

Definition ■ High risk group: □T category T3a (or T2c) □PSA > 20 ng/mL □Gleason score 8 ■ Locally advanced disease □Clinical T category as T3 or T4.

Characters of Nuclear Medicine Study

- To find clinically metastatic disease (M1 or N1)
- To differentiate the suspicious metastatic disease in other imaging studies.

Autopoly study of 1,500 patients with prostate cancer (1,500 adenocarcinoma):

-Lymphatic or hematoperacus metaslasses: 831 (937% of all) patients.

-Lymphatic or hematoperacus metaslasses: 835 patients.

-Elymatoperacus metaslasses: 850 patients.

-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

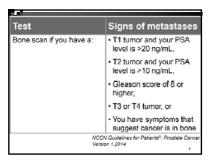
-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

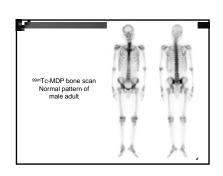
-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

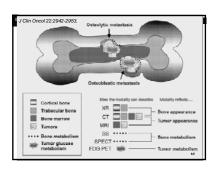
-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

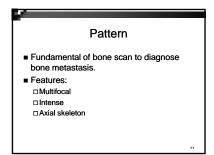
-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

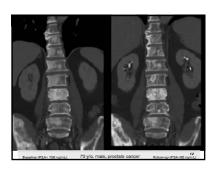

-Bore metaslasses: 951 (90.1 % of all hematogeracus metaslasses) patients.

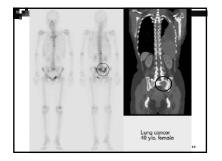

-Bore metaslasses: 951 (90.1 % of all hematogerac

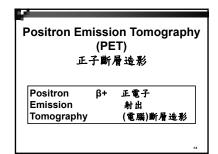
Bone Scan (Skeletal Scintigraphy)

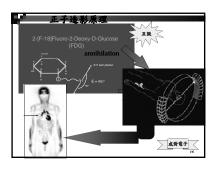

- Radio-labeled compound
 □ 99mTc-labled diphosphonate (MDP, HEDP, HMDP)
 - □ ¹⁸F-Sodium fluoride (NaF)
- High affinity to mineralized bone matrix

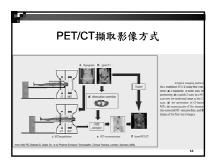

^{99m}Tc-MDP Bone Scan






Bone Scan ■ Increasing uptake ≈ increasing bone turnover □ bone metastasis □ osteosclerotic change □ osteolytic change





氟-18氟化鈉正子造影 健保支付項目

- 限病患需施行全身骨骼掃描時,**無法取得** Tc-99m時申報。
- ■不得同時申報26029B(全身骨骼掃描 Whole body bone scan) .
- ■申報費用應檢附報告。

CMS Reimbursement of ¹⁸F-NaF PET Bone Scan

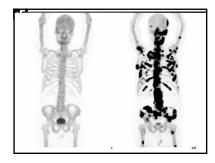
- (After February 26, 2010)

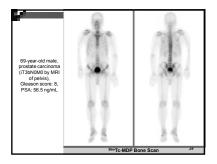
 Under the Coverage with Evidence Development Program (CED)
- Participating in the approved clinical trial to
 - □Change in patient management to more appropriate palliative or curative care?

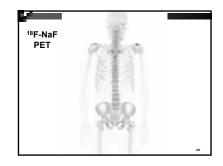
 □ Improved quality of life?

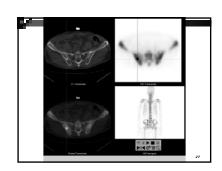
 - □Improved survival?

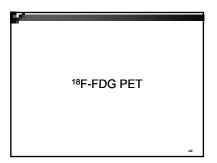
Hillner BE, et al. Impact of ¹⁸F-Fluoride PET in Patients with Known Prostate Cancer: Initial Results from the National Oncologic PET Registry. J Nool Med. 2014; 55: 1-8.

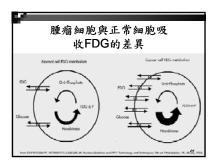

■ Analysis cohort: 3,531 scans in 3,396 patients (from 2011-02 to 2012-12). □NOPR (NaF PET) opened on 2011-02-07. □Enrolled 25,436 patients (more than 60% with prostate cancer) up to 2013-11-25 (still enrolling).

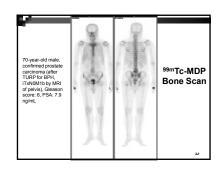

Hillow BE, et al. Impact of ¹⁸F-Fluoride PET in Patients with Known Prostate Cancer: Initial Results from the National Oncologic PET Registry. John Mad 2014 55 14

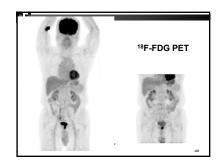

■ Overall change in intended management ranged from 44% to 52%, and from 12% to 16% if no effect was assumed for those cases with pre-PET plans for other imaging (imaging-adjusted impact).

