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Abstract—This study establishes wireless sensor network (WSN) 
inertial sensor nodes that comprise micro control unit, ZigBee-
compatible radio frequency chip, tri-axial accelerometer, biaxial 
gyroscope, and planar inverse F type antenna on the four-layer 
printable circuit board by 40mm x 37mm x 2mm. The sensor is 
wearable for measuring inertia motion nodes of human body 
because of TinyOS-embedded codes for signal transportation 
between both inertial and receiver nodes. At the backend server, 
a Matlab-based program is developed for retrieving and parsing 
packets via serial ports to recognize motion data based on the 
artificial neural network (ANN) algorithm. Therefore, six 
rehabilitation exercises for frozen shoulder illness can be 
measured by wearing two nodes on the wrist and the arm. 
Acceleration components in three axes can be formed as vectors 
in which additional included angle sets can be derived for 
necessary motor features of recognition algorithm. As results, 
five of six exercises are successfully recognized with 85-90% of 
accuracy rates but the complex one (i.e. the spiral rotation 
exercise) reached only around 60%. The pilot study approves 
good feasibility of self-developed WSN inertial sensor nodes to 
recognize rehabilitation exercises as well as contribute advanced 
applications for mobile or ubiquitous health care in the future. 

Keywords—WSN, inertial sensor node, frozen shoulder, ANN, 
rehabilitation activity, mobile or ubiquitous health care 

I.  INTRODUCTION 
Rapid technical advances in integrated circuits (IC), micro-

electro-mechanical systems (MEMS), radio frequency (RF), 
and wireless sensor networks (WSNs) [1] are enabling 
equipments with long durability, low power, and mobile 
capacities to detect various physiological signals of patients for 

ubiquitously communicating health care information with 
clinical data of hospital [2]. The mobile or ubiquitous health 
care (m-health or UHC) typically requires routine monitoring 
on human body for obtaining biomedical data, particularly non-
invasive measurement by using electrocardiography (ECG), 
sphygmomanometer, pulse oximeter, glucose meter, physical 
rehabilitation facilities and so on [3][4]. However, self 
rehabilitation at home usually decreases expectable effects with 
respect to that in hospital because physiotherapists cannot give 
instantaneous advices for adjusting incorrect movements. Thus, 
the equipments with implementation in remote monitoring on 
self rehabilitation, besides of privacy concern, can assist the 
physiotherapist realize and analyze patient’s activities as well 
as respond necessary comments beyond the therapy design. In 
this study, we establish the inertial sensor [5] that is compatible 
with ZigBee protocol to detect accelerations and angular 
velocities of human body motion in three directions while 
making up-limb activities required by frozen shoulder 
rehabilitation. The algorithm based on artificial neural network 
(ANN) is further proposed in activity data recognition to 
generate patterns for other rehabilitation programs. In this 
paper, the configuration of WSN inertial sensor node is 
described in next section follower by ANN methodology for 
recognizing the specific rehabilitation motions of frozen 
shoulder. Finally, results of practice will be discussed while 
several important conclusions will be highlighted. 

II. DEVELOPMENT OF WSN INERTIA SENSOR NODE 
The proposed WSN inertial sensor node consists of micro 

control unit (MCU), radio frequency (RF) chip, printable 
inverse F type antenna, and MEMS-based analog devices (AD) 
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including tri-axial accelerometer, bi-axial and uni-axial 
gyroscope, low dropout voltage (LDO) chips. The 
configuration of design on the four-layer printable circuit board 
(PCB) is shown in Fig.1, in which the dimension of node is 
40mm × 37mm × 2mm excluding a rechargeable battery 
(approximate in 4mm thickness). As the initial status in 
practice, the acceleration and angular velocity are both directed 
in negative x-axis. There are eleven channels counted in 
wireless communication bands ranged from 2.4GHz to 
2.48GHz. The antenna is modulated by resistance due to 
ground element for reducing the reflection loss less than 10dB. 
The sensor can be simply fixed on the body by glue tape. As 
measurement, this design requests the upward antenna and 
pads the battery on skin for enough distance as wearing the 
device because interaction between wave and human body will 
reduce antenna efficiency. The practical test shows that 
wireless transmission loss of WSN packets can be apparently 
eliminated. 

