ideal, and the capacity of the digital controller is limited by using a lower-cost chip. Here, the sampling period  is designed for this power system Eq.(27b). Hence, the delay  is very large for this system.
Referring to Fig. 1, and the above sections, it can be seen how to model the plant dynamics by considering the modeling error, and how to use the neural model of plant to adapt a neural controller. To compare with other methods, the following cases are introduced:
Case 1: This case is in [29], and its digital controller is a kind of T-S fuzzy controller with integral term.
Case 2: This case is in [31], and its controller is a kind of PID, with PSO to compare with Case 3.
Case 3: This is the control method presented here, and the proposed neural-model-based neural controller is adaptive and globally optimal.
The detail designs of the Case 1−Case 3 are as follows:
Case 1 is a LMI control method of original example for this power plant. The control parameters of Case 1 are as follows:


, , and this T-S fuzzy controller of Case 1 is designed as:

.
Case 2 is an optimal control method. This PID controller is designed as:

.

And, the parameters  of PSO of Case 2.
Case 3 is also an optimal control method, but its NARMAX neural control design method is very different from PSO of Case 2. The predictive controller of Case 3 is


, where .






First, the initial state is set to , and the reference signal . Case 3 uses NN structure 5-8-1 of the NARMAX plant model, it has 5 inputs, , 8 tansig(·) neurons in the hidden layer, 1 purelin(·) neuron in the output  layer. Also, Case 3 uses NN structure 5-8-1 of the NARMAX controller, it has 5 inputs, , 6 tansig(·) neurons in the hidden layer, and 1 purelin(·) neuron in the output  layer.







The weights and biases, , are trained as follows by selecting two suitable scaling factors  and  of the plant model, whose summation  of  is updated as shown in Fig. 2a. The summation   of the neural control parameters  is updated as shown in Fig.2a. The tracking control performance of Case 3 is shown in Fig.2b. 

The optimal parameters  of the PID controller of Case 2 are obtained by using PSO. The tracking control performance of Case 2 is shown in Fig.3. The tracking control performance of Case 1 is shown in Fig.4.
Finally, the control performances of Case 1−Case 3 are compared, as shown in Fig. 5.
Fig. 2 shows the precise neural control performance of Case 3. Fig. 3 shows the digital PID with PSO control performance of Case 2. Fig. 4 shows the LMI control performance of Case 1.
It is clear that the proposed two-stage scheme, Case 3, has excellent tracking performance when compared with Case 1 and Case 2.

Conclusions
The proposed two-stage adaptive prediction control converges very quickly, works highly effectively, and precisely. It works for nonlinear delayed plants with uncertainty. The recursive and feed-forward control scheme is partitioned into two stages that can be independently optimized. First, an off-line neural model of a continuous-time (CT) nonlinear power plant is made; second, a constrained off-line digital neural controller is generated; then, an adaptive plant model is made, and an adaptive NARMAX neural controller with predictor is generated; finally, all processes may continue concurrently, and robustness and DT-CT problems for a power plant are solved.
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Figure 1. (a) The proposed two-stage adaptive prediction structure of DT-CT control system. (b) On-line adaptive prediction block diagram for Theorem 1 and Theorem 3. (c) On-line adaptive block diagram for Theorem 1 and Theorem 2.
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Figure 2. (a) The learning curve of the summation of , the learning curve of the summation of , and (b) the tracking control performance of Case 3. 
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Figure 3. The tracking control performance of Case 2.
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Figure 4. The LMI control performance of Case 1.
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Figure 5. Comparison of the control performances for Case 1 to Case 3.
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