中國醫藥大學藥學院

中國藥學暨中藥資源學系碩士論文

編號:ICPS-M387

指導教授:陳昱璋博士

三葉崖爬藤莖部化學成分之研究

Chemical Constituents from the Stem of *Tetrastigma formosanum*

研究生: 李奕緯

Yi-Wei Li

中華民國 102 年 7 月

誌謝

首先要誠摯的感謝我的指導教授 陳昱璋博士在我碩士班二年期間 不辭辛勞的指引實驗的方向,使得我深入了解植物化學領域的深奧, 孜 孜不倦的教導,使我在學期間獲益匪淺,老師對學問的嚴謹態度更是我 們學習的模範。

感謝口試委員高雄醫學大學香粧品學系 柯宏慧教授和中國醫藥大學生物科技學系 翁靖如教授在論文多方面給予指教與建議。

感謝本校藥學院的所辦小姐:謝怡芳小姐、龔語慧小姐在實驗上提供各種協助,提供精密的儀器設備,幫我們處理研究所的各種事務,讓 我能利用學校的各種資源。

感謝楊仲平學長、楊昌勳學長在經驗上的分享,以及協助測量實驗 數據,在我迷惘時為我解惑,感謝郭漢鵬學長指正我論文中的缺失,亦 得感謝實驗室的夥伴:月柔、于軒、佳欣、孝嘉、雪巖以及晉維,在這 兩年的日子裡,互相討論學術論文,互相分享各自實驗心得,讓我能吸 收各方面的知識,有你們的陪伴讓我的研究生涯變得絢麗多彩。

以此碩士論文獻給我摯愛的雙親,謝謝你們在這兩年間的支持與鼓 勵。

i

目	錄

誌謝i
目錄ii
圖目錄v
表目錄viii
中文摘要ix
Abstractx
壹、序言1
貳、研究動機與目的5
參、崖爬藤屬植物之成分研究與概述8
肆、結果與討論13
第一節、 化合物之分離13
第二節、 化合物之結構15
第三節、 化合物之結構鑑定16
β-Sitosterol (1) 及 stigmasterol (2) 結構鑑定16
24-Ethylcholest-4-en-3-one (3) 及 24-ethylcholest-4,22-dien-3-
one (4) 結構鑑定 19

Stigmast-5-en-3 β -ol acetate (5) \mathcal{R} stigmast-5,22-dien-3 β -ol	
acetate (6) 結構鑑定	22
(-)-6 β -Hydroxystigmasta-4-en-3-one (7) 及 (-)-6 β -	
hydroxystigmast-4,22-dien-3-one (8) 結構鑑定	25
3β-Hydroxystigmast-5-en-7-one (9)及 3β-hydroxystigmast-5,2	2-
dien-7-one (10)結構鑑定	29
(3β,5α,8α,22 <i>E</i> ,24 <i>R</i>)-5,8-Epidioxyergosta-6,22-dien-3-ol (11)	32
(-)-Lupeol (12)	35
Protocatechuic acid (13)	38
5-Carboxymellein (14)	41
α-Tocospiro B (15)	45
第四節、 化合物之生物活性	48
伍、結論	49
陸、研究材料、方法	50
第一節、 實驗儀器及藥品	50
第二節、 抽取與分離步驟	52
第三節、 藥理活性試驗	57

 化合物數據.	第四節、	
 	參考文獻	5

圖目錄

圖 1 Flora of Taiwan 第二版中對於三葉崖爬藤的形態圖解3
圖 2 開花之三葉崖爬藤4
圖 3 CH27、Hep 3B、H460、HSC-3 與 M21 五種人類癌細胞株在給予不
同濃度的三葉崖爬藤甲醇萃取物之細胞存活情形
圖 4 分液各層及經過管柱層析後各個分劃與 CH27 和 HSC-3 進行 MTT
assay 測試結果7
圖 5 萃取物分離示意圖14
圖 6 化合物結構
圖7化合物1和2之 ¹ H-NMR圖譜 (CDCl ₃ , 400 MHz)17
圖 8 化合物 1 和 2 之 EI-MS 圖譜17
圖 9 化合物 1 和 2 之 IR 圖譜
圖 10 化合物 3 和 4 之 ¹ H-NMR 圖譜 (CDCl ₃ , 500 MHz)20
圖 11 化合物 3 和 4 之 EI-MS 圖譜20
圖 12 化合物 3 和 4 之 IR 圖譜21
圖 13 化合物 5 和 6 之 ¹ H-NMR 圖譜 (CDCl ₃ , 500 MHz)23
圖 14 化合物 5 和 6 之 EI-MS 圖譜

圖	15	化合物 5 和 6 之 IR 圖譜	24
圖	16	化合物 7 和 8 之 ¹ H-NMR 圖譜 (CDCl ₃ , 500 MHz)	27
圖	17	化合物7和8之EI-MS圖譜	27
圖	18	化合物7和8之IR 圖譜	28
圖	19	化合物 9 和 10 之 ¹ H-NMR 圖譜 (CDCl ₃ , 500 MHz)	30
圖	20	化合物 9 和 10 之 EI-MS 圖譜	30
圖	21	化合物 9 和 10 之 IR 圖譜	31
圖	22	化合物 11 之 ¹ H-NMR 圖譜 (acetone-d ₆ , 500 MHz)	33
圖	23	化合物 11 之 EI-MS 圖譜	33
圖	24	化合物 11 之 IR 圖譜	34
圖	25	化合物 12 之 ¹ H-NMR 圖譜 (CDCl ₃ , 500 MHz)	36
圖	26	化合物 12 之 EI-MS 圖譜	36
圖	27	化合物 12 之 IR 圖譜	37
圖	28	化合物 13 之 ¹ H-NMR 圖譜 (acetone-d ₆ , 500 MHz)	39
圖	29	化合物 13 之 EI-MS 圖譜	39
圖	30	化合物 13 之 IR 圖譜	40

