Short Communication
Detection of altered methylation status at 11p15.5 and 7q32 in placental mesenchymal dysplasia
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Abstract

Objective:  To present molecular cytogenetic and epigenetic evaluation of placental mesenchymal dysplasia (PMD).

Materials and methods:  A 33-year-old woman was referred to the hospital at 18 weeks of gestation because of a multi-cystic mass in the placenta.  Ultrasound showed a normal amount of amniotic fluid and a normal singleton fetus.  Amniocentesis revealed a karyotype of 46,XX.  Array comparative genomic hybridization (aCGH) analysis of amniocytes revealed no genomic imbalance.  Preterm labor and premature rupture of the membranes occurred, and a female fetus was delivered with no structural abnormality.  The placenta was enlarged and filled with many grape-like vesicles.  In the placental cystic mass, interphase fluorescence in situ hybridization revealed diploidy, and aCGH revealed no genomic imbalance.  Quantitative fluorescent polymerase chain reaction (QF-PCR), methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and methylation-specific PCR were performed in the placental cystic mass.

Results:  MS-MLPA analysis showed hypermethylation (methylation index = 0.8) at H19 differentially methylated region (DMR) [imprinting center 1 (IC1)] at 11p15.5 and hypomethylation (methylation index = 0.2) at KvDMR1(IC2) at 11p15.5.  Methylation-specific PCR assay identified hypomethylation of PEG1/MEST at 7q32, hypermethylation of at H19DMR and hypomethylation at KvDMR1 at 11p15.5.  QF-PCR analysis identified androgenetic/biparental mosaicism in the placenta.  The placental cystic mass was consistent with the diagnosis of PMD.

Conclusion:  MS-MLPA and methylation-specific PCR are useful methods for rapid detection of epigenetic alternations in PMD, and QF-PCR is useful in the diagnosis of androgenetic/biparental mosaicism.
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Introduction
Placental mesenchymal dysplasia (PMD) which has an incidence of 0.02% in pregnancy is characterized by placentomegaly with many grape-like vesicles, a female preponderance, absence of trophoblastic proliferation, presence of a normal-appearing fetus, fetal overgrowth or intrauterine growth restriction (IUGR), a diploid karyotype and an association with Beckwith-Wiedemann syndrome (BWS) [1-10].

    Recently, androgenetic/biparental mosaicism in the placenta has been suggested as one of many mechanisms responsible for PMD [11-20].  Here, we present our experience of utility of quantitative fluorescent polymerase chain reaction (QF-PCR), methylation-specific PCR and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) in the evaluation of PMD.

Materials and Methods

Clinical description

A 33-year-old, gravida 3, para 2, woman was referred to the hospital at 18 weeks of gestation because of a multi-cystic mass in the placenta (Fig. 1).  Level II ultrasound examination at 18 weeks of gestation revealed a normal amount of amniotic fluid, and a normal singleton fetus with a biparietal diameter of 4.06 cm (18.3 weeks), an abdominal circumference of 15.22 cm (20.4 weeks) and a femur length of 2.65 cm (18 weeks).  The woman underwent amniocentesis which revealed a karyotype of 46,XX.  Array comparative genomic hybridization (aCGH) analysis of uncultured amniocytes revealed no genomic imbalance.  Thereafter, the pregnancy was eventful because of preterm labor and premature rupture of the membranes.  At 21 weeks of gestation, a 610-g female fetus was delivered with no structural abnormality.  The placenta was enlarged and filled with many grape-like vesicles (Fig. 2).  Interphase fluorescence in situ hybridization (FISH) analysis of the placental cystic mass confirmed diploidy (Fig. 3).  aCGH analysis of the placental tissue revealed no genomic imbalance.  QF-PCR, MS-MLPA and high-resolution melting analysis were performed in the placental cystic mass.  The total (-human chorionic gonadotrophin level in the woman's blood was checked normal two months after delivery.

QF-PCR
QF-PCR analysis was performed by using genomic DNAs extracted from the placental tissue and parental bloods as described elsewhere [21].  Briefly, primers specifically flanking informative short tandem repeats (STRs) markers on chromosome 11q21 (D11S2017) and 18q12.1 (D18S1369) were applied to undertake polymorphic marker analysis and to determine the parental origin of the gene dosage change.
MS-MLPA

