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The use of benchmark dose (BMD) calculations  for dichotomous or continuous responses is well established in the risk assessment  of cancer and noncancer endpoints. In some cases, responses to exposure  are categorized in terms of ordinal  severity effects such as none, mild, adverse, and severe. Such responses can be assessed using categorical regression (CATREG) analysis. However, while CATREG has been employed to compare the benchmark approach and the no-adverse-effect-level (NOAEL) approach in determining a reference dose, the util- ity of CATREG for risk assessment remains unclear. This study proposes a CATREG model to extend  the BMD  approach to ordered categorical responses by modeling  severity  levels as censored interval  limits of a standard normal  distribution. The  BMD  is calculated  as a weighted  average  of the  BMDs  obtained at dichotomous cutoffs for each  adverse  severity level above the critical effect, with the weights being proportional to the reciprocal  of the ex- pected  loss at the cutoff under  the normal  probability model. This approach provides  a link between  the  current BMD  procedures for dichotomous and  continuous data.  We estimate the  CATREG parameters using a Markov  chain  Monte  Carlo  simulation  procedure. The proposed method  is demonstrated using examples  of aldicarb  and urethane, each with sev- eral categories  of severity levels. Simulation studies comparing  the BMD and BMDL  (lower confidence  bound  on the BMD)  using the proposed method  to the correspondent estimates using the existing methods for dichotomous and continuous data  are quite  compatible; the difference  is mainly dependent on the choice of cutoffs for the severity levels.
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1. INTRODUCTION

For the purpose of assessing the risk of chronic noncancer   toxicity,(1,2)      the    U.S.   Environmental
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Protection Agency (EPA) currently  employs ref- erence   doses   and   reference concentrations (RfD and RfC, respectively), which are estimates of the amount  of daily exposure  to a toxic substance among the human  population that is unlikely to cause an appreciable risk of deleterious effects during  a life- time. Traditionally, an RfD  is estimated by dividing an experimental or epidemiologic no- or lowest- observed-adverse-effect   level   (NOAEL/LOAEL) by a series  of uncertainty factors.  The  quantitative benchmark  dose  (BMD)  approach,  which  uses  a dose-response model to derive an RfD, has been proposed as an alternative. This approach has gained widespread scientific and regulatory acceptance as a risk assessment methodology.(3) The BMD approach
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has several  advantages over the NOAEL approach, including the following: (1) it is not constrained to the experimental dose groups;  (2) the  lower confidence limit on BMD (the BMDL) incorporates statistical uncertainty;(3,4)   (3)  the  sample  size  is reflected  in the calculation of the BMDL;  and (4) the approach can address  continuous response data.(5–7) However, applications of the BMD method  have focused primarily  on dichotomous and continuous responses. The advantages of BMD-based approaches for mul- tiple responses (e.g., ordered categories  and multiple endpoints) and  for  multiple  studies  have  not  been fully established.
For  many  noncancer endpoints, such as in tox- icology or epidemiology studies,  the  responses that are used to measure  chemical-induced toxicity are quantitative in nature, including  altered  body/organ weight, the blood concentration of a toxicant,  a non- neoplastic  lesion grade, and neurological function. Toxic responses are  often  characterized by three  to five ordered categories  of increasing  severity, for example,  no effect  (grade  0), a mild adverse  effect (grade   1),  an  adverse   effect  (grade   2),  and  a  se- vere effect (grade  3). Hertzberg proposed the use of category regression (CATREG) to correlate ordered categories  of toxic  severity  or  pathological staging to exposure  dose.(8,9)  The  fitted  model  can be used to estimate  the probability of a specific category  for any given concentration level. CATREG, with an appropriate statistical  model, has been applied  to analyzing various types of toxicity data, including differential severity levels, multiple endpoints, expo- sure duration, and effects on various species.(1,2,10–16) The  statistical  software  CatReg is well suited  to or- dered  categorical data  analysis and is downloadable from the U.S. EPA  website.(17)
The  CATREG  approach has  advantages over the NOAEL approach that  are similar to the ad- vantages  of the BMD approach,(10) and it is also quantitative and potentially valuable  for risk assess- ment   using  multiple   response  data   and  for  com- bining information across studies.  However, despite the  availability  of  data  analysis  software,   applica- tions of CATREG have been limited to comparisons with the BMD  and NOAEL approaches in deriving RfDs.(1,2,13)  This scarcity of applications may be due to the U.S. EPA  not having published guidance  for its use for chronic risk assessment.(2)
Ordinal  categorical data  usually  involve  more than  one  category  of severity  above  no effect,  with the categorization often based on histological  evalu- ation  and judgment.  Standard CATREG differenti-