圖	31	化合物	14之	¹ H-NMR 圖譜	(acetone- <i>d</i> ₆ , 500MHz)42	2
圖	32	化合物	14之	¹³ C-NMR 圖譜	(acetone- d_6 , 100MHz)42	2
圖	33	化合物	14之	EI-MS 圖譜		3
圖	34	化合物	14之	IR 圖譜		4
圖	35	化合物	15之	¹ H-NMR 圖譜	(CDCl ₃ , 500 MHz)4	6
圖	36	化合物	15之	EI-MS 圖譜		6
圖	37	化合物	15之	IR 圖譜	4	7
				\$/ ?		

EDICAL UNITED

表目錄

表1	從崖爬藤屬中萃取出的化學成分	. 8
表 2	正己烷層樣品重量分配	52
表 3	乙酸乙酯層樣品重量分配	55

中文摘要

三葉崖爬藤 (Tetrastigma formosanum (Hemsl.) Gagnep. (葡萄科))是 一種廣布在台灣各地低海拔地區的爬藤植物。它在台灣傳統藥用主要為 治療肺炎、哮喘、肝炎、風濕和喉嚨痛等。研究顯示三葉崖爬藤莖部的 甲醇萃取物具有口腔癌細胞 HSC-3 和肺鱗狀細胞 CH27 選擇性的毒殺 活性。經過分液層析以及管柱層析甲醇萃取物以後,得知在正己烷層活 性分劃以及乙酸已酯層活性分劃具有顯著的抗癌活性。

由正已烷層活性分劃得到 10 個化合物: β -sitosterol(1)、stigmasterol (2)、24-ethylcholest-4-en-3-one (3)、24-ethylcholest-4,22-dien-3-one (4)、 (-)-6 β -hydroxystigmasta-4-en-3-one (7)、(-)-6 β -hydroxystigmast-4,22dien-3-one (8)、3 β -hydroxystigmast-5-en-7-one (9)、3 β -hydroxystigmast-5,22-dien-7-one (10)、(-)-lupeol (12)及 α -tocospiro B (15)。

由乙酸乙酯層活性分劃,得到5個化合物:stigmast-5-en-3β-ol acetate (5)、stigmast-5,22-dien-3β-ol acetate (6)、(3β,5α,8α,22E,24R)-5,8-epidioxyergosta-6,22-dien-3-ol (11)、protocatechuic acid (13)及 5-carboxymellein (15)。

其中具有負旋光之化合物 7、8 及 12 為首次分離。且由文獻得知 化合物 6、7、8、11 及 15 具有抑制不同癌症細胞株的能力。

Abstract

Tetrastigma formosanum (Hemsl.) Gagnep. (Vitaceae), a plant distributed at low altitudes of whole Taiwan, is a climbing shrub. It is used as treatments for pneumonia, asthma, hepatitis, rheumatoid, and sore throat for folk uses in Taiwan. The study showed the methanolic extract of the stem of *T. formosanun* owning the selective cytotoxic activities against human oral squamous carcinoma HSC-3 cells and human lung squamous carcinoma CH27 cells. After partition and column chromatography, the sub-fractions of *n*-hexane layer and EtOAc layer showed significantly anti-cancer activities.

Ten compounds including β -sitosterol (1), stigmasterol (2), 24ethylcholest-4-en-3-one (3), 24-ethylcholest-4,22-dien-3-one (4), (-)-6 β hydroxystigmasta-4-en-3-one (7), (-)-6 β -hydroxystigmast-4,22-dien-3-one (8), 3 β -hydroxystigmast-5-en-7-one (9), 3 β -hydroxystigmast-5,22-dien-7one (10), (-)-lupeol (12), and α -tocospiro B (15) were isolated from *n*hexane layer.

Five compounds including stigmast-5-en-3 β -ol acetate (5), stigmast-5,22-dien-3 β -ol acetate (6), (3 β ,5 α ,8 α ,22*E*,24*R*)-5,8-epidioxyergosta-6,22dien-3-ol (11), protocatechuic acid (13), and 5-carboxymellein (15) were isolated from EtOAc layer.

Among them, compounds 7, 8 and 12 owning negtive optical rotatory were first isolated. The literature showed that compounds 6, 7, 8, 11 and 15 owned the cytotoxic activities against different cancer cell lines.

壹、序言

崖爬藤屬為葡萄科植物,根據 Flora of Taiwan 第二版記載¹,全世 界約有 40 種,分布在熱帶及亞熱帶,共有 4 種分布在台灣,包括:

1. 翼柄崖爬藤 Tetrastigma alatum Li

2. 三腳 虌草 Tetrastigma dentatum (Hayata) Li

3. 三葉崖爬藤 Tetrastigma formosanum (Hemsl.) Gagnep.

