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)Traditional approaches in drug development often use the so-called ‘one-size-fits all’ concept, where a drug is developed for treatment of patients with a particular disease. In conventional clinical tri- als, a drug is evaluated based on the average treat- ment [1]; therefore, it is unlikely  that that drug is approved for marketing if its efficacy is only for a small fraction of the population. Further- more, approved drugs are sometimes removed after the postmarketing  discovery of unexpected toxicity that was undetected in preclinical and clinical studies [2–6]. Occurrence of unanticipated adverse events may be due to the existence of a small sensitive subpopulation.  To reduce the risk of recurrence in cancer treatment, a high propor- tion of patients are subject to postsurgery adjuvant chemotherapy. However, some patients may not benefit from chemotherapy. For example, approxi- mately 70% of lung cancer patients at stage I are cured by surgery alone [7–9].
Advances in molecular technology have accel- erated understanding  of individual differences in genetic make up, opening the door to a more per- sonalized treatment of disease. The term personal- ized medicine is often referred to as ‘the right treat- ment for the right person at the right time through the right route’ [10,101]. This definition does not literally mean that every patient will receive a one- of-a-kind form of treatment; rather, it refers to an ability to classify patients  into subgroups repre- senting different disease characteristics or differ- ent responses to a specific treatment. Personalized medicine emphasizes the use of molecular profiles to aid in the selection of the most suitable treat- ment for individual patients. The main goal of

personalized medicine research is to identify those patients who are likely to benefit from particular treatments,  so that the drug/treatment would be approved/administrated selectively to achieve maximum healthcare benefits.
Pharmacogenomics  is the study of the varia- tion in benefits and adverse effects of a drug among patients by analyzing genomic profiles of individual patients/subpopulations and dis- ease characteristics at the molecular level. Phar- macogenomic studies provide the link between target treatment and target population. The goal is to predict whether an individual patient will benefit from a treatment, have an adverse response, or no response at all based on the molecular and clinical data from the patient prior to treatment.
A diagnostic test for personalized medicine attempts to classif y individual patients into separate and distinct  categories according to the disease’s conditions  in order to provide overall prognosis and make medical decisions for treatment. A theragnostic  test is a diagnos- tic test intended to link to specific therapies. For example, a theragnostic test can be a mea- sure of DNA and R NA characteristics  that are correlated with pharmacological function and/or therapeutic response for a patient [11–16]. Hence:

“…theragnostics is a treatment strategy for indi- vidual patients, which associates both a diagnostic test that identifies patients most likely to be helped or harmed by a new medication, and targeted drug
therapy based on the test results” [12].
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Theragnostics  covers principles of personal- ized medicine from drug discovery to develop- ment and clinical applications. This approach involving the codevelopment of a diagnostic test in conjunction with a drug has been recently addressed by the US FDA in Companion Diagnostic Devices [102].
Individual differences in response to treatment generally can be attributed to genetic variabil- ity, such as SNPs and copy number variations, or existing disease conditions  or stages. Cancer tumors of the same stage and primary site often differ in clinical behavior and response to thera- pies. Considerable  research has been conducted on using genetic polymorphisms  as risk factors for diseases, such  as HLA polymorphisms for hypersensitivity reactions [17], and progesterone receptor, estrogen receptor and HER2/neu as prognostic markers in breast cancer [18]. Several pharmacogenomic biomarkers with their associ- ated adverse effect susceptibility are described in FDA-approved labeling [19,103].
Personalized medicine applied molecular tech- nologies to identify genomic biomarkers in tar- get patients for assigning more effective therapies and avoiding adverse events. Development of a theragnostic test for a patient’s treatment decision involves: identification of biomarkers that can clas- sify patients into risk categories for treatment deci- sions and a validation study with patients treated according to their risk group membership. This review focuses on the methodologies to develop genomic signatures  (biomarkers)  to  classif y patients into subgroups for treatment decisions.

Personalized medicine biomarkers for treatment assignments
Personalized medicine involves the use of genomic biomarkers to classify patients  into different subgroups so that each patient can be treated according to his/her subgroup membership.

“A genomic biomarker is a measurable DNA
or RNA characteristic that is an indicator of normal biologic processes, pathogenic pro- cesses, and/or response to therapeutic or other interventions” [104].

