Synthesis and Evaluation of in Vitro Bioactivity for Polysubstituted N-Arylpyrazole Derivatives

Po-Lin Liu(劉柏麟)^a, Li-Ya Wang(王麗雅)^b, En-Chiuan Chang(張恩銓)^c, Mou-Yung Yeh(葉茂榮)^c, Shin-Hun Juang(莊聲宏)^{*,a}, Fung Fuh Wong (翁豐富)^{*,a}

^a Graduate Institute of Pharmaceutical Chemistry, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, Taiwan 40402, R.O.C.

^b The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University, No. 91, Hsueh-Shih Rd., Taichung, Taiwan 40402, R.O.C.

*Corresponding author. Tel.: +886 4 2205 3366 ext. 5603; Fax: +886 4 2207 8083.

E-mail address: wongfungfuh@yahoo.com.tw, ffwong@mail.cmu.edu.tw (F. F. Wong).

Key words: Thiophene, Benzothiophene, Phenylpyrazole, Bioactivity Study

polysubstituted N-arylpyrazole derivatives were synthesized from N1-arylsydnone with acetylene and boronic acid, including 2-thiophenyl, 3-thiophenyl, 2-benzo[b]thiophenyl, dibenzothiophenyl-4-boronic or acid, cycloaddition and Suzuki coupling reaction. Based on the growth inhibitory activity results against lung carcinoma (NCI-H226), nasopharyngeal (NPC-TW01), and T-cell leukemia (Jurkat) cancer cells, compounds 5d and 7d possessed the significant inhibitory activity for NPC-TW01 (32 μM and 16 μM) and NCI-H226 (16 μM and 8.9 μM), respectively.