4. 台灣崖爬藤 Tetrastigma umbellatum (Hemsl.) Nakai

除了三葉崖爬藤分布於琉球和台灣外,其餘三者皆為台灣固有種。 種檢索表¹

1. 小葉 3-5, 無柄; 花序織形 ························T. umbellatum

1. 小葉3, 具短柄; 花序複纖形狀之纖房花序。

- 2. 葉紙質至革質;花序光滑 ·······T. formosanum
- 2. 葉膜質;花序被毛。

3. 葉柄及小葉柄無翼;小枝被短直毛………T. dentatum

依據 Flora of Taiwan 第二版的記載¹, 三葉崖爬藤最初在西元 1895 年被 William Hemsley 命名為 Vitis formosana Hemsl.,後來在西元 1922 年被 Nakai 改為 Tetrastigma formosana (Hemsl.) Nakai,最後法國植物學 家 François Gagnepain 在西元 1977 年把此植物重新命名為 Tetrastigma formosanum (Hemsl.) Gagnep.。 三葉崖爬藤其形態為²:卷鬚單一。葉具長柄,3出複葉,膜質,小 葉具有短小葉柄,披針形,兩端均鈍,卵狀長橢圓形或長橢圓形,側小 葉基腳略為歪形,疏淺鋸齒緣,寬約2公分,長約6公分。花綠白色; 雌雄異株,聚繳花序腋出;萼先端近於全緣;花瓣4片,三角狀長橢圓 形;雌花子房4室,柱頭4裂;雄蕊4枚。漿果乾質,內藏2~4種子。

在台灣民間把三葉崖爬藤當作藥用歷史已久,與同是葡萄科的三腳 虌草 (T. dentatum)、三葉葡萄 (Vistis shifunensis)², 芸香科的三腳鱉屬 (Melicope) 多種植物因型態上有相似的地方,均被稱為三腳虌草。三葉 崖爬藤與三腳虌草明顯的差異為前者花序光滑,後者花序有毛,兩者因 型態相似,辨識困難,在民間藥用經常混用。三葉崖爬藤與三葉葡萄的 明顯差異為前者葉具有疏淺鋸齒緣,後者全緣或不明顯粗鋸齒。

三葉崖爬藤在台灣傳統藥用主要為治療肺炎、哮喘、肝炎、風濕和 喉嚨痛等²。該植物未被收錄在傳統本草典籍當中,過去也沒有人做此 植物化學成分分析,因此三葉崖爬藤非常有潛力作為研究的題材。

Pl. 361. Tetrastigma formosanum (Hemsl.) Gagnep. (VITACEAE)

1. fruiting vine; 2. flowering branch; 3.section of flower, showing disc adnate to ovary; 4. cross-section of ovary; 5. pistillate flower; 6. flowers and buds; 7. petal; 8. staminate flower; 9. stamens.

圖 1 Flora of Taiwan 第二版中對於三葉崖爬藤的形態圖解

圖2開花之三葉崖爬藤

貳、研究動機與目的

依據行政院衛生署的資料顯示,民國 100 年台灣的死亡人數占率依 序為:(1)惡性腫瘤:28.0%;(2) 心臟疾病:10.9%;(3) 腦血管疾病: 7.1%³,從上述資料中可以得知惡性腫瘤仍然在國人十大死因之首,一 直高居不下。這個資料與西方文明國家相比,其實相去不遠。因此,發 現一個有效的抗癌手段一直是醫藥學界裡的熱門話題。從天然物中萃取 或藉由合成步驟製造出有效的抗癌成分勢必是一種可行的方法。

由論文回顧中得知,同屬植物 T. hemsleyanum 具有免疫調節、保肝、 抗急性肝損傷、抗慢性肝損傷、抗關節炎、抗病毒等藥理活性之外⁴,更 有抑制人類子宮頸癌細胞 HeLa 229⁵、人類惡性黑色素瘤細胞 A375⁵、 人類胃腺癌細胞 AGS⁵、人類膀胱癌細胞 5637⁵、小鼠骨肉瘤细胞 S-180⁶、 白血病細胞 HL60⁷、白血病細胞 K562⁸ 增殖作用。因為與三葉崖爬藤是 近源植物,推測三葉崖爬藤與 T. hemsleyanum 可能具有部分相同的活性 成分。

三葉崖爬藤莖部經過甲醇萃取後,進行初步篩選人類肺鱗狀細胞 CH27、人類肝癌細胞 Hep 3B、人類肺癌細胞 H460、人類口腔癌鱗狀細 胞(HSC-3)與黑色素瘤 M21 的細胞毒活性測試發現,三葉崖爬藤的萃取 物對 HSC-3 和 CH27 細胞株具有選擇性細胞毒活性 (圖 3)。

5

圖 3 CH27、Hep 3B、H460、HSC-3 與 M21 五種人類癌細胞株在給 予不同濃度的三葉崖爬藤甲醇萃取物之細胞存活情形。

取甲醇萃取物依序用正己烷、乙酸乙酯、正丁醇和水進行分液分配 後,將正已烷層與乙酸乙酯層進行進一步的管柱層析。管柱層析後得到 的各個分劃與 CH27 和 HSC-3 細胞進行 MTT assay 測試,可以發現一些 分劃具有顯著的細胞毒活性,有部分分劃卻是促進細胞生長 (圖 4)。由 於三葉崖爬藤萃取物具有上述細胞的活性,本研究取其中具有細胞毒活 性的分劃進行更進一步的純化與解析。

 圖 4 分液各層及經過管柱層析後各個分劃與CH27和HSC-3進行MTT assay 測試結果 (24 hr, 80 μg/mL in DMSO, * p < 0.05, ** p < 0.01) (沒有數據的分層或分劃表示該分層或分劃不溶於DMSO)

MEDICA

UNIVE

參、崖爬藤屬植物之成分研究與概述

文獻回顧從崖爬藤屬中萃取出的化學成分(表 1)⁹⁻¹²,可以發現所 有的資料均來自中國,應是此屬植物在中國大陸分佈廣泛,因此經常被 做為研究題材。其中有 11 個 steroids、3 個 triterpenoids、6 個 phenylalkanoids、1 個 fatty acid、1 個 wax、2 個 tannins、5 個 flavonoids 以及1 個 ether 已被發表。