MS-MLPA analysis was performed by using SALSA MS-MLPA Beckwith-Wiedemann syndrome/Russell-Silver syndrome (BWS/RSS) ME030-C1 probemix (MRC-Holland bv. Amsterdam, The Netherlands).  The ME030-C1 probemix contains 13 reference probes that detect genes outside the BWS/RSS region, and 26 probes that are specific to the BWS/RSS 11p15.5 region and 2 probes in the NSD1 region associated with Sotos syndrome.  The 26 probes specific to the BWS/RSS 11p15.5 region will give information on copy number change to detect deletions or duplications in the 11p15.5 region.  Ten of the 26 probes specific to the BWS/RSS 11p15.5 region contain HhaI recognition site and provide information about methylation status of the 11p15.5 region.  The H19-associated imprinting center 1 (IC1) or differentially methylated region 1 (DMR1) (H19DMR) is methylated on the paternal allele and unmethylated on the maternal allele.  The KCNQ1OT1-associated imprinting center 2 (IC2), or DMR2 or KvDMR1 (KvDMR) is methylated on the maternal allele and unmethylated on the paternal allele.  The methylation status of MS-MLPA probes is calculated by dividing the normalization constant of each probe in the HhaI treated sample by the normalization constant of each probe in the HhaI untreated sample.  Normal methylation index is 0.4~0.58 [22].

Methylation-specific PCR

The methylation-specific PCR assay can specifically distinguish the paternal allele and the maternal allele, and identify the differential methylation of the imprinted loci such as PEG1/MEST at 7q32, and H19DMR and KvDMR1 at 11p15.5 without requiring the parental samples.  PEG1/MEST is expressed from the paternal chromosome, and is usually methylated on the maternal chromosome and unmethylated on the paternal chromosome.  H19DMR is expressed from the maternal chromosome, and is usually methylated on the paternal chromosome and unmethylated on the maternal chromosome. KvDMR1 is expressed from the paternal chromosome, and is usually methylated on the maternal chromosome and unmethylated on the paternal chromosome.  The assessment of DNA methylation at PEG1/MEST, H19DMR and KvDMR1 can be performed by bisulfite treatment of DNA or by digestion with methylation-sensitive restriction enzyme.  In CpG methylation, a methyl group can be attached to cytosine(C) located at 5' to guanine(G).  After sodium bisulfite treatment, sodium bisulfite converts unmethylated cytosine to uracil, whereas methylated cytosine in the CpG dinucleotide is resistant to sodium bisulfite chemical modification.

Results

MS-MLPA analysis of the methylation status of H19DMR(IC1) and KvDMR1(IC2) at 11p15.5 in the placental tissue showed hypermethylation at H19DMR(IC1) (methylation index = 0.8) and hypomethylation of KvDMR1 (methylation index = 0.2) (Fig. 4).  High-resolution melting analysis using a methylation-specific PCR assay identified differential methylation of the imprinted PEG1/MEST locus at 7q32 and the imprinted H19DMR(IC1) and KvDMR1(IC2) loci at 11p15.5 with hypomethylation of PEG1/MEST, hypermethylation of H19DMR(IC1) and hypomethylation at KvDMR1(IC2) in the placenta (Fig. 5).  QF-PCR analysis using microsatellite markers identified androgenetic/biparental mosaicism with androgenetic and biparental cell lines in approximately a 58:42 ratio, respectively in the placenta and the umbilical cord (Fig. 6).  The placental cystic mass was consistent with the diagnosis of PMD.

Discussion

The present case provides evidence that quantitative methylation assays such as MS-MLPA and methylation-specific PCR are robust and reliable methods that can be easily applied to detect epigenetic alternations in association with PMD, and QF-PCR is useful in the diagnosis of parental origin and inheritance pattern for the androgenetic cell line in the presence of androgenetic/ biparental mosaicism.  In addition to androgenetic/biparental mosaicism, PMD can be associated with BWS due to an imbalance of imprinted gene expression of the genes CDKN1C (P57KIP2), H19, IGF-II, KCNQ1 and KCNQ1OT1 within 11p15.5 caused by epigenetic errors and/or chromosomal abnormalities [13,19], paternal uniparental disomy (UPD) 6 [23], increased angiogenesis caused by over-expression of VEGF in case of hypoxia or hypoperfusion [8] and abnormal expression of VEGF-D at Xp22.31 in case of X chromosome abnormalities [4].
    Kaiser-Rogers et al [12] and Robinson et al [14] first suggested that androgenetic/biparental mosaicism causes PMD.  In the present case, the same haploid paternal complement in the androgenetic cell line as in the coexisting biparental cell line indicates the origin of a single fertilization event with endoreduplication of the paternal genome and a mitotic division of the biparental cell to form androgenetic/biparental mosaicism.  In the placenta of the present case, the androgenetic cell line had complete homozygosity for a paternal genome common to the biparental cell line.  Our case represents an androgenetic/biparental mosaic pattern of M1P1/P1P1, single sperm, single oocyte (biparental pattern MPa and androgenetic pattern PaPa) similar to those cases reported by Makrydimas et al [24] and Kaiser-Rogers et al [12].  Other known androgenetic/biparental mosaic patterns include M1P1/P2P2 dispermic [11,14,16,25,26], and M1P1/P1P2 dispermic, single oocyte [14].