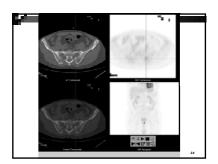

Hillings BE, et al. Impact of ¹⁸F-Fluoride PET in Patients with Known Prostate Cancer: Initial Results from the National Oncologic PET Registry. Janual Made. 2014, 55 1 &

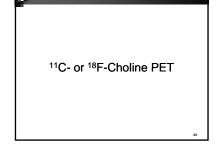

- NaF PET has high overall impact, principally related to its **effect on** replacing intended use of other advanced imaging.
- Its imaging-adjusted impact was similar to that observed with ¹⁸F-FDG PET for restaging or suspected recurrence in other cancer types.











FDA Approval of ¹¹C-Choline for PET in Prostate Cancer

■ In Sep. 2012, the U.S. FDA approved the manufacture and use (Mayo Clinic PET Radiochemistry Facility, Rochester, Minnesota) of ¹¹C-choline in patients with suspected prostate cancer recurrence and noninformative bone scintigraphy, CT, or MR imaging after review of 4 studies (a total of 98 patients).

FDA Approval

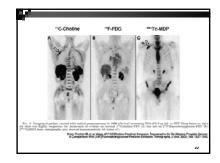
- In each of the studies, at least half the patients with positive PET scans also had recurrent prostate cancer confirmed by histopathologic analysis.
- However, false-positive PET scans were observed in 15%–47% of patients in these studies.

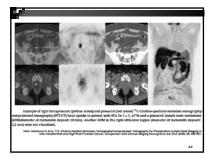
¹¹C-Choline

- Poor performance (both false positive and negative results): PSA < 2 ng/mL
 - □ False positive: inflammation, prostatic hyperplasia.
- Colchicine or androgen-deprivation therapeutic drugs: possibly interfere with ¹¹C-choline PET imaging.

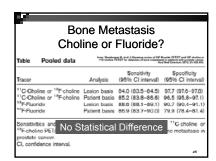
¹¹C-Choline

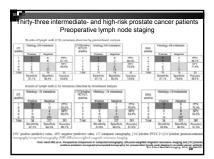
- Physical half life of ¹¹C: 20.4 minutes.


 □Mayo Clinic PET Radiochemistry Facility is, until now, the first and only site permitted to manufacture ¹¹C-choline by FDA.
- Urinary excretion of ¹¹C-choline: < 2% at 1.5 hours post-injection.


39


¹¹C-Choline


- Safety
- □ Effective radiation absorbed dose: 3.22 mSv/20 mCi of ¹¹C-Choline.
- □Adverse reaction: only an uncommon, mild injection site reaction has been reported.



Current Utility of 11C-Choline

- Initial staging: conflicting results in detecting primary tumor and regional lymph node metastases compared to conventional imaging studies.
- Restaging/detection of recurrence.

Tracer	Authors	Yes	N	PKA median (range) (rg/mL)	San (%)	Spx (%)	AW (%)	Muskiny
'oes	Females et [7]	2003	36	12343-79	00	81	71	PETET
	Yamagsuhi et al. [8]	2005	20	25.1 (13.59.9)	100			PET
					50			MBI (T2WI):
					65	-	-	MRS
	Markovana et al. [10]	2006	43	80 (2.5-20)	Mh	34	-	PETET
					61	97	-	TRUS
	Roke et al. [10]	2006	36	14.4 (28-64.3)	81	87	84	PETCT
	Schor et al. [11]	2007	58	33/0 (24-2660)	87	67	-	PET (25) and PETICE (3)
	Testa et al. (12)	2007	26	13.9 (2.5-70)	55	96	67	PETCT
					54	75	61	MRI (T2WI)
					81	67	26	MBS
	Corracchim et al. [13]	2008	79	11.9 (92-33)	72	49	60	PETCT
	Watershoot al. [11]	2010	43	6.7 (2.5-335.3)	73	59	67	PET
					31	55	53	"T-I'DG PUT
					86	55	86	MBI (T2WE+ DCEI)
	Yan ske Bergle et al. [17]	2011	49	10(0 (1.5-70.3)	77	45	-	PETICT
					34	55	70	MNI (T2WI)
T-PClar	Kwee et al. (218)	2005	17	7.4 (1.5-222.0)	93	48	-	PET
	Hourit et al. [21]	2000	43	11.6 (96-952)	79	-	-	PETCT
	Kure et al. (22)	2005	15	51 (55-158)	54	90	72	PET
	Igos; et al. [23]	2008	20	14.1 (3.8-70.8)	100	47	-	PETICT
sommer i	e, FCho fluorocholine, N nu maging, T78F 17-unighted i , InCEI dynamic commo-mis	maging, I	MES II					

Take-Home Message

- 此時此地,若要使用核子醫學掃描偵測攝護瞭癌的轉移病灶:
 □SMTC-labled diphosphonate bone scan énsensitivity夠好,specificity不足。
 □SF-NaF PET/CT bone scan énsensitivity非常好,但specificity仍不足,且全民健康保險實質上不給付。
 □SF-FDG PET/CT fonsensitivity不好,specificity相對較好,也許可以意能測疑似攝護瞭癌復發的第二線輔助檢查,但全民健康保下給付。
 □STC- or 18F-choline PET/CT尚未許可合法使用於例行檢查。

6