Improved Human Mesenchymal Stem Cells Isolation
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ABSTRACT 

  Human mesenchymal stem cells (hMSCs) are currently available range of applications and show much benefits to become a good material for regenerative medicine, tissue engineering and disease therapy. Before ex vivo expansion, isolating and characterizing primary hMSCs from peripheral tissues are the key steps for obtaining adequate materials to clinical application. The proportion of peripheral stem cells is very low in surrounding tissues or organs, thus, recovery ratio and quality will be limiting factors. In this review, we summarized current common methods used to isolate peripheral stem cells, and what new insights revealed to improve amount of stem cells and their stemness. These strategies offered alternative ways to acquire hMSCs in convenient and/or effective manners, which are important for commercial purposes. Later mass-amplify primary hMSCs procedures, ensuring their stemness until differentiate into tissue types cell for clinical usage. Enlarged qualified hMSCs were more clinical applicability for therapeutic transplants, which may help people live longer and better. 
INTRODUCTION 
  Mesenchyme are derived from embryonic mesodermal progenitors, and we could isolate hMSCs from tissues, such as bone marrow (BM), umbilical cord blood, adipose, muscle, corneal stroma, tooth bud and so on 
 ADDIN EN.CITE 
(15,20,30,35,48,58,62,83)
. The advantages of hMSCs, extracted from the individual, compared to general human embryonic stem cells (hES) lines, having lower of immunorejection, pathogen transmission and tumorigenesis 
 ADDIN EN.CITE 
(61,79,100)
. Besides, hMSCs can be handed easily in their proliferation potential, and permitting differentiation into kinds of cell types 
 ADDIN EN.CITE 
(74,86)
. MSCs are retained multipotent ability, which can proliferate into osteoblasts, chondrocytes,
 adipocytes, neuron and hepatocyte like cells, and they have self-renew capacity 
(50,58,64,68,97)
. 
 Expanding knowledge on salient features of hMSCs in regenerative and immunosuppressive properties, which provided new strategies into clinical applications 
 ADDIN EN.CITE 
(2,12,60,83)
. hMSCs have been largely used as potential therapeutic strategies for diseases, involving hepatology, cardiology, neurology, orthopedics, pancreatic, rheumatology and so on 
 ADDIN EN.CITE 
(14,27,51,60,67,79,86,105,108)
. hMSCs mainly function as supplier to repair degenerative or defective organs 
 ADDIN EN.CITE 
(11,34)
. Combining cures have been applied by treating with small molecular drugs, for example, valproic acid (VPA) that stimulates stem cell proliferation and self-renewal 
 ADDIN EN.CITE 
(8,24,77)
. For targeting deliver system, hMSCs have been considered to be the attractive vehicles to carry therapeutic agents and effectively release them toward various tumor diseases 
 ADDIN EN.CITE 
(1,36,57,84)
. In the neuron degenerative disease or injury issues, especially in Parkinson's disease, amyotrophic lateral sclerosis, stroke and Alzheimer's disease, stem cell-mediated transfer were widely used for gene therapy 
 ADDIN EN.CITE 
(5,28,47,56)
. 
  Regarding to transplant medicine, there are basic technologies in developing separation from tissues and operating above these cells, but these are the key procedures to success 
 ADDIN EN.CITE 
(6,102)
. hMSCs content are only 0.01 to 0.001% nucleated cells, thus, isolation technologies become the important steps for clinical applications 
 ADDIN EN.CITE 
(66,73)
. It would be an limited element about inadequate amounts and stemness of hMSCs for clinical therapy; therefore, improved isolation of the stem cells is desired 
 ADDIN EN.CITE 
(28,106)
. Clinical applications expected to be able to find a suitable in vitro isolation conditions, to resolve the problem of limited cells and stemness maintaining. In this review, we focused on issues that have been considered when manipulating hMSCs techniques in varying isolation procedures. Further, we summarized improved methods and new insights, theses may help people to improve hMSCs isolation and provide more materials for transplant medicine.   
Establishment of hMSCs
  hMSCs can be harvested in a relatively less invasive manner and easily isolated from peripheral organs, and maintained their multipotentiality during passages 
 ADDIN EN.CITE 
(15,72,88)
. It was worth noting the efficiency and quality of isolated hMSCs have variable effects in different mediums, procedures, temperatures, and oxygen tension 
 ADDIN EN.CITE 