ates among severity levels by fitting a separate dose- response function  to  each  ordered category.  For  a given exposure  level, the probability of response can be calculated for each severity category. In risk as- sessment,  the objective  is to estimate the probability of reaching  or surpassing  the critical effect, with the critical effect defined as the first adverse effect above the  no-effect  level. The  critical  effect  that  discrimi- nates no effect from adverse effects depends on the categorization of the ordered severities, which can be determined from risk assessors.
In one application of CATREG, Dourson et al.(1)
analyzed  a data set obtained from two studies on aldicarb exposure  that contained four severity grades (0, 1, 2, and  3) and  assigned  the  responses that  had a  blood  cholinesterase inhibition of  20%  or  more to  grade  2. CATREG was  performed to  estimate the  combined probability of grades  2 and  3, classi- fied as adverse  effects, which can be regarded as an extension of the  dichotomization approach from  a binary  model  to  an  ordinal  model.  CATREG  can also be regarded as a modeling  for continuous data, whereby  each  category  is associated with  a  cutoff for  a specific categorical level  and  is a representa- tive measure  corresponding to an interval.  For ex- ample, blood cholinesterase inhibition levels of 10%,
20%, and 30% or more  indicate  effects greater than mild, adverse,  and severe,  respectively. In this man- ner, mild, adverse,  and severe  effects correspond to responses of 10–20%, 20–30%, and more  than  30%, respectively. That  is, each  category  corresponds to an  interval  in  the  tail  distribution of  the  continu- ous  response data.  Thus,  the  BMD  approach  can be extended to ordered categorical data,  giving the data characteristics of both binary and continuous responses.
Unlike  risk assessment  for the analysis of binary data  where  the adverse  effect is clearly defined, one difficulty in applying CATREG to risk assessment is that  the  BMD  depends  on the  specified  critical  ef- fect; thus, different critical effects result  in different BMDs. Typically, two or more BMDs are calculated using different levels for the critical effect.2  Further- more,  given a BMR  of, for example,  0.1, the  BMD computed based  on a critical  effect  of grade  1 may be conservative (too  low), whereas  the  BMD  com- puted  based  on  a critical  effect  of grade  3 may be anti-conservative (too high). Therefore, a reasonable approach is to provide  an overall  BMD  with an av- erage  effect,  such as a weighted  combination of all BMDs  derived  for  different cutoffs  of the  severity levels above the no-effect level, provided that the risk




assessor has no strong evidence  to select a particular severity level as the cutoff.
In this study, we propose to extend the BMD ap- proach  to CATREG for noncancer risk assessment using the following procedure. First, categorical data are linked to censored intervals from a standard nor- mal distribution, which results in a generalization of the  binary  and  continuous approaches. Second,  the BMD  for CATREG is obtained as a weighted  aver- age of the BMDs obtained at and above each critical- effect  level  and  as a dichotomous cutoff  from  “no


Let the number of observations at exposure concentration x = dg   and  severity  level  k  be  ng,k, g = 1,..., G; k = 0, 1,... , K. The multinomial likeli-
hood function is then proportional to the following:

G
l(9) = n {1 − H(1, dg , Z, 9)}ng,0
g=1
K−1
× H(K, dg , Z, 9)ng,K   n {H(k, dg , Z, 9)
k=1
ng,k

effect.”  For a specified set of losses for a cutoff, we
estimate  the  weight  based  on  the  expected loss as the  sum  of the  losses  multiplied  by the  misspecifi-

− H(k + 1, dg , Z, 9)}

.	(3)

cation  probabilities for the cutoff. We reanalyze the aldicarb  exposure(1)  and  urethane exposure(18) data sets separately, providing illustrative  examples of the proposed approach for different categories  of sever- ity levels. Simulation studies  are performed to com- pare  the  BMD  derived  from  the  proposed method and the BMD derived using the existing methods for dichotomous and continuous data.


2. MATERIAL  AND  METHODS

2.1. The Basic Framework for Categorical
Regression

Let  the  ordered response Y be assigned  values
k = 0, 1,... , K,  where   K ≥ 2.  Let  X be  the  con-
centration (dose)  of primary  interest, and  let  Z be
the vector  of the other  covariates  (e.g., gender,  age, species).  Letting  9 denote the  vector  of unknown parameters, the  general  form  of  the  mathematical

2.2. The BMD Calculation for Ordinal Categorical
Data Based on Standard Normal Probabilities

Given a specified benchmark response (BMR) rate,  the  benchmark dose is defined  as the  dose for which the additional risk equals BMR, i.e.,
p(BMD) − p(0) = BMR,                 (4) where  p(d)  is the probability of an adverse  effect at dose  d. The  derivation of BMD  for  binary  data  is
straightforward, given a specific model (e.g., a logistic
model).  For continuous responses,  the change  in re- sponse from the control mean is often used to charac- terize adverse effects. Assume that the data are nor- mally distributed with a mean  m(d)  and  a constant variance σ 2 at dose d. Let u be a predetermined limit for an abnormal response,  that  is, a level above  (or, in some cases, below) which a response is considered to be abnormal. For a given dose d, the probability of an adverse response is as follows:
( u − m(d) 、

model  of categorical regression  may  be  written  as
follows:

p(d) = 1 − φ 	σ

.	(5)

P(Y ≥ k |X, Z, 9) = H(k, X, Z, 9).	(1) The  function   H(x | k, Z, 9)  may  take  the  forms  of

Thus, Equation (4) can be expressed as follows:
( u − m(0) 、

ex /(1 + ex ), φ(x), or 1 − exp(−ex ), which correspond
to the logistic, normal, and Gumbel distribution func-

p(BMD) − p(0) = φ 	σ

tions, respectively.  The inverse function  L(.) of H(.)
is the  link  function  for  logit,  probit,  and  Cloglog,

( u − m(BMD) 、
− φ 	σ

= BMR.   (6)

respectively.(13) Following Equation (1), given the covariates    Z  and   parameters  9,   the   probability that  the response Y has severity  level s at exposure concentration (dose) x is as follows:
P(Y = k |X, Z, 9) = H(k, X, Z, 9)
− H(k + 1, X, Z, 9), k = 1,... K − 1,

P(Y = K |X, Z, 9) = H(K, X, Z, 9).	(2)


Alternatively, BMD can be defined as the ex- posure  that corresponds to a given BMR change (BMRc)  in the mean response,  normalized by the standard deviation  σ , such that:
{m(BMD) − m(0)}/σ = BMRc. 	(7) For a given p(0) and BMR in Equation (4), there
is a corresponding value  of BMRc  such that  Equa-
tions (5) and (7) are equivalent.(5,6)





Fig. 1. Hypothetical standard normal  distribution under  a background exposure  of dose 0 (null), with the critical values z1 , z2 , and z3 for the cumulative  probabilities at severity levels 1, 2, and 3 and the alternative normal  distributions with shifted means μ(BMD1 ), μ(BMD2 ), and μ( BMD3 ) for exposures  of BMD1 , BMD2 , and BMD3 , respectively.