Personalized  medicine biomarkers  def ine  a patient’s disease status or predict response to a treatment. Two commonly known personalized medicine biomarkers are prognostic and predictive biomarkers.
Prognostic biomarkers are biological measure- ments made before treatment to indicate overall disease status. Predictive biomarkers are biological

measurements made before treatment to identify which patients are likely or unlikely to benefit from a particular treatment; predictive biomark- ers are used to determine if a patient should receive a particular therapy. Predictive biomarkers are associated with responses to a specific treatment; they are treatment-specific, treatment-selection or treatment-guiding biomarkers.  Prognostic biomarkers are associated with disease outcome; they are used to help aid physicians guide patients toward a certain treatment; however, unlike predictive biomarkers they do not predict the response of the patient to the treatment.
Biomarkers have been defined and used in numerous ways for different purposes. Recently, Lin and Chen distinguished two types of bio- markers in the context of preclinical drug safety study: biomarkers of susceptibility and biomark- ers of response. Biomarkers of susceptibility indi- cate the natural characteristics of an organism that are more sensitive to a specific adverse effect or disease, or responsive to a specific chemical/ drug exposure [20,21]. In this context, biomark- ers of susceptibility (to a disease) are prognos- tic biomarkers.  Additionally, these  markers may diagnose tissue injury and can be termed diagnostic biomarkers. A biomarker of suscep- tibility can also be a predictive indicator of an individual’s response to a drug treatment. They are used to differentiate patients into subgroups based on ‘susceptibility’,  such as susceptible and nonsusceptible subgroups, or responders or nonresponders. In this context, biomarkers of susceptibility are predictive biomarkers.
Biomarkers of response are indicators of an individual’s response,  such as levels of gene expression, gene function, R NA or miR NA, which are altered by chemical exposure or drug treatment. Biomarkers of response can also be called biomarkers of effect or pharmacodynamic biomarkers. Surrogate and pharmacodynamic biomarkers can be regarded as biomarkers  of response as they are an indicator of the effect of a treatment. An important difference between the two types of biomarkers  is that biomarkers of susceptibility should be identifiable before treatment whereas biomarkers of response are identifiable only after treatment. Personalized medicine aims to identify biomarkers that indi- cate susceptibility to disease or treatment and uses these biomarkers to develop a prognostic or predictive model, depending on whether the post-treatment data are available and taken into consideration. A prognostic model is developed to infer a treatment, such as a standard or pla- cebo treatment, for patients, while a predictive
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model is developed  to determine if a specific
treatment is effective (or safe) for the patients. Development of either a prognostic or predic-
tive model test involves: biomarker identification and subgroup identification. Biomarker identi- fication, in addition to assay development  and data standardization [22–24], covers sample size in experimental design [25], marker selection and identification [26], feature selection and predic- tion algorithms for high dimensional data [27], and multiple testing [28–30]. The biomarkers can be either prognostic or predictive biomarkers, depending on if patients receive a treatment or not. Subgroup identification involves classifying patients into distinct subgroups based on the bio- markers identified. For prognostic biomarkers, each subgroup represents a risk category indicat- ing the condition of the patient’s disease and dif- ferences in phenotypic or genotypic factors. For predictive biomarkers, each subgroup is associated with the likelihood of the treatment outcome, either effective (safe) or ineffective (or harmful). This review will describe the development of prediction models to classify patients  into two subgroups: a prognostic model classifies patients into high- and low-risk groups, and a predic- tive model classifies patients  into responder and nonresponder groups. A fundamental assump- tion is that patient populations consist of two subgroups with respect to a target or standard therapy, such as responders and nonresponders to chemotherapy or susceptibility and nonsus- ceptibility to drug-induced toxicity. The working
hypotheses are as follows:
��There are end points or surrogate end points,
such  as survival  time, to indicate disease
prognosis or treatment response;
��There  exists a set of biomarkers associated with the end points or surrogate end points given in the first point that can discriminate two subgroups in the patient population prior to treatment.
The time-to-event (survival-time) response is the most commonly used end point to assess can- cer prognosis and treatment efficacy. Therefore, the methodologies described below focus on the survival outcome. The concept and approach can be applied to binary or continuous outcomes.