(13,107)
. The simple method has been established for different kinds of hMSCs, which is mainly relayed on their adherence properties to achieve isolation 
 ADDIN EN.CITE 
(21,45)
. After plating of multipotent stem cells, extracted from umbilical cord and BM, most of non-hMSCs could be separated through continuous cultures 81()
. For tissue types, adipose and liver, of hMSC isolation were additional digested with collagenase 
 ADDIN EN.CITE 
(38,54)
. 
  Following immunophenotypic analysis are necessary for identification above adherent cells, however, to further separate non-multipotent or non-conformance cells through their specific surface markers 
 ADDIN EN.CITE 
(59,76)
. It would be utmost importance to identify hMSC lineage, and can easily obtainable to verify them through flow cytometry 
 ADDIN EN.CITE 
(66,95)
. Although hMSCs were no confidence markers have been consensus, the data showed that they still have some common cell surface markers. A minimal phenotypic pattern requires expression of CD73, CD90, and CD105, but shown negatively in CD34, CD45, HLA-DR and other molecules 
 ADDIN EN.CITE 
(43,66,76)
. For specific immunophenotypic patterns, the variety tissues source of peripheral stem cell could isolated by their lineage specific surface markers were summarized in Table 1 
 ADDIN EN.CITE 
(68,109)
. 
improved ISOLATION 
  Separating methods from tissues have been established, however, exist challenges faced by investigators are that the primary hMSCs were decreased clinical applicability 
 ADDIN EN.CITE 
(43,55)
. Obtaining primary hMSCs completely and rapidly, to explore a optimized method for isolation and purification, have become a prerequisite for ex vivo expansion 41()
. Improvement sections include lower segregation ratio of hMSCs, and shorter times to maintain stem cell properties during subculture the cells 103()
. Besides, the methods must be continuous developed to obtain sufficient qualities, such as unified cell type and their multipotency 
 ADDIN EN.CITE 
(38,62)
. In current, improved isolation methods have been concerned, and showed many new insights to acquire better primary hMSCs for subsequent medical applications 
 ADDIN EN.CITE 
(25,62,97)
. 
Vascular perfusion for liver progenitors
  Traditional techniques, isolated from peripheral organs and tissues, yield only a fewer available hMSCs and cause cell injuries with collagenase usage. This will be an important subject to improve the quality of hMSCs, if investigators can reduce collagenase exposure time to prevent cell from enzymatic damage 
 ADDIN EN.CITE 
(29,71)
. Experimental fetal liver donated from therapeutic abortion, an alternative resource of adult liver, have been used for isolating mesenchymal progenitor cells 
 ADDIN EN.CITE 
(49,78,93)
. Further, a improved method proposed that vascular perfusion technique reduces the exposure of the tissue to collagenase 
 ADDIN EN.CITE 
(26)
. The method mainly based on procurement for perfusion via the portal vein with the adaptation of a 5-step portal vein in situ perfusion method 
 ADDIN EN.CITE 
(26)
. They designed suitable solutions A to D and optimized other conditions, to separate mesenchymal progenitor cells from liver, and cultured hepatocytes in Williams’ E medium–based Heparmed Vito 143 
 ADDIN EN.CITE 
(26)
. In contrast to the static collagenase digestion, vascular perfusion obtained high viabilities of mesenchymal progenitors and more cell numbers, and prolonged their stemness 
 ADDIN EN.CITE 
(26,80)
. 
Mechanical dissociation lipoaspirate
  Methods to isolate and culture adipose-derived stem cells (ADSCs) were develop extensively, however, little has been done to improve yields and multipotency 
 ADDIN EN.CITE 
(3,23,38)
. An alternative method, mechanical dissociation, was used to isolate a population of hMSCs from lipoaspirate without collagenase treatments. The aim of previous study was to increase yields and cryopreservation them before ex vivo expansion, maintaining multipotency, for therapeutic application. Adipose tissue samples were incubate with ACK buffer solution, and then shake for preliminary red blood cell lysis 3()
. Following subsequently culture to select adherent cells, and isolate ADSCs through flow cytometry analysis. They further evidenced that treated lipoaspirate samples can be stored without damage to ADSCs during mechanical dissociation procedure at 4℃ 3()
. Mechanical dissociation offer a convenient isolation method and allow large volume of adipose separation, which are more suitable for commercial purposes 
 ADDIN EN.CITE 
(3,4,46,103)
. 