表1 從崖爬藤屬中萃取出的化學成分

Туре	Compound	Structure	Plant origin
Steroid	β-Sitosterol		<i>T. hypoglaucum⁹</i> <i>T. hemsleyanum¹⁰</i>
	Stigmast-4-en-6β-ol- 3-one		<i>T. planicaule</i> ¹¹
	7-α-Hydroxysito-		<i>T. planicaule</i> ¹¹
	Daucosterol		T. hypoglaucum ⁹ T. hemsleyanum ¹⁰
	6'-O-Benzoyldauco- sterol	$H_{0} + H_{0} + H_{0$	T. hemsleyanum ¹² T. hemsleyanum ¹⁰

Туре	Compound	Structure	Plant origin
	Neoergosterol	HO	<i>T. hemsleyanum</i> ¹⁰
	Ergosterol	HO	T. hemsleyanum ¹⁰
Triterpenoid	Erythrodiol	НО	<i>T. planicaule</i> ¹¹
	Taraxerone		T. hemsleyanum ¹⁰
	Taraxerol	HO	T. hemsleyanum ¹⁰
Phenylalkanoid	Salicylic acid	OH OH OH	<i>T. planicaule</i> ¹¹
	Vanillic acid	но он	T. planicaule ¹¹

Туре	Compound	Structure	Plant origin
	Protocatechuic acid	О НО ОН ОН	<i>T. planicaule</i> ¹¹
	Resveratrol	ОН НО ОН	T. hypoglaucum ⁹
	Gallic acid	НО О НО ОН	<i>T. hypoglaucum⁹</i> <i>T. hemsleyanum¹⁰</i>
	Ethylgallate	ОН	T. hypoglaucum ⁹
Fatty acid	Palmitic acid	HO	T. hypoglaucum ⁹
Wax	Pantacosane		T. hypoglaucum ⁹

Туре	Compound	Structure	Plant origin
Tannin	3,3'-Dimethoxy- ellagic acid-4- <i>O</i> -β-D- glucopyranoside		T. hypoglaucum ⁹
	7-O-Galloylcatechin		T. hypoglaucum ⁹
Flavonoid	Quercetin	но о он он он он	T. hemsleyanum ¹⁰
	Kaempferol	HO OH OH OH OH OH	<i>T. hemsleyanum</i> ¹⁰
	Kaempferol-3-O- neohesperidoside	HO + G + G + G + G + G + G + G + G + G +	T. hemsleyanum ¹⁰
	5,7,4'-Trimethoxy- flavone- 6α -L- O - rhamnopyranosyl- $(1\rightarrow 4)$ -arabino- pyranoside		T. hemsleyanum ¹⁰
	Catechin	HO, OH OH OH	T. hypoglaucum ⁹

Туре	Compound	Structure	Plant origin
Ether	Glycerol-2(3- methoxy-4-hydroxy- benzoic acid) ether		<i>T. planicaule</i> ¹¹

肆、結果與討論

第一節、化合物之分離

於 2008 年 10 月由台中后里與屏東獅子鄉採集三葉崖爬藤莖部 15.12 公斤,共分離出 15 個化合物,包括 11 個 steroids、1 個 triterpenoid、 1 個 phenylalkanoid、1 個 isocoumarin 及1 個α-tocopheranoid。

Steroids

β-Sitosterol (1), stigmasterol (2), 24-ethylcholest-4-en-3-one (3), 24ethylcholest-4,22-dien-3-one (4), stigmast-5-en-3β-ol acetate (5), stigmast-5,22-dien-3β-ol acetate (6), (-)-6β-hydroxystigmasta-4-en-3-one (7), (-)-6β-hydroxystigmast-4,22-dien-3-one (8), 3β-hydroxy-stigmast-5-en-7-one (9), 3β-hydroxystigmast-5,22-dien-7-one (10), (3β,5α,8α,22*E*,24*R*)-5,8epidioxyergosta-6,22-dien-3-ol (11)

Triterpenoid

(-)-Lupeol (12)

Phenylalkanoid

Protocatechuic acid (13)

<u>Isocoumarin</u>

5-Carboxymellein (14)

<u>α-Tocopheranoid</u>

 α -Tocospiro B (15)

Dried stem of Tetrastigma formasanun (15.12 kg)

圖 5 萃取物分離示意圖

第二節、化合物之結構

圖 6 化合物結構

第三節、化合物之結構鑑定

β-Sitosterol (1) 及 stigmasterol (2) 結構鑑定

化合物 1 和 2 為混合物,以二氯甲烷再結晶以後為無色針狀結晶,熔點為 136.5-137.5°C,此化合物無 UV 吸收,比旋光度為 [α]_D²⁶: -30.5°(*c* 4.07, CHCl₃), IR 光 譜(圖 9) 在 3412 cm⁻¹可以觀察到羥基吸收訊號,在 1458, 1373 cm⁻¹有烯鍵吸收訊 號, EI-MS 圖譜(圖 8) 在 *m*/*z*:414 以及 412 分別有 1 和 2 的分子離子峰訊號,可 以推測其分子量分別為 C₂₉H₅₀O 及 C₂₉H₄₈O。

