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RC-6 ribonuclease induces caspases activation, cellular senescence and neuron-like morphology in NT2 embryonal carcinoma cells
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Abstract: Frog ribonucleases having anticancer activities have been demonstrated. However, whether the RC-6 ribonuclease can exert an anticancer activity on human embryonal carcinoma cells is unclear. Today, RC-6-induced cytotoxicity on NT2 cells (a human embryonal carcinoma cells) and our studies show that RC-6 can exert an anticancer effect and induce caspase-9 and caspase-3 activities. Moreover, up to now, there is no evidence that frog ribonuclase-induced cytotoxicity effects are related to cellular senescence. Therefore, our studies show that RC-6 can increase p16 and p21 protein levels and induce cellular senescence on NT2 cells. To our surprising, like retinoic acid-differentiated NT2 cells, neuron-like morphology has been found on some remaining live cells after RC-6 treatment. In conclusion, our studies firstly demonstrate that RC-6 can induce cytotoxic effect, caspase-9/-3 activities, cellular senescence and neuron-like morphology on NT2 cells.
Introduction

Human NTERA 2 D1 cells (NT2 cells) belong to embryonal carcinoma cells having cancer cells and stem cells features 
 ADDIN EN.CITE 
(1-4)
. Therefore, NT2 cells are common used as cell models for cancer therapy and neuron differentiation researches 
 ADDIN EN.CITE 
(5-7)
. Currently, ciplatin, fisetin and nucleoside drugs are applied to NT2 cells treatment. These drugs can activate MAPK and caspase-dependent pathway resulting in NT2 cells death 
 ADDIN EN.CITE 
(8, 9)
. On the other hand, NT2 cells can be induced to differentiate into neuron cells by treated with differentiation agents including retinoic acid, araC, DAC, valproic acid and berberine
 ADDIN EN.CITE 
(7, 8, 10, 11)
. Among these differentiation agents, retinoic acid is usually used for neuron differentiation studies 
 ADDIN EN.CITE 
(3, 6, 12)
. Previous studies have demonstrated that retinoic acid can induce NT2 cells to give rise to cell aggregation, neuron-like morphology and to express neuronal markers
 ADDIN EN.CITE 
(13-15)
. Although the mechanisms of retinoic acid-induced neuron differentiation on NT2 cells are still remained to study, retinoic acid induced NT2 cells to differentiate into neural cells via Wnt, Nitric oxide and cGMP signal pathways have been reported 
 ADDIN EN.CITE 
(16, 17)
.
Many ribonuclases having anticancer activities have been demonstrated 
 ADDIN EN.CITE 
(18-21)
. RC-RNase and onconase are frog ribonuclases purified from Rana catesbeiana and Rana pipiens respectively. Both of them belong to RNase A superfamily 
 ADDIN EN.CITE 
(22-25)
. RC-RNase and onconase exert cytotoxic effects on various cancer cells such as hepatoma, cervical cancer, breast cancer, leukemia, mesothelioma, lung cancer, lymphoma, myeloma and prostate carcinoma 
 ADDIN EN.CITE 
(21, 26-31)
. Though the mechanisms of frog ribonuclease-exerted cytotoxicity are remained to study, it is worth noticed that onconase has been used for an anticancer drug on clinical trails 
 ADDIN EN.CITE 
(32-35)
. Previous studies indicated that RC-RNase and onconase exert different cytotoxic effects on different cancer cell types
 ADDIN EN.CITE 
(28, 30, 31, 36-41)
. In addition, many studies suggested that RC-RNase- and onconase-induced cell cytotoxicity may be related to caspase cascade and MAPK signal pathway 
 ADDIN EN.CITE 
(36, 38, 42-44)
. Like RC-RNase, RC-6 (Rana catesbeiana ribonuclease-6) is also frog ribonuclease derived from Rana catesbeiana
 ADDIN EN.CITE 
(29, 45)
. Previous many papers have demonstrated that onconase and RC-RNase can induce cell death on various cancer cells 
 ADDIN EN.CITE 
(21, 26-31)
. However, only few studies showed that RC-6 inhibited cell growth on cervical cancer and hepatoma cells
 ADDIN EN.CITE 
(29, 45)
. Therefore, whether RC-6 can exert anticancer activities on various cancer cell types and the mechanisms of RC-6-induced cytotoxic effects on cancer cells are still unclear. In addition, up to now, there are no studies to demonstrate whether frog ribonucleases (RC-RNase, onconase, RC-6) can inhibit cell growth on embryonal carcinoma cells.
Here, RC-6-induced anticancer activity effect on NT2 cells was investigated. Our study demonstrated that RC-6 can inhibit cell growth and induce caspase-9/-3 cascade activation on NT2 cells. On the other hand, there were some remaining live NT2 cells after RC-6 treatment. Interestingly, these remaining live cells displayed cell aggregation and neuron-like morphology similar to retinoic acid-differentiated NT2 cells. However, compared RC-6 treated-NT2 cells with retinoic acid-treated NT2 cells, neuron marker can be found on retinoic acid-treated NT2 cells but neuron marker was not found on RC-6-treated NT2 cells. In addition, senescence characteristic marks can be observed on a small fraction of NT2 cells after RC-6 treatment. Taken together, our studies firstly indicated that RC-6 can induce caspase-9/-3 activities and senescence characteristic on NT2 cells as well as induce cell aggregation, neuron-like morphology on the remaining live cells.
Materials and methods
Materials. RC-6 was provided kindly from Dr Jaang-Jiun Wang (Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, USA). p16 and Tau antibodies were purchased from BD Biosciences (San Jose, CA). p21 and p27 antibodies were brought from Santa Cruz Biotechnology (Santa Cruz, CA). Horseradish peroxidase-conjugated secondary antibodies were brought from Sigma (Sigma-Aldrich, St Louis, MO, USA). FITC-conjugated secondary antibody was obtained from Jackson Immunoresearch (West Grove, PA). Ac-LEHD-pNA (acetyl-Leu-Glu-His-Asp-p-nitroanilide: caspse-9 substrate), Ac-DEVD-pNA (Acetyl-Asp-Glu-Val-Asp-p-nitroanilide: caspase-3 like substrate), and Ac-IETD-pNA (acetyl-Ile-Glu-Thr-Asp-p-nitroanilide: caspase-8 substrate) were purchased from Anaspec (San Jose, CA). Fetal bovine serum, DMEM, non-essential amino acid, L-glutamine, and penicillin/streptomycin were purchased from GIBCO BRL.