Prognostic model for risk group categorization
Prognostic  biomarkers  provide information regarding overall outcomes  of a disease with- out regard to a specif ied therapy. They are disease-related  biomarkers,  either a genetic

predisposition to the disease or a characteriza- tion of structural or functional changes of the body in the disease process. Demographic, clini- cal variables and American Joint Committee on Cancer (AJCC) staging information are com- monly used to assess patient’s survival risk [31–39]. Several studies have investigated whether using microarray gene-expression data alone or com- bined with clinical variables [40–45] can improve patient survival risk prediction. Acute lympho- blastic leukemia consists of various subtypes that differ considerably in their response to chemo- therapy [46]. Microarray gene-expression data has been applied to the leukemia classification [46–48] so that patients can be assigned to appropriate risk groups. The two most commonly known commercially available breast cancer prognostic assays are: the MammaPrint® test and the Onco- type DX™ assay. The MammaPrint Test uses a 70-gene expression profile to classify patients as high or low risk for cancer recurrence within
5 years [49,50]. The Oncotype assay uses reverse transcription PCR to quantify 21 genes in breast cancer tissue to derive risk score [51,52]. It should be noted that the 70-gene expression test was first developed  as a binary prediction, instead of a survival time model, to distinguish patients who would develop distant metastases within
5 years (poor prognosis) from those who would continue to be disease-free for at least 5 years (a good prognosis). There are several drawbacks to using the binary classifiers to analyze survival time [53].
The Cox’s proportional hazards regression [54] is the commonly used test to analyze the asso- ciation between survival response and predictor variables. A Cox survival model is developed to estimate a patient’s survival risk score, instead of to predict exact survival time. The estimated risk scores are used to classify patients into high- risk and low-risk groups. In the development of a prediction model, one important task is to evaluate its ability to classify future data into two risk groups according to their survival times. To evaluate a prediction model, the sample data are split into two sets, a training and a test set; the training set is used for model development and the test set is used to evaluate performance of the model developed from the training set. Several performance  measures have been used to assess the performance of the survival prediction model [55–59]. The most common approach is to compute the Kaplan–Meier estimate for each risk group, and use the log-rank test to assess significant difference between the two groups in the test set (Box  1).





The prediction model can be further evalu- ated using randomization testing and cross- validation. Randomization testing applies a resampling  technique to the sample data to assess statistical  significance of the risk groups categorized by the prediction model. Cross- validation involves repeatedly partitioning data into a training set and test set, the predictive performance  is estimated in each partition; the predictive performance is calculated by summa- rizing individual estimates over the numerous training and test partitions. Note that a split- sample validation refers to splitting the entire data into one training set and one test set, where the test set is evaluated only once (Box  2).

n�Example: breast cancer data set
Breast cancer is the most commonly diagnosed cancer in women. The death rate from breast cancer is higher than that of any other cancer except lung cancer. Treatment usually involves surgery to remove the tumor and involved lymph nodes, and frequently, surgery is followed  by endocrine therapy, radiation therapy or chemo- therapy. However, adjuvant chemotherapy has considerable  adverse  effects although it can reduce the risk of recurrence and death. Many women with earlier stage breast cancer undergo chemotherapy and benefit from it; but, some women remain disease free for 10 years without chemotherapy. A major challenge is to determine

shows the Kaplan–Meier  survival curves with the p-values from the log-rank test. The p-values of the two models are 0.1591 and 0.0395 indicat- ing reasonably good separation between the two groups using Model B.
The prediction models were further evaluated by a randomization test and multiple split-sam- ple validations  (see Box  2). The p-values of the log-rank test estimated from the randomization test, based on 10,000 permutations,  were 0.2541 and 0.0738 for Models A and B, respectively. These two p-values are similar to the corre- sponding p-values estimated from the observed data. In the split-sample validation, the sample sizes for the training:test ratio (training:test) set were (78:19), (49:48), (48:49) and (19:48) with
5000 partitions. Ta Ble  1 shows the proportion of significances at a = 0.05. It appears that the two- fold cross-validation of approximately equal size gives the largest power.