The firmware is programmed by nesC and is installed in the 
TinyOS-embedded device [6]. The measured data of 
accelerometer and gyroscope are packed by analog to digital 
conversion (ADC), thus the RF chip can deliver the packets to 
the receiver. Herein, the original sensor data are randomly 
distributed by the number of times for 128 ADC counts per 
1/1024 seconds. Thus a histogram of probability density 
function (PDF) versus ADC count performs Gaussian 
distribution and the mean value can be determined as expected 
acceleration (ax, ay, az) or angular velocity (ωx, ωy, ωz) for data 
conversion. Fig.2 shows the format of packet such as the 
header and footer of physics, MAC layer as well as the 
application payload which includes required kinetic parameters 
(i.e. (ax, ay, az) and (ωx, ωy, ωz)) and other information (e.g. 
temperature, voltage, time, etc.). In the practice, prior to 
sending the data to the receiver through the specified serial port, 
the base node (BN) receives 8 packets per second and parses 
data based on the payload. Additionally, the program will 
retrieve necessary data by dropping out headers, footers, and 
invalid 16-bit CRC or incomplete format. Finally, the MatlabTM 
toolbox at server side can obtain pure motion data for 
recognition. 

III. RECOGNITION FOR REHABILITATION EXERCISES 
A frozen shoulder is medically referred to as adhesive 

capsulitis which causes a shoulder joint with significant 
limitation of its range of motion in all directions. The patients 
are usually assigned by repeating rehabilitation activities due to 
physical therapy and therapeutic medicine. According to the 
therapy, common frozen shoulder release exercises for 
rehabilitation was adopted in this study as below: (Ex.1) 
Scapula exercise – make shoulder flexion with elbow extension 
by arm up and down, (Ex.2) Codman's pendulum exercise – 
hang the arm straight forward with the shoulder blade relaxed 
and swing the arm in small circles with 15-30 degrees from 
vertical, (Ex.3) Finger wall-climbing exercise – walk fingers up 
the wall by climbing as high as possible, (Ex.4) Spiral rotation 
exercise – rotate hands in supination from front to rear, (Ex.5) 
Back shoulder circling exercise – rotate arms on the back 
clockwise or counterclockwise, and (Ex.6) Towel exercise – 
enhance the range of motion for shoulder internal rotation [7]. 

It is available for the proposed wearable sensors to collect data 
for recognizing acceleration and angular velocity of the 
specific motor part because the patient should repeat the same 
activity periodically. As measuring the data, the user can wear 
the WSN nodes approximately on the upper arm and the wrist, 
say node 1 and 2, respectively. As shown in Fig.3, it is 
suggested to fix the node 1 on the outside of the upper arm 
with 4-finger width above the elbow joint, and fix the node 2 
on the inside of the lower arm with 4-finger width above the 
wrist. The nodes can hence return packets which involve 
measured data of limb motions and the data are counted in 
voltage values. With ADC calculation, the components of 
acceleration and angular velocity in 3 axes can be easily carried 
out. 

The observed signal shapes of six rehabilitation exercises 
can be categorized into eight sub portions as shown in Fig. 
4(a)-(h) for requirement of recognition: (a) Node 1 for Ex.1 
performs acceleration of two axes by separated curves in large 
vibration while the rest one is in slight vibration but overlapped 
with other large one; (b) Node 2 for Ex.1 performs acceleration 
of two axes by overlapped curves in large vibration while the 
rest one is in small vibration; (c) Node 2 for Ex.3 performs 
acceleration of three axes by pair-overlapped curves; (d) Node 
2 for Ex.2 performs an acceleration curve in small vibration 
with respect to other two overlapped curves; (e) Node 2 for 
Ex.5 performs acceleration curves in small vibration with 
respect to that for Ex.2; (f) Node 2 for Ex.4 perform 
acceleration curves in strong vibration (i.e. variation in steep 
slope); (g) Node 1 for Ex.6 performs acceleration curves with 
small vibration (i.e. the upper arms move steadily); (h) Node 2 
for Ex.6 performs independent acceleration curves in stepwise-
shape vibration. The characteristics above, particular the data 
by node 2, can help finding features required by the proposed 
recognition algorithm. 