Isolation adipose-derived cell from blood/saline phase
  Compared with original isolation of ADSCs from adipose, spending 8-10 hour of continuous intense effort in usually, another rapid separation method revealed in less than 30 minutes 
 ADDIN EN.CITE 
(19,110)
. The basic principle relies on obtaining ADSCs from blood/saline phase, containing rich adipose-derived cell due to perivascular origin, easily than oil phase of adipose extracts 
 ADDIN EN.CITE 
(10,85)
. Defined simple 5-step process could isolate ADSCs from more buoyant adipose tissue, and show a mesenchymal morphology and immunophenotype 19()
. The method provides time-saving and simple technique for ADSCs preparing, is critical for advancing transplant medicine therapeutics.  
Novel marrow filter device 
  A novel BM filter device has been explored to improve isolation methods, which collects nucleated cells without continuous gradient centrifugation 70()
. The mainly procedures are filtered BM deliver into the device and connect with a designed nonwoven fabric filter in a closed system. Most of nucleated cells could be separated through saline flow washed, removing red blood cells (RBCs) and platelets (PLTs), and harvested in defined collection medium 70()
. Such closed workflow offered a rapid purification duration times, and prevented a risk of contamination from exposure operation. Besides, it permits decreased operator factors, influencing the cell yields and qualities, and establish a standard protocol for clinical cell therapy trials 
 ADDIN EN.CITE 
(31-33,69)
. It would be represent a major advance in BM by increasing the recovery ratio, allowing for less ex vivo expansion, from freshly harvested peripheral stem cell tissues 
 ADDIN EN.CITE 
(31,70)
.
Clot Spots method
  Wharton's jelly mesenchymal stem cells (WJ-MSCs) within human umbilical cord, is a noncontroversial source of hematopoietic stem cells (HSCs), which frequently used in transplant medicine 
 ADDIN EN.CITE 
(18,65)
. The properties of WJ-MSCs considered comparable with fetal rather than adult-derived hMSCs, thus, showed more proliferative and immunosuppressive for therapeutically active 46()
. For more suitable as a clinical application, a new approach displayed a improvement in isolating WJ-MSCs and recognized it was a good source 39()
. Different to Rosset Sep method, Clot Spot method use mesencult complete medium to culture primary human umbilical cord blood (HUCB) 
 ADDIN EN.CITE 
(39,52)
. Semi-solid cord blood clots were explanted on medium without disturbing the blood clots. Further, sub-cultured for adherent cells selection, and then morphology identification and immunophenotyping. Compared to Rosset Sep method, Clot Spot method demonstrated 3-fold increase of hMSCs from WJ-MSCs 39()
. 
Stimulation BMMSCs mobilized into peripheral blood
  Since bone marrow mesenchymal stem cells (BMMSCs) found in the interior of bones, are the most common source of hMSCs, the limitations are painful harvest and surgical risks 
 ADDIN EN.CITE 
(18,104)
. To prevent invasive surgery, the in vivo mobilization of BMMSCs into bloods seems a alternative method to harvest stem cells for transplantation 
 ADDIN EN.CITE 
(44)
. Fibrin microbeads (FMB) could bind mononuclear cells and isolate hMSCs from human peripheral blood that were mobilized with a granulocyte colony-stimulating factor (G-CSF). G-CSF would alter homing niches in BM through reduced VCAM-1, SDF-1, and SCF expression, caused marked down-regulation of adhesion and released HSCs from BM into peripheral blood 
 ADDIN EN.CITE 
(53,99)
. This mobilization procedure separates efficiently in HSCs isolation, and show significantly lower contamination by other cell types 
 ADDIN EN.CITE 
(44,89)
. Advanced method were performed in combinational treatment of G-CSF with plerixafor, reversibly blocks SDF-1 binding to CXCR4, which can improve the collection of HSCs compared with G-CSF alone 
 ADDIN EN.CITE 
(53,92)
. 
CONCLUSION 
  To hMSCs used in regenerative medicine, it must be established the basis of core technologies for preparing large amounts of suitable stem cells 87()
. With these key technologies capabilities in order to provide an endless supply of stem cells, to actually applied in cell therapy 
 ADDIN EN.CITE 
(9,74)
. The technologies involve acquiring source from the peripheral tissues, isolation multipotent cells and further ex vivo expansion (Fig 1) 74()
. However, enhancing isolation methods may be a critical issue, due to inadequate source of peripheral stem cells, to acquire higher qualities of hMSCs 
 ADDIN EN.CITE 
(3,43)
. In summary, improved separation technologies have following features: (1) prevent potential contaminations during manipulation. (2) enhance recovery ratio of hMSCs from limited source. (3) improve maintaining time of stemness during passages. (4) make the procedures become more convenient and less cost, which are important for commercialized purpose. Taking together, isolation strategies of hMSCs were toward to increase the clinical applicability by improving primary stem cells to reduce ex vivo expansion (Fig 1). 
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	Table 1: Surface marker expression profiles of main MSCs types (updated from review article, Hakan Orbay, 2012) 68()
. 