Predictive model for treatment decision
The development of a predictive model involves identification of predictive biomarkers that are associated with patients’ response to a specific treatment. Potential predictive biomarkers are identified using a Cox proportional hazards model with gene, treatment and gene–treatment interaction as predictors:

if adjuvant chemotherapy should be used.

h(t|z ) = h (t)exp(γ z + γ T + γ z T)

(1)

The van’t Veer data set [49] is used here to illus-

i	0	i i 	t

it  i

trate the development of a prognostic model for patient risk categorization. The data set contains
78 primary cancer cases, among which 44 had good prognoses and 34 had poor prognoses. An additional 19 patients include seven with good prognoses and 12 with poor prognoses. The
78 patients were used as training data to develop prediction models, and the 19 patients were used for performance evaluation. The microarray was a second-generation ink-jet oligonucleotide synthesizer containing 24,481 genes. Two gene- expression models  were developed: Model A (feature extraction) used the first five principal components from the set of 209 most signifi- cant genes, based on a predetermined selection criterion (p < 0.001); Model B (feature selec- tion) used the top ten most significant genes. A Cox model was fit to the training data set for each gene-expression model. The regression coefficients of the fitted Cox models were used to compute the predictive risk scores for each patient in the test data set and classify patients into high- and low-risk groups (see Box 1). Figur e 1

A gene is selected if the interaction z T is sig- nificant according to a predetermined criterion, say, p < 0.001 (Box  3). Note that the prognostic model only involves genomic variables while the predictive model involves genomic variables plus a treatment effect.

 (
i
)n�Example: lung cancer data set
The lung cancer data set is a microarray study [60] from the Clinical Trials Group of Canada JBR.10 [61,62]. JBR.10 was a clinical trial on early-stage non-small-cell  lung cancer patients to demonstrate benefit from adjuvant cispla- tin/vinorelbine (ACT). The microarray study was conducted from 133 frozen tumor samples consisting  of 71 ACT treated patients  and
62 untreated observation alone [60]. The authors developed a prognostic model using the first four principal components from 15 selected genes. The 15-gene signature was  able to separate observation patients into two groups with sig- nificantly different survival times. The signature was further validated with four external data sets




Box 1. Building a prognostic model for risk group categorization.
� A prediction model is developed  from the current (internal) data set with the purpose of predicting from future samples. However, future (external) samples typically are unavailable. The current samples are used in two ways: as training samples to develop the prediction model and as test (future) samples to assess performance of the prediction model. Several methods have been developed based on the Cox proportional hazards model to estimate survival risk scores for microarray data as well as threshold cutoff methods to classify patients as high or low risk [44–49]. It is well known that microarray data typically involve a large number of genes, many genes are irrelevant for prediction; using all genes to build a prediction model can suppress the predictive performance. Feature selection, selection of a subset of relevant genes to enhance predictive performance, becomes an important part in the model development. The algorithm described below represents the most common approaches for risk group categorization using the split sample approach for model validation
Algorithm
� Step I: split the sample data into two sets: a training set and a test set
� Step II: model building (training phase)
 (
i
)–  The data are first analyzed by fitting the Cox proportional hazards model: h(t|zi) = h0 (t)exp(gizi), where h0 (t) is the baseline hazard function, g is the regression coefficient for the i-th variable. The fitted coefficient is tested for the significance of the association between the variable (zi) and survival (t). A set of variables is selected based on a predetermined significance criterion, for example, p < 0.001
–  Two approaches have been used to build the prognostic prediction model: feature extraction (dimensionality reduction) or feature selection
–  Feature extraction: a multivariate Cox model is fitted to the training set using the first q principal components from the selected variables
–  Feature selection: a multivariate Cox proportional hazards model is fitted to the training set using the first q variables with the smallest p-values
 (
T
)–  A multivariate Cox proportional hazards model can be expressed as: h(t|x) =h0 (t)exp(b x), where b is a q-vector of coefficient parameters, and x is a q-vector of meta variables calculated from the feature extraction and x is a q-vector containing
gene-expression variables selected by the feature selection
–  Risk scores are computed for each sample using the regression coefficient of the fitted Cox model. The median risk score is identified
� Step III: model validation (test phase)
–  The fitted Cox model coefficients are applied to the predictors to compute risk score for each test sample
–  Patients in the test data set are categorized into two high- or low-risk groups based upon whether their predictive scores are above or below the median risk score identified from the training data
–  The log-rank test is performed to assess the ability of the model to classify the patients into two risk groups according to their survival times. A small p-value indicates a good separation between the two risk groups
Comments
� The number of test samples should be adequate for high- and low-risk group comparison
� In some publications, the univariate analysis to select a set of significance variables is performed with clinical variables in model
building
� The median of test scores or percentiles of training and test scores have been proposed as a threshold to separate high- and low-risk
groups [81–86]