Cell lines and cell cultures. NT2 cell line was obtained from from Bioresources Collection and Research Center (BCRC, Hsin Chu, Taiwan). NT2 cells were cultured in a DMEM medium supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100 IU/ml penicillin/streptomycin, and 0.1 mM non-essential amino acids and maintained at 37°C in a humidified atmosphere containing 5% CO2.

Cell viability assay. Cell viability assay was executed as previous descriptions 31


( ADDIN EN.CITE , 44)
. In brief, Cells were grown on 6-well cell culture plates overnight. After 24 hours, cells were treated with 50 ug/ml RC-6 (experimental group) or without RC-6 (control group). Every 24 hour, cells were collected and stained with trypan blue, as well as counted on a hemocytometer.

Caspase substrate cleavage assay. Caspase activities were determined by using caspase substrate cleavage assay 31


( ADDIN EN.CITE , 44)
 .  Briefly, cells were lysed with lysis buffer (50 mM Tris-HCl, 120 mM NaCl, 1 mM EDTA, 1% NP-40, pH 7.5) then treated with protease inhibitors. After that cell pellets were cleaned through centrifugation (15,000×g, 4(C, 30 min). Caspase-3, -8, and -9 activities were determined. The working solutions were prepared involving experimetal sample (80 μg total protein), 158 μl reaction buffer (20% glycerol, 0.5 mM EDTA, 5 mM dithiothreitol, 100 mM HEPES, pH 7.5), and 2 μl fluorogenic substrate (Ac-LEHD-pNA, Ac-DEVD-pNA, or Ac-IETD-pNA). Then the working solutions were incubated for 8 hours at 37(C. The fluorogenic substrate could be determined at 405 nm in an ultra-microplate reader (Bio-Tek instruments). Fold increase in caspase activity was calculated as following formula: (A405sample ( A405control) / A405control.