¹H-NMR 圖譜 (圖 7) 顯示在 $\delta_{\rm H}$ 0.6-1.0 的範圍內有出現 6 支明顯的甲基訊號 [$\delta_{\rm H}$ 0.67 (3H, s, H-18), 0.80 (3H, d, J = 6.8 Hz, H-27), 0.83 (3H, d, J = 6.8 Hz, H-26), 0.85 (3H, t, J = 7.2 Hz, H-29), 0.91 (3H, d, J = 6.2 Hz, H-21), 1.00 (3H, s, H-19)], 因此推斷 這化合物為 stigmastanoid 之化合物。此外, 在 $\delta_{\rm H}$ 5.34 (1H, br d, H-6) 的位置有一 個烯鍵質子訊號, 在 $\delta_{\rm H}$ 3.51 (1H, m, H-3) 的位置顯示有一個接羥基的亞甲基質子訊 號,因此推定1為 β-sitosterol。在 $\delta_{\rm H}$ 5.02 (1H, dd, J = 15.2, 8.4 Hz, H-23), 5.14 (1H, dd, J = 15.2, 8.4 Hz, H-22) 顯示有一組 C-22 上之反式烯鍵訊號。因此推定化合物 2 為 stigmasterol。比對 1 和 2 的 H-3 和 H-22 的積分面積, 推算 1 和 2 的含量比約為 11:1。 綜合以上資料,經文獻 13,14 比對結果一致,可以確定 1 和 2 為 β -sitosterol 及 stigmasterol。

圖 8 化合物 1 和 2 之 EI-MS 圖譜

圖9化合物1和2之IR圖譜

24-Ethylcholest-4-en-3-one (3) 及 24-ethylcholest-4,22-dien-3-one (4) 結構鑑定

化合物 3 和 4 為混合物,以二氯甲烷再結晶以後為無色針狀結晶,熔點 76°C, UV 在 242,203 nm 有最大吸收波峰,比旋光度為 [α]²⁷:+66.5°(*c* 3.74, CHCl₃),IR 光譜 (圖 12) 在 1674 cm⁻¹有共軛酮基吸收訊號,在 1458,1375 cm⁻¹有烯鍵吸收訊 號,EI-MS 圖譜 (圖 11) 在 *m/z* 412 以及 410 分別有 3 和 4 的分子離子峰訊號,可 以推測其分子量為 C₂₉H₄₈O 及 C₂₉H₄₆O。

¹H-NMR 圖譜 (圖 10) 顯示在 $\delta_{\rm H}$ 0.8-1.2 的範圍內有出現 6 支明顯的甲基訊號 [$\delta_{\rm H}$ 0.71 (3H, s, H-18), 0.81 (3H, d, J = 7.2 Hz, H-26), 0.85 (3H, t, J = 7.4 Hz, H-29), 0.92 (3H, d, J = 6.8 Hz, H-27), 1.02 (3H, d, J = 6.4 Hz, H-21), 1.18 (3H, s, H-19)], 因此推斷 化合物為 stigmastanoid 之化合物。由 ¹H-NMR 圖譜可以發現 4 比 3 在側鏈 C-22 多 了一組反式烯鍵訊號 [$\delta_{\rm H}$ 5.03 (3H, dd, J = 15.2, 8.8 Hz, H-23), 5.15 (3H, dd, J = 15.2, 8.8 Hz, H-22)]。這兩種化合物都在 $\delta_{\rm H}$ 5.72 (1H, d, J = 0.8 Hz, H-4) 處有一個烯鍵質 子訊號,推測為共軛酮基上之烯鍵質子受到酮基的 anisotropic effect 的影響而位移 至此處。比對 3 和 4 的 EI-MS 分子離子峰相對強度,推算 3 和 4 的含量比約為 9:1。

綜合以上資料,經文獻^{15,16}比對結果一致,可確定**3**和**4**分別為24-ethylcholest-4-en-3-one 及24-ethylcholest-4,22-dien-3-one。

圖 11 化合物 3 和 4 之 EI-MS 圖譜

圖 12 化合物 3 和 4 之 IR 圖譜

Stigmast-5-en-3β-ol acetate (5) 及 stigmast-5,22-dien-3β-ol acetate (6) 結構鑑定

化合物 5 和 6 為混合物,以二氯甲烷再結晶以後為無色針狀結晶,熔點 118-119 °C,此化合物無 UV 吸收,比旋光度為 [α]²⁷: -44.1°(c 0.29, CHCl₃), IR 光譜 (圖 15) 在 1730 cm⁻¹ 有酯鍵的吸收訊號,在 1460, 1373 cm⁻¹ 有烯鍵吸收訊號。EI-MS 圖 譜 (圖 14) 在 *m/z* 397 [M-OCOCH₃]⁺與 395 [M-OCOCH₃]⁺ 分別有 5 和 6 各少了一個 醋酸根的離子峰片段。

¹H-NMR 圖譜 (圖 13) 顯示在δ_H 0.6-1.1 的範圍內有出現 6 支明顯的甲基訊號 [δ_H 0.71 (3H, s, H-18), 0.81 (3H, d, J = 7.2 Hz, H-26), 0.85 (3H, t, J = 7.4 Hz, H-29), 0.92 (3H, d, J = 6.8 Hz, H-27), 1.02 (3H, d, J = 6.4 Hz, H-21), 1.18 (3H, s, H-19)], 故推斷化 合物為 stigmastanoid 之化合物。由¹H-NMR 圖譜可以發現 6 比 5 在側鏈 C-22 多了 一組反式烯鍵訊號[δ_H 5.01 (1H, dd, J = 15.2, 8.5 Hz, H-23), 5.15 (1H, dd, J = 15.2, 8.5 Hz, H-22)]。在δ_H 2.03 (3H, s)可以發現有一支乙醯基的質子訊號。其 H-3 訊號[δ_H 4.59 (1H, m, H-3)]與β-sitosterol (1) 的 H-3 訊號[δ_H 3.51 (1H, m, H-3)]作比較, 推測受到乙 醯基的影響而往低磁場區移動。比對 5 和 6 的 H-3 和 H-22 的積分面積, 推算 5 和 6 的含量比約為 10:1。