containing 356 stage IB–II untreated patients.
The 15-gene signature was used to classify the
71 ACT patients into two groups of 36 high- and
35 low-risk patients. It is worth mentioning that there may be selection bias introduced because only 133 of 482 samples were profiled for the microarray analysis. Nevertheless, the authors have successfully validated the signature set for four external data sets.
In this study, the authors first identified a set of prognostic biomarkers and showed that these prognostic biomarkers are predictive for high- risk patients classified by the prognostic model. No interaction tests between the gene signature and ACT were performed. Recently, Chen et al. proposed an alternative signature based on the first principal component of approximately 90 selected genes [63]. In this study, an interaction

test between the ACT and signature was sig- nificant (p = 0.02). Those patients in the high- risk group who received ACT survived longer (p = 0.03). For the JBR.10 data set, the 15 signa- ture was developed as prognostic biomarkers [60] and also shown to be predictive that ACT pro- longed survival for the high-risk patients [60,63].

Discussion
In a two-group experiment, the genomic assay can be conducted either before the treatment or after the treatment. In oncology studies, the gene-expression  assays are conducted before the treatment (chemotherapy), while in preclinical drug-induced toxicity studies, the assays are con- ducted after the treatment, since drug-induced toxicity can only be found after exposure. When the gene-expression data are collected before the




Box 2. Internal validation of a survival prediction model.
� In the context of building a prediction model from a single study, internal validation refers to the assessment of predictive performance of the model developed from the training data and applying to the test data. It is assumed that other (external) data may be available for validation. The randomization test and cross-validation are two commonly  used techniques to evaluate and compare performance of prediction models.
Randomization test
� In survival prediction, the randomization test generates the null data set by rearranging the survival time of patients so that the
predictor variables and survival times are independent. The same analysis is then performed on the null data set, including feature selection and model fitting for the training set, risk group classification and the p-value of log-rank test on the test set. The permutation is repeated many times, to generate the distribution of permutated p-values. The observed p-value, computed from the observed data set, is compared  with the distribution of permuted p-value. The p-value of the randomization test is the fraction of permuted p-values that are smaller than the observed p-value.
Cross-validation
� Cross-validation involves randomly partitioning data into a training set and a test set; the prediction model is built on the training set
and applied to the test set. Performance is evaluated by comparing the p-value to the level of significance, for example, p < 0.05. To reduce variability, multiple training-test validations are performed using different partitions. The validation results are summarized as the proportion of the p-values less than or equal to 0.05 over the number of partitions. The approach described above is referred to as multiple split-sample validation.
� In a standard V-fold cross-validation, the entire data set is divided into V subsets of roughly equal size. The prediction model is
developed on (V – 1) subsets together as training set and then applied to the remaining subset as the test data set. The cross- validation process is then repeated V-times sequentially, with each of the V subsets used exactly once. The average of the p-values from the V subsets is computed as a single p-value estimate of the V-fold validation. However, performance evaluation of a survival prediction model is determined by whether the p-value is above or below the significance level. Evaluation should be based on individual p-values rather than the average. A simple alternative approach  is to use split-sample validation with a large number of repartitions.


treatment, both control and treatment groups would have positive (remission)  as well as nega- tive (death) outcomes. equaTion  1 without treat- ment and gene–treatment interaction terms may be applied to identifying predictive biomarkers. On the other hand, when the genomic data are collected after the treatment, any observed toxic response in the control group should be owing to background effect and unrelated to the treat- ment. It is expected that the same proportion of toxic responses would occur in the two groups. equaTion  1 can still be applied to identifying pre- dictive biomarkers. However, if the expression level was affected  by the treatment, then the regression coefficient estimates may be biased. Furthermore, there are markers that respond differently between the susceptible and non- susceptible groups after the treatment, but not differently before the treatment. These markers may not be useful since predictive markers must be identifiable before the treatment [20].
In addition to the issues of the sample size, feature selection, prediction algorithms  and multiple testing [25–30] for biomarker identifica- tion, Lin and Chen [20,21] presented an analysis of needed sample size for patient allocation. The sample size and power depends on the make up between the high- and low-risk groups in the patient population; when the minority group size is small, a large number of samples may be needed. The impact of sample quality on pre- dictive performance has been investigated in