By taking  an approach analogous  to that  taken in continuous response cases, categorical responses may be viewed as interval-censored data of a con- tinuous  variable  with a set of predetermined  limits for different severity  levels. Specifically, for the cat-
egorical  severity  levels k = 1,..., K, a set of scores
z1 ,..., zK can be determined such that the classifica-
tion of severity levels comprises  representative sam-
ples of interval censoring for a hypothetical standard normal  distribution Z, that is,
Y = 0,  if Z < z1 ,
Y = k,  if zk ≤ Z < zk+1 , k = 1,..., K − 1
Y = K,  if Z ≥ zK .
Let  pk(d, 9) = P(Y = k |X = d, 9) be the prob- ability of Y = k at dose d. We then have:
p0 (d, 9) = φ(z1 − μ(d)),
pk(d, 9) = φ(zk+1 − μ(d)) − φ(zk − μ(d)),
k = 1,..., K − 1, 	(8)
pK(d, 9) = 1 −φ(zK − μ(d)).

Note that by the nature  of the standard normal distri- bution,  μ(0)  = 0 and σ = 1. Defining the probability
of the effect of severity level k or above as:
Pk(d, 9) = pk(d, 9) + ··· + pK (d, 9),
k = 1,..., K, 	(9)
we have:
Pk(0, 9) = 1 − φ(zk), and Pk(d, 9)
= 1 − φ(zk − μ(d)), k = 1,..., K.  (10)

In 	practice, 	the 	censoring 	interval 	limits
z1 ,..., zK can be estimated by:
zˆ k  = φ−1 (1 − Pˆ k(0, 8ˆ ), k = 1, ··· , K, 	(11)
where  Pˆ k(0, 8ˆ ) is obtained from a categorical regres- sion.
As in the continuous response case considered in Equations (4)–(7),  the  BMDk  corresponding to the cutoff at severity level k for a given BMR is the dose such that:
φ(zk) − φ(zk − μ(BMDk)) = BMR.
Thus, the shifted mean at BMDk is as follows:
μ(BMDk) = φ−1 (1 − Pk(0, 9)) − φ−1
× (1 − Pk(0, 9) − BMR)
= zk − φ−1 (φ(zk) − BMR),   (12)
which can be estimated by zˆ k, obtained from Equa- tion  (11). Fig. 1 illustrates the  standard normal  dis- tribution plots  for  the  unexposed group  versus  the groups exposed  to the benchmark doses BMDk  with
the censoring  interval  limits zk, k = 1, 2, and 3. Note
that  the (standardized) critical values z1 ,..., zK  can
be considered a multivariate extension of the prede-
termined value z for BMD for the case of continuous data (Equation (5)).
Given a prespecified BMR level, the BMDk corresponding to  the  cutoff  at  severity  level  k  has an  additional risk with a probability of  Pk(d, 9) (Equations (4)  and  (9))  relative  to  that  at  dose  0
equaling   the   BMR,   for   k = 1,..., K.   Therefore,
depending on the cutoff for the severity level chosen,
the same BMR level at different cutoffs may need to be annotated differently. For example,  given a BMR
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of 0.1, the  BMD1   at severity  level 1 may be overly conservative, whereas  the BMDK  at the highest severity  level  K  may  be  overly  anti-conservative. To  account   for  the  overall  information  conveyed in ordered categorical response data,  a reasonable BMD for a specific BMR may be expressed as a weighted  combination of the  BMDs  with cutoffs  at different severity levels, that is,

For all actions Ck, the probability of a false posi- tive error  against the null of no effect is:
λk0  = φ(zk − μ(BMDk)), k = 1,..., K. 	(16) Note that, according to Equation (10),
φ(zk − μ(BMDk)) = φ(zk) − BMR = 1 − BMR
− Pk(0, 9), k = 1,..., K. 	(17)


K 	K 	Therefore, a  false  positive  error  for  action  Ck

BMD = γ ωk × BMDk, γ ωk  = 1.	(13)

against no effect depends  on the probability of an ef-

k=1

k=1

fect greater than or equal to severity level k at expo-
sure dose 0. Let the loss corresponding to these alter- native actions with probability λij be lij . The expected

2.3. Determination of the Weights of the BMDs
Derived at Different Cutoffs

To determine the weights of the BMDs at differ- ent severity-level  cutoffs in Equation (13), the trade- off between  taking  the cutoff chosen  relative  to the other  cutoffs and the cutoff relative  to the null of no effect must be considered. We express the relative tradeoffs in terms of loss functions—a higher cost will need  to be paid if a chosen  cutoff yields a relatively greater loss in terms of risk assessment, and a lower cost will need to be paid in the converse case. Specif- ically, let Ck  be the act of taking  the cutoff at sever- ity level k, with the corresponding BMDk for a given BMR. The probabilities of the ordered categorical responses can be expressed as shifts in the distribu- tion for groups exposed to the BMDk, with the cutoff at severity  level k and  the  critical  values  z1 ,..., zK under  the background exposure  of dose 0 (Fig. 1).
Given normal  distributions with mean shifts un-

loss for taking action Ck  is then:
l(k) = λk0lk0  + γ λkj lkj .	(18)
k= j

Given  the  expected loss  l(k)  for  taking  action Ck, the  overall  loss of the  weighted  combination of BMDks  in calculating  the resultant BMD,  according to Equation (13), is thus:

K
Q(ω) = γ ωkl(k).	(19)
k=1
To minimize the overall loss Q(ω), a natural weighting scheme is to take the relative  weight ωk  as the reciprocal of the loss that may be incurred by tak- ing the action, so an action that  could yield a higher loss is assigned  less weight. The weights may be as- signed as follows:

1/ l(k)

der  the  doses  BMDk,  taking  the  cutoff  at  severity
level  k,  we can  assess  the  relative  tradeoffs of dif-

ωk  =
 (
Z
K
)i =1 1/ l (i )

, k = 1,..., K. 	(20)

ferent  cutoffs other  than  k. This is accomplished by estimating  the tail probabilities of the false negative (or false positive) error rate if the cutoff is higher (or lower) than k. In addition, a false positive error  rate always exists for any cutoff Ck  if the true response is “no effect.” Specifically, given a cutoff Ck, the proba- bility that the cutoff should be Cl , l > k, or the prob- ability of exceeding  zl , instead  of Ck, is:
λkl  = 1 − φ(zl  − μ(BMDk)), l > k,
k = 1,..., K − 1.	(14)

In contrast, the probability that the action being taken should be C j , j < k, or the probability of being less than zj , instead  of Ck, is:

The set of loss functions lij resulting from mis- specifying the  cutoffs can be determined by follow- ing the natural order  of CATREG. For example,  the penalty  cost of taking action C2  when the true sever- ity level  is 1 (less  conservative) should  be  greater than  the  penalty  cost of taking  action  C1  when  the true  severity  level is 2 (more  conservative), and this cost should  be even greater than  the penalty  cost of taking action C3 when the true severity level is 1 (the most  anti-conservative). Additionally, the  losses lk0 due to the false positive error of taking actions Ck relative  to the null of no effect should increase  with the severity levels and should be, in general,  greater than the misclassification losses relative to other ac- tions.  Thus,  as a general  rule  for  the  scores  of the
losses, we have (i) i > j : lij > li t j t , if i > i t and  j < j t;





Table I. Suggested Sets of Loss Functions lij for (a) K = 2; (b)
K = 3; and (c) K = 4

MCMC simulations were conducted according to the  above  procedure using WinBUGS 1.4.3 (MRC
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if i < i t and  j > j t; lij > li t j , if i < i t; lij > lij t , if j > j t; (iii) lij > li t j t , if i > j and i t < j t; and (iv) li 0 > li t 0 , if

sure  were  attributed to aldicarb  exposure, with de- creases in excess of 20% compared to the individual pretest values. In total,  50 subjects  were exposed  to aldicarb  in different dosage  groups,  ranging  from  0 to  0.10 mg/kg/day.  Based  on  the  signs of choliner- gic effects, the severity was categorized into four lev- els: no effect, nonadverse effects, adverse effects, and severe  effects.  Depending on whether  whole  blood or red blood cells (RBC) were being considered, cholinesterase inhibition of 20% or more  was classi- fied as either an adverse-effect level or a nonadverse-
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i > i t. Using a standardized scale of loss with a range

effect level (NOAEL).

We focused our analysis on


between  0 and 100, Table I summarizes  a set of sug- gested loss functions for K = 2, 3, and 4.
The  following  algorithm summarizes   the  pro- posed  procedure for deriving  the BMD  for ordered categorical responses:

(1)  Estimate 	the 	probabilities	pk(d, 9), k =
0, 1,... , K using a CATREG model;
(2)  Derive  the  BMDk s by dichotomizing the re- sponses  at the cutoff for severity  level Y = k for a given BMR, k = 1,..., K;
(3)  Estimate the  critical  values  z1 ,..., zK  of the corresponding standard normal  distribution under  the null using Equation (11);
(4)  Estimate  the   expected  losses   for   actions
C1 ,..., CK   by  calculating  the  tail  probabil- ities  λk0 , λkl , l = k, l , k = 1,..., K  and  multi-
plying  them  by  the  loss  functions  given  in
Table  I (Equations (14)–(16)  and (18)–(19)). Estimate the  weights  ω = (ω1 ,..., ωK )t  and
the  BMD  of  the  fitted  model  using  Equa- tions (13) and (20).

the latter  case by treating an inhibition  of >20% as
a nonadverse effect. Fig. 2 (a) shows the frequencies of the responses for each of the dose groups when an inhibition of >20% is treated as a nonadverse effect.
The second data set is from a two-year  National Toxicology Program study of urethane/ethanol  ex- posure  in mice.(18)   Over  the  course  of the  two-year study,  groups  of 48 male  and  female  mice were  ex- posed  to 0, 10, 30, or 90 ppm urethane in the  pres- ence of 0%, 2.5%, or 5% ethanol  in drinking  water ad libitum. We analyzed  the data on urethane expo- sure effects (with 0% ethanol) on the uteruses  of fe- male mice for purposes of illustration. The exposure effects were  categorized into  five levels: none,  min- imal, mild, moderate, and  marked.  Fig. 2 (b)  shows the frequencies of the responses for each of the ure- thane  exposure  groups.
To ensure the accuracy of the computation procedure, we compared the parameter estimates obtained  using  WinBUGS  to  those   obtained  us- ing the  SAS procedure PROC CATMOD (Version
9.2, SAS Institute, Inc., Cary, NC, USA)  and the program CatReg,  which  was downloaded from  the



as none,  minimal,  mild, moderate, and  marked,  re- spectively.  The  aldicarb  exposure  data(1)  were  ana- lyzed using the original exposure  dose scale because the model fittings were essentially  the same as those in the log-transformed scale. Based on the results of the three  different computation procedures, Table II summarizes the estimates for the intercepts α and the slopes β for the parallel  linear inverse functions  L(.) of H(.)  (Equation (1))  can be expressed in the  fol- lowing form:
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Fig. 2. The  frequencies of the  ordered categorical responses for the (a) aldicarb  exposure  example,  treating inhibition  >20% as a nonadverse effect; (b) urethane exposure  example.