Senescence-associated β-galactosidase (SA-β-Gal) assay. Senescence-associated β-galactosidase (SA-β-gal) activity was assessed as previous study 46


( ADDIN EN.CITE )
. In brief, cells were fixed with 0.5% glutaldehyde solution for 15 minuttes. Next, cells were treated with 0.02% NP-40 and 0.1% sodium deoxycholate for 15 minutues. Then cells were incubated with 1 mg/ml X-gal substrate solution (5-bromo-4-chloro-3-indolyl-bd-galactopyranoside) containing 5 mM potassium ferricyanide and 2 mM magnesium chloride at an acidic pH 6 for 16 hours under a CO2 free and dark condition.

Western blot assay. Cells were treated with lysis buffer (50 mM Tris-HCl, 120 mM NaCl, 1 mM EDTA, 1% NP-40, pH 7.5). After centrifugation (16000 ×g) at 4°C for 10 min, The suspension fraction containing protein was collected. The protein concentration of the cell lysates was measured with a Bio-Rad protein assay kit (Bio-Rad Laboratories) as the manufacturer’s instructions description. Next, proteins were separated by 13.3% SDS-PAGE and transferred to polyvinylidene difluoride membranes (Millipore, Billerica, MA).The membranes were blocked with 5% skim milk for 4 hours at room temperature then treated probed with primary antibodies overnight at 4°C. Membranes were washed three times with 0.1% Tween 20 (15min/every time), then incubated with HRP-conjugated secondary antibody (1:1000 dilution) for 2 h at room temperature. All proteins were observed by using Western Lightning Chemiluminescence Reagent Plus (PerkinElmer, Waltham, MA).

Immunofluorescent assay. Cells were fixed with 4% paraformadehyde for 15 min then treated with 0.03% Triton-X-100 and blocked with 3% BSA. The cells were incubated with Tau antibody overnight at 4°C. After wash three times with PBS (15 min/time), cells were incubated with a secondary goat-anti-rabbit-FITC antibody at room temperature for 1 h. After wash three times with PBS (15 min/time), the cells were observed under a fluorescent microscopy.

Statistical analysis. Data were obtained from four independent triplicate experiments and are presented as the mean values of the chosen triplicate groups. These data are shown as means with standard deviations.