the second phase of Microarray  Array Quality Control project (MAQC-II) [64,65]. There are additional issues regarding  assay development and sensitivity, and model assessment and vali- dation in post-hoc analysis. Genomic assays are developed to discover markers that are associated with the clinical end point of interest. Clinical end points for cancer treatment study, such as survival time and tumor reduction, are well defined. However, in drug safety studies, end points associated with drug-induced toxicity are less apparent. Sensitivity and specificity (posi- tive- and negative-predictive  values) are com- monly used and well established for evaluation binary classification models where the patients have preassigned  class labels. For continue and survival response,  a cutoff threshold to sepa- rate two groups for binary classifier develop- ment or performance assessment (e.g., log-rank test) needs to be prespecified [38]. An receiver operating characteristic analysis may be used to evaluate various cutoff thresholds [57]. However, different cutoff threshold could lead to differ- ent conclusions. Approaches to determine and evaluate cutoff are useful for model validation. Recent  development of  next-generation sequencing (NGS) technologies has provided sci- entists with new ways to extract genetic informa- tion and revealed insights regarding the genome, transcriptome and epigenome of biological sys- tems. NGS has already been used in many bio- medical research areas, review articles on NGS
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Figure 1. The Kaplan–Meier survival curves with the p-values from the log-rank test between two risk groups. (A) Model A used the first five principal components. (B) Model B used the ten most significant genes. The methodology is described in Box 1.


technologies and applications, for example, have been published [66,67]. The ongoing third-phase of the MAQC (MAQC-III) effort aims to use NGS technologies in biomarker identification and clini- cal application. One component of MAQC-III is a comparison of classification performance micro- array and NGS technologies for neuroblastoma samples from a MAQC-II study [68].

Conclusion & future perspective Personalized medicine is a rapidly advancing field of science that uses a set of either prognostic or predictive biomarkers to guide patients for treat- ment selections. Prognostic biomarkers provide information regarding overall disease outcomes to recommend to patients whether to receive a
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)‘standard’ treatment, including no treatment. Predictive biomarkers link the patient’s disease with a particular therapy. The key is theragnos- tics, the codevelopment of therapeutics and diag- nostics. As discussed, theragnostics involves two stages: diagnostic – development of a prognostic or predictive model based on a set of biomarkers; and therapeutic – validation of the model with a prospective clinical trial.
The diagnostic  stage consists of two com- ponents: model building and model validation (Box es 1 & 2). Considerable research has been con- ducted to develop prognostic or predictive mod- els for treatment selections in cancer patients.

Biostatistical and data mining techniques for predictive modeling have been well developed for model building and internal model valida- tion using currently available data [35–49]. Since models are to be applied to future samples, model performance on data generated from dif- ferent medical centers or in different days should be evaluated. A prediction model developed from one center that has been shown to perform well might not reproduce its performance when applied to data from other centers.
Cancer genomes are unstable and highly com- plicated across different individuals. Genes are dysregulated during the tumorigenic process and unexpectedly switched on and off during pro- gression. High-throughput technologies provide a snapshot of the transcriptome but the gene- expression profiles can change quickly. Such one- time detection methods usually cannot provide the complete landscape of a cancer genome with




Box 3. Identification of predictive biomarkers.
The standard statistical approach to identifying predictive markers involves fitting a generalized linear model, including treatment (T) and predictor (X) as main effects and their interaction (X × T): g(y) = g  + g z (predictor z) + g (treatment) + g (predictor × treatment), where g(y)

0	i  i

t 	it

is a link function [95]. For example, g(.) is logit link for binary end point, identity link for continue end point, and the Cox proportional
 (
it
)hazards function for survival end point. The main interest is the interaction g . A significant interaction implies differential treatment responses for the predictor zi. A set of variables is selected based on a predetermined significance criterion, for example, p < 0.001.


