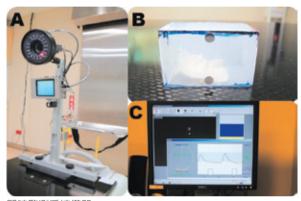
四維電腦斷層搭配呼吸調控可精確瞄準胸腔及肝臟腫瘤

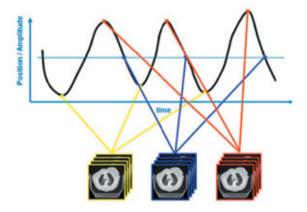
文/放射腫瘤科 醫師 朱俊男

1895年,德國物理學家侖琴意外發現X 射線,隔年,X射線即被運用於醫學診 斷,而最早的放射治療使用紀錄亦始於1896 年。放射線治療的歷史至今共約120年,隨 著1970年代電腦斷層的問世,以及最近2、 30年電腦運算速度及機械自動化的發展,放 射治療科技一日千里,已從二維治療快速發 展至今日以三維影像為基礎的強度調控放射 治療(intensity-modulated radiation therapy, IMRT)。影像的進步讓我們可以將腫瘤及正 常組織看得更清楚,治療科技的進步則進一 步提高了對腫瘤的局部控制及對正常組織的 保護。

胸腔腫瘤定位難,四維電腦斷層可搞定


強度調控放射治療是目前相當成熟的放射治療技術,然而對於胸腔腫瘤放射治療, 在提高腫瘤區域治療劑量的同時,往往會受限於肺部正常組織耐受劑量的考量。研究統計,呼吸動作由橫膈膜與許多呼吸肌肉帶動,因此胸腔腫瘤隨著呼吸起伏所連動的位 移變化可以高達1-2公分,這使得臨床上對胸 腔腫瘤,尤其是肺部腫瘤,產生定位上的不 確定性。

過去治療胸腔腫瘤所使用的電腦斷層 影像,多為病患在自由呼吸下掃描而得,然 而這樣的影像資訊只收集了呼吸週期中不特 定時期的影像訊息,並不能提供腫瘤及器官 在呼吸週期中位移變化的相關資訊。由於考 量到胸腔腫瘤會因呼吸運動而位移,影響腫 瘤邊界定義的準確性,因此後來又發展出四 維電腦斷層掃描(four dimensional computer tomography,4D-CT),以解決上述問題。


精確擷取掃瞄影像,將腫瘤看得更清楚

四維電腦斷層的原理,除了承襲一般電腦斷層掃瞄技術影像重建等優點以外,另搭配即時監測系統,以監測受檢者的即時呼吸週期。四維電腦斷層除了能擷取三維電腦斷層影像資訊,亦可同時獲得呼吸運動中不同時間軸與不同相位的影像變化資訊,並將時間訊息融合在內,得到時間軸加上X、Y、Z三維的電腦斷層影像,此即四維電腦斷層。

四維電腦斷層與傳統電腦斷層的主要 差異在於,傳統電腦斷層影像掃描容易受到 內在因素影響(如:受檢者的呼吸、心跳或 肌肉顫動等),造成影像模糊及假影,進而 降低傳統胸腔腫瘤在執行放射治療計畫時給 與劑量的準確性。四維電腦斷層將影像與時 間軸成功整合,且能精確擷取不同相位的影 像,因而能夠將腫瘤看得更加清楚。

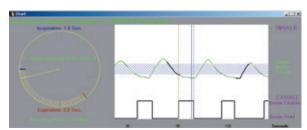
即時監測系統儀器

四維電腦斷層取像

搭配呼吸調控放射,達到最大治療效益

胸腔腫瘤放射治療就像是企圖以導彈攻 擊游擊隊一樣,儘管可以利用衛星定位確認 敵軍所在,但游擊隊會隨著時間不斷變動方 位,可能造成瞄準上的誤差。四維電腦斷層 就如同衛星定位系統,提供了放射腫瘤科醫 師更精準、更清晰的胸腔腫瘤定位及邊界, 使能依據影像做出精確完善的治療計畫,然 而要如何將放射線劑量給與在呼吸起伏中不 斷變動的腫瘤,除了四維電腦斷層掃描以 外,亦要仰賴呼吸控制調控放射治療(此 為數種作法之一),才能達到最大的治療效 益。

所謂呼吸調控放射治療是利用紅外線監 視系統(紅外線偵測相機及可反射紅外線的 標記),使放射師及醫師能從病人的呼吸週 期中獲得病人腫瘤在體內隨呼吸移動的相關


資訊,電腦則可根據 病人呼吸起伏狀態, 在呼氣末端調控直線 加速器,開啟放射 線進行精準治療,以 減少對正常組織的影響。

治療室内的即時監測系統

立體定位治療的利器,亦適用肝臟腫瘤

四維電腦斷層提供胸腔腫瘤更清晰的影像資訊,輔以呼吸調控系統則可更精確地將放射線劑量給與腫瘤所在位置。由於肝臟腫瘤位移也受呼吸運動影響甚大,因此目前此項技術適用於胸腔腫瘤及肝臟腫瘤,尤其在施行立體定位放射治療時,更是重要工具之一。以四維方式來規劃放射治療計畫及執行是大勢所趨,本院亦於2009年開始應用四維放射治療於胸腔放射治療。

呼吸調控系統會根據病人呼吸週期給予適當的放射線劑量