    Perinatal identification of PMD should include a differential diagnosis of partial hydatidiform mole, complete hydatidiform mole and recurrent hydatidiform mole.  Partial hydatidiform mole is caused by diandric triploidy [27,28].  Partial hydatidiform mole is typically associated with a 2:1 ratio of paternal: maternal haploid genomes due to diandric triploidy and has a positive CDKN1C (P57KIP2) immunostaining due to the presence of a maternal allele.  The CDKN1C (P57KIP2) gene is maternally expressed and paternally imprinted, and a positive P57KIP2 immunostaining indicates the presence of a functional maternal allele.  Complete hydatidiform mole is typically associated with diandric diploidy without a maternal contribution to the genome [29] and may have a negative P57KIP2 immunostaining [30].  However, in some cases of complete hydatidiform mole, there still is a positive P57KIP2 immunostaining due to the retention of a maternal chromosome 11 [31,32].  Recurrent hydatidiform mole can occur in an autosomal recessive pattern in women with recurrent miscarriage and complete hydatidiform mole.  Recurrent hydatidiform mole-1 (HYDM1; OMIM 231090) is caused by homozygous or compound heterozygous mutations in NLRP7 (OMIM 609661) at 19q13 [33,34].  Recurrent hydatidiform mole-2 (HYDM2; OMIM 614293) is caused by homozygous or compound heterozygous mutations in KHDC3L (OMIM 611687) at 6q13 [35,36].

    Bourque et al [19] suggested the utility of quantitative methylation assays at imprinted genes for the diagnosis of fetal and placental disorders.  Our presentation additionally shows that MS-MLPA, methylation-specific PCR and QF-PCR are useful for rapid screening of methylation alterations and androgenetic/biparental mosaicism in PMD.
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Figure Legends

Fig. 1.
Prenatal ultrasound at 18 weeks of gestation shows (A) a multi-cystic placental mass and a normal fetal head, and (B) a multi-cystic mass in the placenta.

Fig. 2.
(A) and (B) Gross appearance of the placenta with placental mesenchymal dysplasia.

Fig. 3.
Interphase fluorescence in situ hybridization analysis of placental cystic mass using the bacterial artificial chromosome probes RP11-96A5 (Xp11.1; FITC green spectrum) and RP11-25M7 (11q11; Texas red spectrum) shows two green signals and two red signals, indicating diploidy with disomy 11 and disomy X in the placental sample.

Fig. 4.
Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) analysis using SALSA MS-MLPA BWS/RSS ME030-C1 assay shows (A) H19DMR(IC1) hypermethylation (methylation index > 0.5) and KvDMR1(IC2) hypomethylation (methylation index < 0.5) in the present case, (B) a negative control with H19DMR(IC1) normal methylation (methylation index = 0.5) and KvDMR1 normal methylation (methylation index = 0.5) in the wild type(WT), (C) a positive control with H19DMR(IC1) hypomethylation (methylation index < 0.5) and KvDMR1 normal methylation (methylation index = 0.5), and (D) a positive control with H19DMR(IC1) hypermethylation (methylation index > 0.5) and KvDMR1 hypomethylation (methylation index < 0.5).

Fig. 5.
Polymerase chain reaction (PCR) products from bisulfite-modified DNA, using an unmethylated allele-specific primer pair and a methylated allele-specific primer pair on the methylation-sensitive high-resolution melting PCR assays.  (A) PEG1/MEST at 7q32.  The wild type(WT) shows biparental inheritance and standard biparental methylation status.  The present case shows biparental inheritance of chromosome 7q32 with PEG1/MEST hypomethylation.  (B) H19DMR(IC1) at 11p15.5.  The WT shows biparental inheritance and standard biparental methylation status.  The present case shows biparental inheritance with H19DMR(IC1) hypermethylation.  (C) KvDMR1 at 11p15.5.  The WT shows biparental inheritance and standard biparental methylation status.  The present case shows biparental inheritance with KvDMR1 hypomethylation.

Fig. 6.
Representative electrophoretogram of quantitative fluorescent polymerase chain reaction analysis at short tandem repeat markers specific for chromosomes 11 and 18.  In the placenta and the umbilical cord, the marker D11S2017 (11q21) shows two peaks (122bp: 130bp; paternal: maternal) of unequal fluorescent activity with gene dosage increase in the paternal allele; and the marker D18S1369 (18q12.1) shows two peaks (178bp: 194bp; maternal: paternal) of unequal fluorescent activity with gene dosage increase in the paternal allele.
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