綜合以上資料,經文獻^{13,17,18}比對結果一致,可以得知5和6分別為 stigmast-

5-en-3 β -ol acetate 及 stigmast-5,22-dien-3 β -ol acetate。

圖 14 化合物 5 和 6 之 EI-MS 圖譜

1) SHIMADZU

圖15 化合物5和6之IR 圖譜

(-)-6β-Hydroxystigmasta-4-en-3-one (7) 及
(-)-6β-hydroxystigmast-4,22-dien-3-one (8) 結構鑑定

化合物 7 和 8 為混合物,以二氯甲烷再結晶以後為無色稜晶,熔點 208-210°C, UV 在 237,203 nm 有最大吸收波峰,比旋光度為[α]²⁷: -22.4°(c 0.85, CHCl₃), IR 光譜 (圖 18) 在 3396 cm⁻¹ 有羥基的吸收訊號,在 1659 cm⁻¹ 有共軛酮基吸收訊號, 在 1441,1371 cm⁻¹ 有烯鍵吸收訊號。EI-MS 圖譜 (圖 17) 在 *m/z* 430 以及 428 分別 有 7 和 8 的分子離子峰訊號,可以推測分子量為 C₂₉H₄₈O₂ 及 C₂₉H₄₆O₂。

¹H-NMR 圖譜 (圖 16) 顯示在 $\delta_{\rm H}$ 0.7-1.4 的範圍內有出現 6 支明顯的甲基訊號 [$\delta_{\rm H}$ 0.73 (3H, s, H-18), 0.82 (3H, d, J = 7.2 Hz, H-26), 0.84 (3H, t, J = 7.2 Hz, H-29), 0.85 (3H, d, J = 7.2 Hz, H-27), 0.92 (3H, d, J = 6.4 Hz, H-21), 1.36 (3H, s, H-19)], 故推斷化 合物為 stigmastanoid 之化合物。在 $\delta_{\rm H}$ 5.80 (1H, s, H-4)有一個共軛雙鍵上的質子訊號, 而 $\delta_{\rm H}$ 4.34 (1H, br s, H-6 α)有一個接氧亞甲基的訊號。比較 6 α 以及 6 β hydroxystigmasta-4-en-3-one 的文獻 ¹⁹發現: 若為 OH-6 α , 則H-4訊號出現在 $\delta_{\rm H}$ 6.12 的位置,且 H-6 之訊號分裂為 ddd;若為 OH-6 β , 則H-4 訊號往高磁場區移動,且 H-6 之訊號為 br s。因此7和8 的 OH-6 為 β -orientation。由 ¹H-NMR 圖譜可以發現 8 比7在側鏈 C-22 多了一組反式烯鍵訊號 $\delta_{\rm H}$ 5.02 (3H, dd, J = 15.2, 8.4 Hz, H-23),
5.14 (3H, dd, J = 15.2, 8.4 Hz, H-22)。比對 7 和 8 的 H-6 和 H-22 的積分面積, 推算 7 和 8 的含量比約為 15:1。

比對文獻²⁰中的¹H-NMR 結果一致,推論7和8分別為6β-hydroxystigmasta-4en-3-one及6β-hydroxystigmast-4,22-dien-3-one。而化合物7和8比旋光度($[\alpha]_D^{27}$: -22.4°(c 0.85, CHCl₃))與文獻中所記載的($[\alpha]_D^{19}$: +30°(c 0.1, CHCl₃))²¹相反,推測為(+)-6β-hydroxystigmasta-4-en-3-one及(+)-6β-hydroxystigmast-4,22-dien-3-one 鏡像異構物 (-)-6β-hydroxystigmasta-4-en-3-one及(-)-6β-hydroxystigmast-4,22-dien-3-one。

圖 17 化合物 7 和 8 之 EI-MS 圖譜

3β-Hydroxystigmast-5-en-7-one (9)及 3β-hydroxystigmast-5,22-dien-7-one (10)結構鑑定

化合物 9 和 10 為混合物,以二氯甲烷再結晶以後為無色針狀結晶,熔點 138-140°C,UV 在 238,203 nm 有最大吸收波峰,比旋光度為[α]_D²⁶:-113.6°(c 0.27, CHCl₃), IR 圖譜 (圖 21) 在 3379 cm⁻¹ 有羥基吸收訊號,在 1658 cm⁻¹ 有共軛酮基吸收訊號, 在 1454, 1373 cm⁻¹ 有烯鍵吸收訊號,EI-MS 圖譜 (圖 20) 在 *m/z* 428 以及 426 分別 有 9 和 10 的分子離子峰訊號,可以推測分子量為 C₂₉H₄₈O₂ 及 C₂₉H₄₆O₂。

在¹H-NMR 圖譜(圖 19)當中, $\delta_{\rm H}$ 0.6-1.2 的範圍內有出現6支明顯的甲基訊號 [$\delta_{\rm H}$ 0.68 (3H, s, H-18), 0.79 (3H, d, J = 6.8 Hz, H-27), 0.81 (3H, d, J = 6.8 Hz, H-26), 0.84 (3H, t, J = 8.4 Hz, H-29), 0.92 (3H, d, J = 6.4 Hz, H-21), 1.20 (3H, s, H-19)], 故推斷化 合物為 stigmastanoid 之化合物。在 $\delta_{\rm H}$ 5.69 (1H, d, J = 1.6 Hz, H-6)處有一個烯鍵質 子訊號,推測為共軛酮基上之烯鍵質子因為受到酮基的 anisotropic effect 而位移至 $\delta_{\rm H}$ 5.69。而在 H-3 α 的質子訊號 [$\delta_{\rm H}$ 3.67 (1H, m)] 則沒有出現 anisotropic effect。由 ¹H-NMR 圖譜可以發現 10 比9 在側鏈 C-22 多了一組反式烯鍵訊號 [$\delta_{\rm H}$ 5.02 (3H, dd, J = 15.2, 8.8 Hz, H-23), 5.17 (3H, dd, J = 15.2, 8.8 Hz, H-22)]。比對 9 和 10 的 H-6 和 H-22 的積分面積,推算 9 和 10 的含量比約為 10:1。