The back propagation neural network (BPNN) algorithm [8] 
is implemented for recognition on the assigned rehabilitation 
exercises. The BPNN involves three layers: an input layer for n 
input features, a hidden layer adopted from the input layer for l 
neurons, and an output layer for m output data. In which, by 
using MatlabTM toolbox, a log sigmoid function is adopted as a 
transfer function inside the hidden layer to restrict the output 
range between 0 and 1 while a linear function is selected for 
the output layer to obtain recognized movements. For the input 
layer, we use the data measured per 25 seconds as a data group 
and each data set has overlapped groups. For example, 1) the 
first data set contains the data measured in the initial 25 
seconds; 2) the second data set consists of the last 1/4 data of 
the first set and the first 3/4 data of the next group; 3) the third 
data set is made of the last half of the first group and the first 
half of the second group; 4) the fourth data set has the last 1/4 
data of the first group and the first 3/4 data of the second group; 
then, a cycle is complete for the first two groups and the same 
cycle is propagated to the second and third groups, and so on. 
In addition, included angles derived by (ax, ay, az) vectors at 
each moment and initial time are given to input data. Therefore, 
we use 800 entries for the input layer (i.e. 25×8×(3+1)=800, 
n=800), 5 neurons for the hidden layer (l=5), and 1 neuron for 
the output layer (m=1). 



Furthermore, we consider a cross validation method for 
necessary training procedure to solve the problem in over 
fitting. All entries for the training procedure are classified by 
training data set, validation data set, and testing data set. In the 
beginning of flow chart, the training data set is employed to 
construct the primary network for training; then, the validation 
data set is inducted to evaluate mean square errors (MSEs) of 
the network to avoid over fitting. If the MSE of the training 
data is decreasing but that of validation data is increasing, then 
the over fitting condition occurs and the training procedure will 
be stopped. For this condition, the training data set must be 
reorganized to repeat the learning procedure. Finally, once the 
proper weight is learned, the testing data set is substituted to 
calculate MSE of data set and perform the tolerance of network 
corresponding to the new data. The given weigh is the ANN 
weight to achieve the prospective scope of training procedure 
and will become the weight value for recognition. 

IV. RESULTS AND DISCUSSION 
In this study, we setup the training procedure to begin with 

learning for the successful rate of recognition with respect to 
the input data set and the performance goal (PG). As 
mentioned in previous section, we have four features (i.e. 
accelerations in three axes and the included angle of continuous 
acceleration vectors, (ax, ay, az, θ)) which involve 200 data for 
each feature so that 800 data are counted for a data set. Each 
motion of the exercises contains 18, 36, and 72 data sets for 
input in series, thus the total number of recognition data for 
each motion is more than 150. 

Theoretically, the smaller PG value performs a stable rate 
of recognition but longer convergence time is required, even 
the prospective scope of training procedure could not be 
perfectly reached. For example as shown in Fig.4, the Ex.2 
displays an easily recognizable curve group (i.e. the features 
are quite different) which presents 96% of recognition rate for 
18 input data sets versus PG<5×10-6, and 98% for both 36 and 
72 input data sets versus PG<1×10-5. However, the training 
procedure probably is not perfectly completed while the PG is 
setup to 5×10-7 for both 36 and 72 input data sets. It implies 
that few training data require small PG for good recognition 
rate. We hence consider three continuous PGs for training to 
reach the stable recognition rate that the convergent tolerance is 
less than 5%. Table I lists the relationship of PGs of six 
exercises and number of input data. It is observed that 
recognition for Ex.2, 3, and 5 can reach a stable rate due to 3 
kinds of input data sets; thus that for Ex.1, 4, and 6 requires 72 
input data sets to obtain the similar approach. According to the 
practice above, we suggest 72 input data sets (i.e. 72×800 data) 
with condition of PG<1×10-5 for training the network to 
recognized the assigned six exercises. 