EPA  website.(13)  Given  a BMR  of 0.1, a CATREG model was fitted to both data sets to derive the corresponding BMD and BMDL  separately. For the aldicarb  exposure  data,  severity levels of 0, 1, 2, and
3 were assigned to the effects described as none, non- adverse,  adverse,  and severe, respectively. Similarly, for the urethane exposure  data,  severity  levels of 0,

L(k, x) = αk + β x.                    (21) Because  of the  default  setting  in SAS, the  order  of the intercept estimates  using SAS was reversed.  The
table  shows  that  the  numerical  results  of all three
procedures were  in close  agreement for  both  data sets, with the WinBUGS estimates  slightly different due to the Bayesian  approach.
Based  on the fitted model,  the tail probabilities of  the  different cutoffs  for  dose  d = 0 were  then
transformed  to  standard  normal   distributions  for the  critical values  zk, and  the  corresponding BMDk and the shifted  means  μ(BMDk) were derived  from Equations (9)–(12). The “misclassification” probabil-
ities for the cutoffs λij , i = j , were multiplied  by the
appropriate values in the  loss matrices  suggested  in
Panels (b) and (c) in Table I in the cases of K = 3 and
4, respectively. The relative  weights ωk  of the BMDk
and  the  final BMD  for the  two data  sets were  then
derived  using  Equations (13)–(20)  separately. The BMDL  was obtained as the  lower limit of the  95% confidence  interval  of the  10,000 simulated BMDs after  convergence of the  MCMC  procedure. To as- sess the numerical  stability of the proposed method, three  different models  were fit separately to both  of the data sets to derive the corresponding BMDs and BMDLs,  including the link functions  of logit, probit, and Cloglog.
Table III shows the detailed computational out- comes for the two examples using the proposed procedure to derive the corresponding BMDs and BMDLs.   For  the  aldicarb   exposure   example,   the BMDk  at  cutoffs  1, 2, and  3 for  the  three  model fittings varied  slightly, with the  probit  model  yield- ing the lowest BMDk.  Similarly, the critical values zk and the shifted  means  μ(BMDk) of the transformed normal  distribution were of approximately the same scale. The false positive errors  λk0  for the null of no effect at cutoffs 2 and 3 were both 0.9, indicating that the  probability of severity  level 1 dominated at the background exposure  dose  0. For  the  probabilities



Table II. Comparison of Parameter Estimates from the Three Model Fittings Using the Logit, Probit, and Cloglog Link Functions with the
Statistical Software  SAS, WinBUGS, and CatReg

	
	Aldicarb
	
	
	
	Urethane
	

	Model Fitting
	
	SAS
	WinBUGS
	CatReg
	
	SAS
	WinBUGS
	CatReg

	Logit
	α1
	− 14.492
	− 2.737
	− 2.512
	
	− 4.219
	− 2.962
	− 2.906

	
	α2
	− 9.324
	− 10.200
	− 9.330
	
	− 3.292
	− 3.168
	− 3.046

	
	α3
	− 2.511
	− 16.000
	− 14.501
	
	− 3.046
	− 3.491
	− 3.292

	
	α4
β
	–
144.020
	–
158.200
	–
144.119
	
	− 2.906
0.015
	− 4.554
0.0153
	− 4.219
0.015

	Probit
	α1
	− 6.998
	− 1.312
	− 1.268
	
	− 2.281
	− 1.655
	− 1.656

	
	α2
	− 4.347
	− 4.517
	− 4.348
	
	− 1.851
	− 1.757
	− 1.728

	
	α3
	− 1.267
	− 7.357
	− 7.001
	
	− 1.728
	− 1.914
	− 1.851

	
	α4
	–
	–
	–
	
	− 1.656
	− 2.387
	− 2.281

	
	β
	69.113
	72.210
	69.141
	
	0.008
	0.008
	0.008

	Cloglog
	α1
	− 12.451
	− 2.522
	− 2.350
	
	− 4.185
	− 2.974
	− 2.918

	
	α2
	− 8.647
	− 9.357
	− 8.655
	
	− 3.285
	− 3.171
	− 3.051

	
	α3
	− 2.349
	− 13.570
	− 12.463
	
	− 3.051
	− 3.483
	− 3.285

	
	α4
	–
	–
	–
	
	− 2.918
	− 4.52
	− 4.185

	
	β
	120.019
	128.500
	120.135
	
	0.014
	0.014
	0.014






misclassification errors  relative to cutoffs 2 and 3. However, the cutoff at severity  level 3 could not be easily differentiated from  the  cutoff  at level 2, and the  cutoff  at  level  2 could  not  be  easily  differenti- ated from the cutoff at level 1. Together with the sug- gested loss values listed in Panel (b) in Table I, action C1  yielded  the  smallest  loss, followed  by action  C2 , with C3  yielding the highest  loss for all three  model fittings. By taking  the weights reciprocal to the rela- tive losses, the weight for the BMDk derived  at cut- off 1 was determined to be 0.629, followed  by 0.263 at cutoff 2 and 0.108 at cutoff 3 for the logistic model, resulting in a weighted BMD of 0.027 and a BMDL of
0.023. The outcomes of the other  two model  fittings were similar.
The  original  analysis  by  Dourson et  al.(1)   ex-
cluded  the  control  group  data  at  exposure  dose  0 because  of inconsistent experimental conditions  for some of the study subjects and because it violated the proportional odds assumption, after taking log trans- formations of the data. To compare our analytical re- sults with theirs,  we also performed the analysis ex- cluding the dose 0 group. The numerical  outcomes of the analysis were similar, with final BMD and BMDL values of 0.023 and  0.018, respectively. The  analyti- cal results  obtained by treating inhibition  >20% as an adverse effect were similar and were omitted.
For  the  urethane exposure  data,  similar  to  the aldicarb  exposure  example,  the  results  of the  three model fittings were quite similar. Because the fre- quencies of the severity levels 1, 2, and 3 were all very