由以上資料比對文獻²²⁻²⁴中的結果一致,9和10分別為3β-hydroxystigmast-5-

en-7-one \mathcal{B} 3 β -hydroxystigmast-5,22-dien-7-one \circ

圖 21 化合物 9 和 10 之 IR 圖譜

(3β,5α,8α,22*E*,24*R*)-5,8-Epidioxyergosta-6,22-dien-3-ol (11)

化合物 11 以丙酮再結晶以後為無色針狀結晶,熔點為 175-177°C,此化合物無 UV 吸收,比旋光度為 [α]_D²⁷: -38.5°(c 0.27, CHCl₃), IR 光譜 (圖 24) 在 3518 cm⁻¹ 有羥基吸收訊號,在 1456, 1379 cm⁻¹ 有烯鍵吸收訊號, EI-MS 圖譜 (圖 23) 在 *m*/*z* 428 有分子離子峰訊號,在 *m*/*z* 410 有一個 [M-H₂O]⁺ 離子峰訊號,可以推測分子量 為 C₂₈H₄₄O₃。

¹H-NMR 圖譜 (圖 22) 顯示化合物 11 在 $\delta_{\rm H}$ 0.7~1.1 有六支明顯的甲基訊號 [$\delta_{\rm H}$ 0.79 (3H, s, H-18), 0.80 (3H, d, J = 6.8 Hz, H-27), 0.84 (3H, d, J = 6.8 Hz, H-26), 0.87 (3H, s, H-19), 0.89 (3H, d, J = 8.0 Hz, H-28), 0.99 (3H, d, J = 6.6 Hz, H-21)], 因此推斷 這化合物為 stigmastanoid 之化合物,同時化合物 11 在 $\delta_{\rm H}$ 6.50 (1H, d, J = 8.4 Hz, H-6), 6.24 (1H, d, J = 8.4 Hz, H-7) 處有一組烯基質子訊號,推測受到 epidioxy 鍵結上 之共用電子對的影響而遷移至較低磁場區,經過與文獻²⁵比對,確認為 5 α ,8 α -epidioxy 的結構,在 $\delta_{\rm H}$ 3.75 (1H, m, H-3) 則為一個接氧亞甲基質子的訊號。比較 11 與 stigmasterol (2),可以發現在 11 中的 $\delta_{\rm H}$ 5.20 (1H, dd, J = 16.0, 7.6 Hz, H-23), 5.29 (1H, dd, J = 16.0, 7.6 Hz, H-22) 的地方極為相似但是 H-22 和 H-23 的化學位移相差 較小[2: $\delta_{\rm H}$ 5.02 (1H, dd, J = 15.2, 8.4 Hz, H-23), 5.14 (1H, dd, J = 15.2, 8.4 Hz, H-22)], 因此合理推測 11 的側鏈與 ergosterol 之側鏈雙鍵相似。

綜合以上資料,經文獻^{25,26}比對結果一致,可以確定化合物 11 為 (3β,5α,8α,22*E*,24*R*)-5,8-epidioxyergosta-6,22-dien-3-ol。

圖 23 化合物 11 之 EI-MS 圖譜

化合物 12 以甲醇再結晶以後為無色針晶,熔點 164-168°C,此化合物無 UV 吸收,比旋光度為 [α]²⁷: -36.6° (c 0.09, CHCl₃), IR 光譜 (圖 27) 在 3377 cm⁻¹ 有羥 基吸收訊號,在 1458,1379 cm⁻¹ 有烯鍵吸收訊號,在 881 cm⁻¹ 有末端烯鍵吸收訊號。 EI-MS 圖譜 (圖 26) 在 *m/z* 440 有離子峰訊號,可以推測分子量為 C₃₁H₅₂O。

由¹H-NMR 圖譜 (圖 27) 可以發現,在 $\delta_{H} 0.7 \sim 1.7$ 之間有 8 支明顯的甲基單峰 訊號 [$\delta_{H} 0.76$ (3H, s, H-23), 0.79 (3H, s, H-24), 0.83 (3H, s, H-25), 0.94 (3H, s, H-26), 0.97 (3H, s, H-27), 1.03 (3H, s, H-28), 1.68 (3H, s, H-30)]。在 $\delta_{H} 4.57$ (1H, br s, H-29b), $\delta_{H} 4.69$ (1H, br s, H-29a) 可見有一個末端雙鍵的質子訊號,以及一個受到末端烯鍵 影響的質子訊號 [$\delta_{H} 2.38$ (1H, td, J = 10.8, 5.2 Hz, H-19)]。由以上判斷化合物 12 為 lupane-type 之三萜類化合物。而在 $\delta_{H} 2.0$ 以後的低磁場範圍,除了上述的末端雙鍵 以及其相關質子訊號,只剩下 $\delta_{H} 3.19$ (1H, dd, J = 5.1, 9.9 Hz, H-3 α) 處有一個接氧亞 甲基質子的訊號,由 IR 與¹H-NMR 數據推測化合物 12 為接有一個羥基的 lupane 化 合物。

經文獻²⁷比對以後,化合物 12 為 lupeol。比對文獻²⁸中的比旋光度,發現化合物 12 測得的數據為-36.6°與文獻中的數據(+44°)不相同,推測為(+)-lupeol 的鏡像