Results

Cell growth inhibition and caspase-9/-3 cascade was induced on NT2 cells with RC-6 treatment. In this study, whether RC-6 having an antitumor activity effect on NT2 cells was determined by cell number observation. After RC-6 treatment, viable cells were counted by using cell viability assay with tryphan blue stain under a hemocytometer 
 ADDIN EN.CITE 
(31, 44)
. Compared RC-6 treated cells with control cells, cell number was continuous increase on control cells while cell growth was inhibited obviously on RC-6-treated cells (Fig. 1). In addition, as shown in figure 1, there were few remaining live cells after RC-6 treatment for 7day. Next, caspases activation was determined by using substrate cleavage assay 
 ADDIN EN.CITE 
(30, 36)
. Our results showed that caspase-9, -8 and -3 were not activated on NT2 cells with RC-6 treatment at day 2 whereas caspase-9 and caspase-3 activities were found at day 4 (Fig. 2B and C). However, caspase-8 activity was not found n RC-6-treated cells obviously at day2 and day4 (Fig. 2A). These results suggested that RC-6 can exert an antitumor activity effect on NT2 cells and induce cell cytotoxicity related to caspase-9/-3 cascade pathway.
Senescence characteristics were found on NT2 cells after RC-6 treatment. Observation on cell morphology and cell growth of RC-6-treated cells under a microscope, we futher found that a small fraction of NT2 cells has flat phenotype and these cells were not able to proliferated similar to cellular senescence as previous studies 
 ADDIN EN.CITE 
(46-49)
. In order to investigate whether RC-6 can induce cellular senescence, senescence-associated β-galactosidase (SA-β-Gal) assay was executed. Our results showed that some flat, enlarged RC-6-treated cells had a SA-β-Gal activity which appeared blue color inside the cells (Fig. 3B). However, blue color was not found on control cells (Fig. 3A). That is, RC-6 really induced some cells to give rise to cellular senescence. Previous studies indicated that p16, p21 and p27 are related to cellular senescence on senescence cells 
 ADDIN EN.CITE 
(49-53)
. Therefore, these proteins were determined in this study. Observation on western blotting assay (Fig. 4), p16 and p21 levels were increased on RC-6-treated cells whereas p27 level was not increased on RC-6-treated cells. In conclusion, RC-6 was able to induce p16 and p21 proteins increase and cause cellular senescence on a small fraction of NT2 cells.
Neuron-like morphology was observed on remaining live cells after RC-6 treatment. After RC-6 treatment for 7 days, most cells were died while few cells were survival. These remaining live cells were collected and re-cultured with fresh media under RC-6-free condition. To our surprising, the remaining live cells can aggregate and appear a neural sphere-like phenotype like retinoic acid-differentiated NT2 cells (Fig. 5A and B). Subsequently, the remaining live cells appeared a neuron-like morphology (Fig 6A) similar to retinoic acid-differentiated NT2 cells (Fig. 6B). Compared the remaining live cells with retinoic acid-differentiated cells, neuron marker tau only appeared in retinoic acid-differentiated cells (Fig. 6C), however, tau was not found in remaining live cells after RC-6 treatment (data not shown). Our study suggested that RC-6 could induce NT2 cells to form neuron-like cells whereas these cells did not have neuron function.  