small for the three  dose groups (Fig. 2 (b)), the criti- cal z values were all close to each other,  except for a slightly larger z4 . As a result, the derived  BMDs and μ(BMD)s also had similar values, except that BMD4 and μ(BMD4 ) were larger than the others.  As in the analysis for the aldicarb exposure  data set, a large λ21 indicates  that the cutoff at level 2 could not be easily differentiated from the cutoff at level 1. In addition, the large relative tail probabilities of λ31 , λ32 , λ41 , λ42 , and  λ43  show  that  the  mean  shifts  at  these  cutoffs were partially overlapped. However, by adopting the loss matrix given in Panel (c) in Table I, the losses determined by taking  the  cutoffs  at the  four  levels have distinct values, yielding an ordered weight from
0.629 (level 1) to 0.064 (level 4), based  on the logis- tic model fitting. The resultant BMD and BMDL val- ues were  134.59 and  58.60, respectively. The  probit and Cloglog model fittings had similar values. Figs. 3 (a)  and  (b)  show  the  cumulative probabilities and the predicted cumulative probabilities from the logis- tic model  for the two examples  of aldicarb  and ure- thane  exposure. The  plots  suggest  that  the  propor- tional odds assumption and the model fitting, as well as the derived BMD and BMDL values, appear to be reasonable.


3.2. Simulation Studies

To assess the adequacy of the BMD and BMDL estimates  derived from the proposed method,  we ap- plied  the  method   to  continuous data  by  assigning



Table III. Computational Outcomes for the Aldicarb (Inhibition >20% as a Nonadverse Effect) and Urethane Exposure Examples Using the Logistic, Probit, and CLOGLOG Model Fittings

Aldicarb	Urethane

	
	Logistic
	Probit
	Cloglog
	
	Logistic
	Probit
	Cloglog

	z1
	1.548
	1.312
	1.424
	
	1.653
	1.655
	1.647

	z2
	3.962
	4.517
	3.756
	
	1.746
	1.757
	1.738

	z3
	5.177
	7.357
	4.704
	
	1.887
	1.914
	1.877

	z4
	–
	–
	–
	
	2.311
	2.387
	2.296

	BMD1
	0.007
	0.007
	0.007
	
	74.512
	71.212
	77.212

	BMD2
	0.050
	0.044
	0.054
	
	83.012
	78.512
	86.312

	BMD3
	0.087
	0.085
	0.087
	
	97.712
	91.012
	102.012

	BMD4
	–
	–
	–
	
	154.312
	137.112
	162.712

	μ(BMD1 )
	0.557
	0.452
	0.498
	
	0.613
	0.614
	0.609

	μ(BMD2 )
	2.681
	3.236
	2.475
	
	0.668
	0.674
	0.663

	μ(BMD3 )
	3.896
	6.076
	3.422
	
	0.759
	0.777
	0.752

	μ(BMD4 )
	–
	–
	–
	
	1.087
	1.152
	1.074

	λ10
	0.839
	0.805
	0.823
	
	0.851
	0.851
	0.850

	λ20
	0.900
	0.900
	0.900
	
	0.860
	0.861
	0.859

	λ30
	0.900
	0.900
	0.900
	
	0.870
	0.872
	0.870

	λ40
	–
	–
	–
	
	0.890
	0.892
	0.889

	λ12
	3.30 × 10−4
	2.40 × 10−5
	5.60 × 10−4
	
	0.129
	0.127
	0.130

	λ13
	1.91 × 10−6
	2.50 × 10−12
	1.30 × 10−5
	
	0.101
	0.097
	0.102

	λ14
	–
	–
	–
	
	0.045
	0.038
	0.046

	λ21 	0.129	0.027	0.147
λ23 	0.006	1.88 × 10−5	0.013
λ24 	–	–	–
λ31 	0.009	9.52 × 10−7	0.023
λ32 	0.526	0.060	0.631
λ34 	–	–	–
λ41 	–	–	–
λ42 	–	–	–
λ43 	–	–	–
	0.838
	0.837
	0.837

	
	0.111
	0.108
	0.112

	
	0.050
	0.043
	0.051

	
	0.814
	0.810
	0.815

	
	0.838
	0.836
	0.838

	
	0.060
	0.054
	0.062

	
	0.714
	0.692
	0.717

	
	0.745
	0.727
	0.747

	
	0.788
	0.777
	0.789
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 (
20.58
51.12
129.68
–
27.39
25.83
26.08
84.10
83.81
84.10
169.72
169.32
169.68
268.05
264.02
268.37
ω
1
0.629
0.605
0.641
0.629
0.642
0.641
ω
2
0.263
0.264
0.258
0.205
0.198
0.199
ω
3
0.108
0.130
0.102
0.102
0.098
0.098
ω
4
–
–
–
0.064
0.063
0.062
R
(
ω
)
39.62
36.56
39.54
68.93
66.29
66.83
BMD
0.0268
0.027
0.028
134.591
121.372
130.264
BMDL
0.0227
0.022
0.023
58.601
53.112
60.998
) (
l
(1)
20.98
20.13
l
(2)
50.27
46.09
l
(3)
122.34
93.57
l
(4)
–
–
)different severity levels and compared them with the estimates  obtained using the existing methods by an- alyzing the data as dichotomous (using the EPA’s BMDS  software(19) )  and  continuous (using  Equa- tions  (5)–(6)).  As a comparison, we also calculated the BMD  and BMDL  using the EPA’s  BMDS  soft- ware  for the  continuous data.  Assume  an exposure to a toxic chemical is expected to have a subchronic effect of elevated  blood  pressure.  A study design of
100 subjects, evenly assigned to five dose groups (i.e.,
20 subjects  per  group),  and  dose  levels of 0, 5, 10,