patients of the same disease phenotype.  There are several large-scale screening  studies [69–71] that have identified several gene signatures with high predictive performances in their original discov- ery data set, yet a recent report has indicated that these gene signatures identified from different studies are seldom in common [72]. The lack of reproducibility makes these biomarkers difficult to apply in clinical usage. There is a need to develop data-mining algorithms,  as well as measures of robustness and generalizability, to obtain consis- tent genomic signatures across different studies.
For the therapeutic evaluation stage, a prospec- tive clinical trial is required in order to ensure the effectiveness of the treatment and its clinical util- ity. Although there have been a number of publica- tions discussing the design and analysis of clinical trials for the validation of prognostic and predic- tive models [73–77], very few studies have been conducted. MammaPrint and Oncotype DX™ are among the few published studies of prognostic biomarker validation. The lack of prospective vali- dation studies is largely owing to the high cost in terms of time and resources. Another contributing factor is the lack of robustness of biomarkers to justify conducting a validation study.
Identification of biomarkers to predict drug- induced toxicity has been one of the most sig- nificant challenges  owing to complex toxic mechanisms,  especially idiosyncratic adverse drug reactions, which occur in only a small pro- portion of the population (one per 10,000 to 1 per 100,000). Drug-induced toxicity may occur during the preclinical or clinical trials, or post- marketing after drug approval. The FDA and pharmaceutical companies have been concerned with the occurrence of drug-induced toxicity. For example, over 40% of drugs terminated in the clinical phase is owing to liver toxicity [78–80]. The cost of drug-induced toxicity, such as liver or kidney injury, in heathcare expendi- ture is substantial. Approaches to prevent drugs that can cause adverse reaction before entering the marketplace are clearly needed.
Biomarkers identified based on a single data source with conventional prediction algorithms are not predictive of drug-induced toxicity. A comparison between human toxicities and clas- sical toxicity testing in multiple animal species

found only approximately 70% concordance [81]. Recently, mouse models for inflammatory diseases including trauma, burn and endotoxin have been validated to poorly mimic human models for inflammatory diseases using genomic data, which may be caused by several factors such as the dif- ferent evolutional distance and disease complex- ity between mice and humans [82]. Advancement of technologies and database resources may pro- vide powerful approaches for understanding and establishing detailed mechanisms of drug-induced toxicity. More and more studies have utilized the new technology in mechanistic evaluations and/ or in biomarker discovery [83–93]. One major chal- lenge is to develop assays to measure the biomark- ers that are related to specific toxicity end points. For example, ALT and AST are two commonly used markers to monitor liver dysfunction or injury. However, both lack sufficient sensitivity and specificity to be considered as biomarkers for liver injury. There is an additional challenge for idiosyncratic drug reactions owing to the small number of susceptibility patients. Recently, in an effort to improve drug-induced liver injury prediction, an integrated analysis was developed using all available data sources from toxicoge- nomics, in vitro assays, histopathology  findings, therapeutic uses and clinical management of side effects [94]. There is a need in preclinical/clinical drug development to develop new and innova- tive approaches to identify biomarkers that can improve compound prioritization and provide information on mechanisms to identify patient subgroups for clinical trial designs.
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Executive summary

Personalized medicine biomarkers for treatment assignment
� Personalized medicine biomarkers define patient’s genetic factors and disease status, and/or predict response to a treatment.
� Personalized medicine biomarkers can be one of two types with respect to a treatment: prognostic biomarkers and predictive
biomarkers. Both should be measured and identified before treatment.
� Prognostic biomarkers are biological measurements associated with disease status or indicating disease outcome for patients receiving
‘standard’ treatment.
� Predictive biomarkers are biological measurements used to identify which patient is likely or unlikely to benefit from a particular
treatment.
� Both types of biomarkers are used to develop prediction models to classify patients into subgroups for treatment assignment.
Prognostic biomarkers are used to assign patients into a risk category indicating the condition of the patient’s disease and/or genotypic factors. Predictive biomarkers are used to assign patients into treatment response and nonresponse groups.
Development of prediction models
� Development of a predictive model consists of two components: biomarker identification and subgroup identification.
� Biomarker identification involves using statistical or data mining techniques to select a subset of relevant predictors. Prognostic and
predictive biomarkers are identified using a generalized linear model without and with interaction, respectively.
� Subgroup identification involves developing a prediction model to classify patients into distinct subgroups based on the biomarkers
identified.
� A prediction model must be analytically validated to assess its predictability and generalizability.
� The results of a validated model are used to design a prospective clinical trial for biomarker qualification.

Conclusion
� There are very few prospective validation studies owing to the high cost and lack of reproducibility of biomarkers.
� There is a need to develop analytical approaches and measures of reproducibility to assess generalizability of prediction models.
� Identification of biomarkers to predict drug-induced toxicity presents a significant challenge in drug development given the complex
toxic mechanisms, especially idiosyncratic adverse drug reactions.
� Preclinical/clinical drug development requires the development of new and innovative approaches to identify biomarkers that can
improve compound prioritization and provide information on mechanisms that identify patient subgroups for clinical trial designs.
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