Title: Down-regulation of voltage-gated Ca2+ channels and depletion in Ca2+ store are Involved in the pathogenesis of diabetes mediated cytotoxicity in beta RINm5F cell

Authors: 黃家樂 Kar-Lok Wong MD,PhD^{1,2,3}, Tzu-Hui Su MS 蘇磁慧^{3,4} 蘇翔 Edmund C So, MD, PhD, 鄭嘉遜 Ka-Shun Cheng, 梁育民 Yuk-Man Leung PhD^{3,4,6}

- Institute: 1. Dept. of Anesthesia, China Medical University & Hospital, Taichung
- 2. Institute of Clinical Medical Sciences, China Medical University, Taichung
- 3. Dept. of Anesthesia, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
- 4. Graduate Institute of Neural and Cognitive Sciences, CMU, Taichung, Taiwan

Abstract

Aims:. Glucose-stimulated insulin secretion in pancreatic islet-cells is initiated by ATP-induced closure of ATP-sensitive potassium channels (K-ATP channels), subsequent depolarization and opening of voltage-gated Ca²⁺ channels (VGCC), eventually leading to insulin exocytosis. Endoplasmic reticulum (ER) stress has been implicated in both type 1 and 2 diabetes mellitus (DM), but its impact on beta-cell plasmalemmal ion channels is unknown. We investigated whether the ionic channels instrumental in insulin secretion were affected in ER-stressed RINm5F cells. **Methods:** The rat insulinoma RINm5F cells viability was measured using the MTT method. Total RNA was extracted from cells using a TRIzol kit (MDBio, Inc., Taiwan). Electrophysiological experiments were performed as in a previous report; INm5F cells were voltage-clamped using the whole-cell configuration. (Endocrinology 2005, 146; 4766). The difference was significant if p < 0.05. (ANOVA).

Results: Glucose- and KCI-stimulted Ca²⁺ signals were substantially attenuated after a 24-hr cyclopiazonic acid (CPA, a Ca2+ store depletor) treatment in microfluorimetric Ca²⁺ imaging. The VGCC currents were much reduced after a 24-h CPA treatment in the patch clamp experiments. Quantitative RT-PCR experiments showed that gene expression of alpha-1A and alpha-1C was reduced, suggesting that expression of P/Q- and L-type VGCC was down-regulated. Voltage-gated K⁺ channels, KATP channels and store-operated Ca²⁺ entry were unaffected in ER-stressed cells. Pharmacological inhibition of extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK) could not rescue the KCI-stimulted Ca²⁺ signal attenuated by ER stress.

Conclusions: It is the first time to shown that ER stress in beta-cells leads to selective down-regulation of VGCC; this process is possibly via pathways other than ERK or JNK. The deficiency in voltage-gated Ca²⁺ channels activities in ER-stressed beta cells may in part account for the pathogenesis in DM. (*Acknowledgement: This study was funded by: National Science Council of Taiwan no. NSC-101-2320-B-039-030-MY2 to KL Wong, NSC97-2320- B-039-029-MY3 to YM Leung).