15, and  20 ppm were  adopted. Assume  that  the  ex- posure effect follows a simple linear dose-response model:
y = α + β x + ε, 	(22)
where the model parameters are set as α = 115, β =
1, and  the  residual  ε is normally  distributed  with a mean  of 0 and  a variance  σ 2 = 225 (i.e.,  a stan- dard deviation  σ = 15). For each subject in each dose
group, a random  measurement of systolic blood pres- sure  (SBP)  was generated using Equation (22). To
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Fig. 3. CATREG analysis using the logistic model under  the pro- portional odds assumption for the (a) aldicarb  exposure  example, treating inhibition >20% as a nonadverse effect; (b) urethane ex- posure  example.



calculate  the  BMD  and  BMDL  at  BMR  = 0.1, a single  cutoff  of  y0  = 130 mm  Hg  is determined to
define an abnormal SBP. The same cutoff was used
to dichotomize the simulated data; the logistic model of the  U.S. EPA’s  BMDS  software  was used to de- rive the  corresponding BMD  and  BMDL  in the  di-
chotomous case.(19)   Two alternative cutoffs  of y0  =
135 and  140 mm  Hg  were  chosen  as the  predeter-

mined  abnormal SBP  levels  to  derive  the  BMDs and  BMDLs   in  the  dichotomous  and  continuous data analyses. To derive the BMD of the proposed method  for the  categorical data  analysis,  three  dif- ferent   categorizing   schemes   for  different  severity levels  of  the  continuous data,  with  cutoffs  at  125,
130, and  145; 125, 135, and  150; and  130, 140, and
150 mm Hg were  adopted in the  simulations. Mea- surement values that fell within the intervals  formed by  the  consecutive   cutoffs  were  coded  as  0, 1, 2, and 3, respectively, for their  severity  levels. For ex- ample,  the  coding  with the  cutoffs  at 125, 130, and
145 are  0 if y < 125, 1 if 125 ≤ y < 130, 2 if 130 ≤
y < 145, and  3 if y ≥ 145. A  total  of 100 data  sets
were  simulated.  The  means  and  standard errors  of
the  BMDs  and  BMDLs  derived  from  the  continu- ous data, the binary data at the cutoffs y0  = 130, 135,
and  140, and  the  categorical data  corresponding to each of the  three  categorizing  schemes  are  listed  in Table  IV. Because  the  simulation  procedures were very time  consuming  (requiring a total  of approxi- mately  180 working  and  computing  hours  to  com- plete  all three  procedures on a PC with a 3.4-GHz Intel Core i7–3770 CPU),  only 100 simulations  were performed.
As shown in Table IV, the BMDs of the dichoto- mous and continuous cases were close in all the pre-
determined cutoffs of y0  = 130, 135, and 140, with the
corresponding BMDL being slightly lower for the di-
chotomous case. This may be because  the  dichoto- mous data  convey less information than  the  contin- uous data,  and thus have a larger  standard error,  as shown in the table, which leads to a lower BMDL. Depending on the cutoffs used to classify the sever- ity levels, the BMD and BMDL derived from the proposed method  for categorical data  can be either slightly smaller than, larger than, or approximately equal  to the estimates obtained by the dichotomous and continuous data  analyses.  In general,  the cutoff of severity  level  2 for  the  categorical data  appears to be deterministic for the derived BMD and BMDL values, which are approximately equal to the prede- termined cutoff in the  dichotomous and  continuous data  analyses.  Therefore, the proposed BMD  calcu- lation  method  for ordered categorical data  is quite compatible with the existing BMD calculation meth- ods in the cases of dichotomous and continuous data. However, the BMD and BMDL  derived  using the EPA’s BMDS software for continuous data with one standard deviation  as point  of departure were  sub- stantially  higher  than  those  obtained using a prede- termined cutoff(s) approach.



Table IV.  Mean BMDs and BMDLs  of 100 Simulated  Data  Points Analyzed as Dichotomous, Categorical, and Continuous; The Predetermined Cutoffs for the Dichotomous and Continuous Cases are Chosen to be 130, 135, and 140 mm Hg; Three  Scenarios of Classification of Severity Levels are Adopted for the Analysis in the Ordered Categorical Case: 125, 130, and 145; 125, 135, and 150; and
130, 140, and 150 mm Hg; The Numbers  in the Parentheses are the Corresponding Standard Errors

Categorical

Dichotomous	Cutoff Scenarioa	Continuous

	y0  = 130
	y0  = 135
	y0  = 140
	
	A
	B
	C
	
	y0  = 130
	y0  = 135
	y0  = 140	1 stdb

	BMD 	5.24 (0.82)
	7.34 (1.12)
	10.25 (1.83)
	
	5.71 (0.54)
	6.43 (0.60)
	8.33 (1.23)
	
	5.89 (0.77)
	7.58 (0.82)
	10.05 (1.04)    15.42 (4.31)

	BMDL     3.93 (0.51)
	5.55 (0.76)
	7.77 (1.11)
	
	4.94 (0.33)
	5.54 (0.37)
	6.81 (0.57)
	
	4.93 (0.37)
	6.35 (0.49)
	8.39 (0.72)    11.04 (2.18)


a The scenarios A, B, and C correspond to severity-level  cutoffs at 125, 130, 145; 125, 135, 150; and 130, 140, 150, respectively.
b The BMD and BMDL were calculated  using the EPA’s BMDS software with one standard deviation  as point of departure.
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4. DISCUSSION