In this study, the proposed BPNN algorithm can recognize 
the rehabilitation exercises by approximate 95% and 85% of 
successful rates for Ex.1, 2, 4, and 5, 6, respectively. However, 
the recognition rate of Ex.3 is only around 60% for different 
number of input data sets (i.e., 18, 36, and 72) though the PG 
value (1×10-5) can satisfy the stable condition by using 72 input 
data sets for training. Obviously, the adopted four features do 
not provide enough information for training network to 
recognize the complicated spiral rotation exercise that contains 

a full range of spiral rotation of joints of hands, wrists, elbows, 
and shoulders with more angle variations relative to other five 
exercises. This exercise hence requests more features for better 
training and recognition. For instance, the frequency of angle 
variation can be engaged into the feature set, i.e. (ax, ay, az, θ, f); 
or, the angular velocity in three axes can also be candidate 
features of rotating motions. 

V. CONCLUSION REMARKS 
This pilot study implements the self-developed WSN-based 

inertial sensor nodes to measure and recognize six 
rehabilitation exercises for the frozen shoulder therapy. The 
study applies the algorithm of artificial neural network for 
analyzing WSN data and finding proper features to progress 
the training procedure. The results perform good recognition 
rates above 85% up to 95% for the proposed exercises except 
of the spiral rotation exercise which involve complicated 
motions with full range of spiral rotation of joints. More 
features, such as frequency of angle variation and components 
of angular velocity, are suggested to be considered as the input 
data for the ANN training in the future. Furthermore, the 
number of neurons for the hidden layer can be adjusted for 
application of instantaneous activity recognition. 

TABLE I.  PERFORMANCE GOAL (PG) OF EACH EXERCISE TO STABLE 
RECOGNITION RATE FOR DIFFERENT NUMBER OF INPUT DATA SETS 

Ex. No. 
Number of Input Data Sets 

18 36 72 

Ex.1-PG N/Aa N/A 5 × 10-4 

Ex.2-PG 5 × 10-6 1 × 10-5 1 × 10-5 

Ex.3-PG 5 × 10-7 1 × 10-6 5 × 10-4 

Ex.4-PG N/A N/A 1 × 10-5 

Ex.5-PG 1 × 10-6 5 × 10-5 1 × 10-4 

Ex.6-PG N/A N/A 5 × 10-4 

a. Not available to completely reach stable recognition rate 

 

Figure 1.   Configuration of WSN inertial sensor node components 

Figure 2.  Payload format of a WSN packet for inertial sensor node 

 



 

Figure 3.  Portions of the arm for wearing inertial sensor node: (a) node 1 at 
upper arm, (b) node 2 at wrist 

 

 

Figure 4.  Variation of acceleration signals measured by inertial sensor nodes 
for different exercises: (a) node 1 for Ex.1, (b) node 2 for Ex.1, (c) node 2 for 
Ex.3, (d) node 2 for Ex.2, (e) node 2 for Ex.5, (f) node 2 for Ex.4, (g) node 1 

for Ex.6, (f) node 2 for Ex.6. 

 

Figure 5.  Recognition rate of Ex.2 due to different kinds of input data sets: 
blue (left) bar: 18 sets, green (middle) bar: 36 sets, red (right) bar: 72 sets 

 

Figure 6.  Recognition rates of Ex.4 due to different kinds of input data sets –
blue (left) bar: 18 sets, green (middle) bar: 36 sets, red (right) bar: 72 sets. 
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