	

MSCs

CD marker expression



ADSCs

CD9+ , CD10+, CD13+, CD29+, CD44+, CD49d+, CD49e+, CD54+, CD55+, CD71+, CD73+, CD90+, CD105+, CD106+, CD146+, CD166+ and STRO-1+ 
 ADDIN EN.CITE 
(38,109)
.
BMMSCs

CD13+, CD33+, CD44+, CD73+, CD90+,CD105+, CD166+, CD28+, HLA class I+ 
 ADDIN EN.CITE 
(7,17,98)
 
PDLSCs

STRO-1+, CD13+, CD29+, CD44+, CD59+, CD90+, CD105+ 37()

TBMSCs

CD73+, STRO-1+, CD105+ 
 ADDIN EN.CITE 
(91)

SMMSCs

CD44+, CD73+, CD90+, CD105 + 
 ADDIN EN.CITE 
(16)

PMSCs

CD90+ 42()
 
MMSCs

CD34+, CD117+, Sca1+ 
 ADDIN EN.CITE 
(40,75)

SSCs

CD105+, CD90+, CD73+, CD29+, CD13+, CD44+ CD59+, VCAM-1+, ICAM-1+, CD49+, CD166+, SH2+, SH4+, EGFR+, PDGFRa+, CD271+, Stro-1+, CD71+, CD133+, CD166+, Keratin-19+ 
 ADDIN EN.CITE 
(63,82,94)

WJ-MSCs

CD13+, CD29+, CD44+, CD51+, CD73+, CD90+, CD105+, SH2, SH3 
 ADDIN EN.CITE 
(22,96,101)

HSC
EpCAM+, E-cadherin+, CD133+, CD29 90()
+


Abbreviation: adipose-derived stem cells (ADSCs), bone marrow-derived-stem cells (BMMSCs), periodontal ligament-derived stem cells (PDLSCs), trabecular bone-derived-stem cells (TBMSCs), synovial membrane-derived stem cells (SMMSCs), periosteum-derived stem cells (PMSCs), muscle-derived stem cells and satellite cells (MMSCs), skin stem cells (SSCs), wharton’s jelly stem cells (WJ-MSCs), hepatic stem cells (HSC). 
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Figure 1. The relationship of hMSCs separation technology with potential clinical application. Isolation methods would be influenced operating times, and the hMSCs amounts and qualities that are important for transplant medicine. 