In this study, by relating ordered categorical responses to multivariate censored interval  data  for a continuous variable, we show that benchmark dose calculation using  CATREG can  be  considered an extension of the  BMD  approach that  lies between the  cases of dichotomous and  continuous data.  The computation procedure is implemented using the analogue  of the cumulative probabilities of the severity levels at the background exposure  of the tail probabilities of a hypothetical standard normal distribution  with   critical   values   z1 ,..., zK .   This approach is similar to choosing a predetermined ab- normal  level as a cutoff in the cases of dichotomous and  continuous data.  As  shown  in  the  simulation study outcomes,  the derived BMD and BMDL of the proposed method  are compatible with the correspon- dent  estimates  obtained using the existing methods, which are mainly dependent on the selection  of the cutoff(s)  for abnormal severity levels (Table  IV). However, this methodology for continuous data is in essence different from the one currently  adopted by the  EPA’s  BMDS  software  and  others  suggested  in the literature,(19–21) which derive BMD (and BMDL) values as the doses with mean responses one or more standard deviations  away from the mean at the back- ground exposure level. We show in the simulation studies  that  the  BMDs  and  BMDLs  obtained using the  BMDS  software  for  continuous data  were  far more anti-conservative than those listed in Table IV. Further  investigations of  differences  between   the two approaches are needed for other  (especially nonlinear) dose-response models.
By computing  the  BMDs  at each  of the  sever- ity levels  as cutoffs,  given  a specific BMR,  we re- late the corresponding probabilities to standard nor-

mal distributions with shifted  means  μ(BMD1 ),..., μ(BMDK ).  An   overall   BMD   is  then   derived   by weighting   the  relative   tradeoffs  of  the  BMDs   at different cutoffs by the tail probabilities from the converted  normal   distributions.  The   link  expres- sion between  the probabilities estimated from the CATREG model  for  different severity  levels  and those  of a standard normal  distribution with shifted means allows one to adopt  a regular  set of loss func- tions, as suggested  in Table I. Together with the tail probabilities from the converted normal distributions for the relative tradeoffs at different cutoffs, the pro- posed  procedure can be adapted flexibly to a given severity level classification scheme, based mainly on expert   judgment.   Specifically,  a  nonadverse  effect close to the null will have a relatively larger tail prob- ability,  which will yield a higher  loss and  a smaller relative  weight  for  the  corresponding BMD  at  the cutoff for the  severity  level. In contrast, an adverse effect far from  the  null will have  a relatively  larger left-end  tail probability, which will automatically ad- just the  relative  weight  of the  corresponding BMD at the cutoff. A similar adjustment is reflected  in the tail probabilities of the  mean-shifted normal  distri- butions relative to other cutoffs for their weighting scheme to derive an overall BMD. The numerical  re- sults displayed in Table II show that the resultant rel- ative weights of the BMDs were relatively  stable for both data sets for all three  model fittings. Therefore, the proposed weighting  method  appears to be quite reasonable.
We suggest the loss function  matrices  for differ- ent severity categories  shown in Table I. The relative losses  are  considered for  general  situations,  which can be modified  by different risk assessors  to better reflect the toxicological  evidence.  For example,  if in
the case of K = 2, risk assessors have strong evidence
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that  severity  level 1, rather than  level 2, should  be selected  as the  cutoff,  then  the  derivation of BMD may be reduced directly to the case of dichotomous data.  Alternatively, more  weight  could  be adjusted by changing the losses l10  and l12  in Table  I from 50 and 30 to 5 and 3, respectively, to reduce the expected loss l (1) and  thus  put  substantially more  weight  on level 1.
The  proposed method  does  not  address  model uncertainty in deriving  an overall  BMD.  As shown in Table  III, all three  model  fittings, for the logistic, probit, and Cloglog models, yielded similar values of BMD and BMDL for both of the examples. This may be because the proposed method  transforms the pre- dicted  probabilities from  a CATREG model  fitting to a calculation of the corresponding tail probabilities of a standard normal  distribution. Therefore, deriva- tion of the BMD tends to be standardized, and model uncertainty may not be a major  issue. To develop  a model uncertainty technique for ordered categorical data, existing methods for the dichotomous(22,23) and continuous(24)  data  may be extended, and  a similar Bayesian  model averaging(25) procedure may be em- ployed.
The Bayesian  approach of the proposed method also  provides   a  natural  way  to  account   for  ex- posure  uncertainties, which are often encountered when  establishing  a dose-response relationship us- ing outcomes from  epidemiological studies.(26,27)  In many cases, adverse  effects with multiple  endpoints may  arise  from  toxicological  exposures,   for  exam- ple, child development effects related to methyl mer- cury exposure.(6,28,29) By categorizing the multiple responses into different severity levels, CATREG plays an especially  important role in integrating dif- ferent  study outcomes for risk assessment, instead  of focusing on the outcomes from one study that are not necessarily representative.
The proposed method  does not specifically con- sider  exposure   duration in  deriving  the  BMD  for a given BMR,  except  for including  the  term  in the model as a covariate  Z (Equation (1)). By definition, the  reference dose  derived  from  an  NOAEL or  a BMD is the exposure  level that is likely to be without appreciable risk over a lifetime. Furthermore, the du- ration  of acute  exposure  and its toxicological  effects may depend on cumulative exposure, and the mode of action may need to be considered, rather than sim- ply adding  an exposure  duration term  in the model. Similarly, we do not consider species to be a covariate in the model. Because of possibly different metabolic mechanisms, the  ratio  of the  administered dose  to

the biologically effective dose derived from pharma- cokinetic modeling may not be uniform across routes and across species.(30)  In addition, the mode of action may be different for different species.
Finally, because of different experimental con- ditions,  it may not  be appropriate to merge  several data sets directly for analysis, as was done with the aldicarb  exposure  data considered in this study.(1) Future studies should explore  methodologies for in- tegrating  the results from different data sets with multiple  endpoints using approaches such as meta- analysis.
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