Discussion 

RC-6 exerted anticancer effects on human cervical cancer (HeLa cels) and hepatoma cells ( HepG2 cells) have been reported previously 
 ADDIN EN.CITE 
(29, 45)
. Here, we further demonstrated that RC-6 also exerted an anticancer effect on human embryonal carcinoma cells (NT2 cells). The results suggested that RC-6 may exert anticancer effects on various cancer types like RC-RNase- and onconase-exerted-anticancer effects 
 ADDIN EN.CITE 
(21, 26-31)
. Although the mechanisms of RC-6-induced cell cytotoxicity on cervical cancer cells was not studied 
 ADDIN EN.CITE 
(29)
, RC-6-induced cell cytotoxicity on HepG2 cells was related to caspase-9/-3 cascade 45()
. Today, caspase-9 and caspase-3 activities were found on RC-6-treated NT2 cells similar to RC-6-treated-HepG2 cells. Thus we considered that caspase-9/-3 cascade was an important signal pathway on RC-6-induced cell death. RC-6, RC-RNase and onconase are all frog ribonucleases 
 ADDIN EN.CITE 
(22-25)
. RC-RNase and onconase can induce caspase-9 and caspase-3 activities on cancer cells, however, both of them cannot induce caspase-8 activity on cancer cells 
 ADDIN EN.CITE 
(31, 36, 38, 54)
. In this study, RC-6 can also induce caspase-9 and caspase-3 activities but not induce caspase-8 activity. Basing on these studies, we suggested that frog ribonucleases-induced cell death was related to caspase-9/-3 cascade but not related to caspase-8/-3 cascade.
Retinoic acid induces NT2 cells to differentiate into neuron-like cells have been studied previously 
 ADDIN EN.CITE 
(2, 6, 55-57)
. Many papers have demonstrated that cell aggregation and neuron-like morphology are appeared on retinoic acid-differentiated NT2 cells 
 ADDIN EN.CITE 
(13-15)
. Moreover, caspases activities are observed on NT2 cells during retinoic acid treatment 
 ADDIN EN.CITE 
(8, 56, 58)
. Today, cell aggregation, neuron-like morphology was also observed on remaining live NT2 cells after RC-6 treatment. In addition, caspases activities were activated on NT2 cells during RC-6 treatment. Our results indicated that RC-6-treated NT2 cells similar to retinoic acid-treated NT2 cells. Therefore, we consider that RC-6 and retinoic acid may induce certain similar signal pathways on NT2 cell whereas these signal pathways are still unknown and remained to study in future. On the other hand, retinoic acid can induce neuron markers expression on NT2 cells in this study and previous studies 
 ADDIN EN.CITE 
(4, 13)
. However, neuron markers were not found obviously on RC-6-treated NT2 cells in this study. Previous study showed that RC-6 having ribonuclase activity can cleave RNAs 
 ADDIN EN.CITE 
(29)
. There is no evidence to show that retinoic acid can induce RNA degradation like ribonuclases. Based on these reasons, we speculate that neuron marker RNAs may be degraded on NT2 cells during RC-6 treatment, therefore, neuron marker cannot found on RC-6-treated NT2 cells unlike retinoic acid-differentiated NT2 cells.
Recent studies demonstrated that senescence can be induced on many cell types under various condition and treatments such as hypoxia, uremia, UVB, radiation, H2O2 and oxidized low-density lipoprotein 
 ADDIN EN.CITE 
(59-64)
. Previous studies indicated that beta-galactosidase activity is a major characteristic found in senescence cells and usually applied to senescence detection 
 ADDIN EN.CITE 
(65-67)
. In addition, many papers have reported that p16 and p21 proteins levels are increased on senescence cells 
 ADDIN EN.CITE 
(50-53)
. At present, a small fraction of RC-6 treated NT2 cells can express beta-galactosidase activity. Moreover p16 and p21 protein levels are increased on RC-6 treated NT2 cells. Thus our results indicated that RC-6 can induce senescence characteristic on NT2 cells. Previous studies demonstrated that p27 protein increase was also be found on senescence cells 
 ADDIN EN.CITE 
(49, 68, 69)
. However, p27 protein levels were not increased significantly on RC-6-treated NT2 cells. Our results indicated that p16 and p21are more import roles than p27 on RC-6-induced senescence.
In summary, this study firstly showed that RC-6 can induce embryonal carcinoma cells to give rise to caspase-9/-3 activation, senescence characteristics and neuron-like morphology.
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Figure Legends:

Figure 1. RC-6 inhibited cell growth on NT2 cells. The data was obtained from four triplicate groups and displayed as means ± S.D. 
Figure 2.  Caspases-9 and caspase-3 activities were induced with RC-6 treatment. (A) Caspase-8, (B) caspase-9 and (C) caspase-3 activities were measured on RC-6-treated cells. Each data was determined from four triplicate groups and displayed as means ± S.D.
Figure 3.  RC-6 induced senescence-associated β-galactosidase activity. β-galactosidase activity was determined on (A) control cells and (B) RC-6 treated cells. Note that blue color was found on RC-6-treated cells.n
Figure 4. RC-6 induced senescence-associated protein expression. NT2 cells were treated with RC-6 for 0 day (lane 1), 2 day (lane 2), 4 day (lane 3) or 6 day (lane 4). Detection of actin served as internal control. Note that p16 and p27 protein levels were increased, but p27 protein level was not increased.
Figure 5. RC-6 induced neuron-like morphology was observed under a phase-contract microscope. (A) RC-6-treated cells and (B) retinoic acid-differentiated cells displayed similar neuron sphere phenotype. Retinoic acid-differentiated cells served as positive control.

Figure 6. Neuron marker only appeared in retinoic acid-differentiated cells but not RC-6 induced cells. Neuron marker (Tau) was detected by immunoblotting assay and observed under a fluorescent microscope. (A) RC-6-treated cells and (B) retinoic acid-differentiated cells had similar neuron-like morphology. Tau protein was only found on retinoic acid-differentiated cells. Retinoic acid-differentiated cells served as positive control.
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