35

圖 26 化合物 12 之 EI-MS 圖譜

圖 27 化合物 12 之 IR 圖譜

Protocatechuic acid (13)

化合物 13 以丙酮再結晶以後為褐色針晶, 熔點 191-195°C, UV 在 294, 258, 208 nm 有最大吸收波峰,且在添加鹼後,UV 吸收訊號有向長波長移動 (bathochromic shift) 的現象,顯示此為酚類化合物,IR 光譜 (圖 30) 在 3650~2250 cm⁻¹ 有很強的 羧基吸收訊號,1676 cm⁻¹ 有共軛酸之吸收訊號,在 1600, 1526 和 1466 cm⁻¹ 有苯環 吸收訊號。EI-MS 圖譜 (圖 29) 在 *m/z* 154 有分子離子峰訊號,可以推測分子量為 C₇H₆O₄。

由以上資料比對文獻²⁹,化合物 13 跟 protocatechuic acid 的結果一致,確認其結構。

圖 29 化合物 13 之 EI-MS 圖譜

圖 30 化合物 13 之 IR 圖譜

5-Carboxymellein (14)

化合物 14 為黃色粉末,熔點 189-190°C,UV 在 313.6,224.8 nm 有最大吸收波峰,且在添加鹼後,UV 吸收訊號有向長波長移動(bathochromic shift)的現象,顯示 此為酚類化合物,比旋光度為 $[\alpha]_D^{26}$: -70.7° (c 0.06, CHCl₃),IR 光譜 (圖 34) 在 3192 cm⁻¹ 有羥基吸收訊號,1697 cm⁻¹ 有共軛酯鍵的吸收訊號,1659 cm⁻¹ 有共軛酸 的訊號,1580 cm⁻¹和 1470 cm⁻¹ 有苯環的吸收訊號。EI-MS 圖譜 (圖 33) 在 *m/z* 222 有分子離子峰訊號,可以推測分子量為 C₁₁H₁₀O₅。

¹³C-NMR 光譜(圖 32) 顯示, 化合物 14 有 11 個碳原子,其中有 6 個四級碳原 子,包括兩個接酮基的甲基訊號 [δ_c 170.0 (C-11), 166.2 (C-10)], 在δ_c 20.0 (C-9)為末 端甲基訊號。由 ¹H-NMR 圖譜(圖 31), 在δ_H 6.96 (1H, d, J = 8.9 Hz, H-2), 8.19 (1H, d, J = 8.9 Hz, H-3)有一對互相偶合的鄰位的質子訊號。有一個接在次甲基(δ_H 1.78 (1H, m, H-8))上的末端甲基訊號 [δ_H 1.52 (3H, d, J = 6.3 Hz, H-9)],以及接有一個亞 甲基的訊號 [δ_H 3.05 (1H, dd, J = 3.0, 17.8 Hz, H-7b), δ_H 3.36 (1H, dd, J = 3.0, 17.8 Hz, H-7a)]。

由以上資料比對文獻^{30,31}中的結果一致,可以確定化合物 14 為 5-carboxymellein。

圖 34 化合物 14 之 IR 圖譜

a-Tocospiro B (15)

化合物 15 為無色油狀物,UV 在 233,204 nm 有最大吸收波峰,比旋光度為 [α]_D²⁷: -113.1° (c 0.12, CHCl₃), IR 光譜 (圖 37) 在 3429 cm⁻¹ 有羥基吸收訊號,在 1714 cm⁻¹ 有共軛酮基吸收訊號,在 1456,1373 cm⁻¹ 有烯鍵吸收訊號,EI-MS 圖譜 (圖 36) 在 *m*/z 462 有分子離子峰訊號,可以推測分子量為 C₂₉H₅₀O₄。

综合以上資料,經文獻³²比對結果一致,確認化合物 15為α-tocospiro B。

圖 36 化合物 15 之 EI-MS 圖譜

圖 37 化合物 15 之 IR 圖譜

47

第四節、化合物之生物活性

由文獻顯示 stigmasterol (2) 具有抗人類淋巴瘤細胞 Raji (IC₅₀ = 0.41 μM)³³、人 類皮膚癌細胞 SK-MEL-28 (IC₅₀ = 9.47 μM)³³、人類白血病細胞 K-562 (IC₅₀ = 11.14 μM)³⁴、人類前列腺癌細胞 PC-3 (IC₅₀ = 18.28 μM)³⁴、DU 145 (IC₅₀ = 22.73 μM)³⁴ 與 人類乳癌細胞 MCF7 (IC₅₀ = 21.43 μM)³³ 的生物活性。24-Ethylcholest-4,22-dien-3one (4) 具有抗人類纖維肉瘤細胞 HT-1080 (IC₅₀ = 0.3 μM)³⁵ 的生物活性。6β-Hydroxystigmasta-4-en-3-one (7) 具有抗人類結腸癌細胞 DLD-1 (IC₅₀ = 29.5 μM)³⁶ 的 生物活性。6β-Hydroxystigmast-4,22-dien-3-one (8) 具有抗小鼠病毒轉化纖維細胞 KA3IT (IC₅₀ = 10 mg/ml)³⁷ 與小鼠正常纖維細胞 NIH/3T3 (IC₅₀ = 40 mg/ml)³⁷ 的生物 活性。(3β,5α,8α,22*E*,24*R*)-5,8-Epidioxyergosta-6,22-dien-3-ol (11) 具有抗人類乳癌細 胞 MCF7 (IC₅₀ = 10 μM)³⁸ 的生物活性。α-Tocospiro B (15) 具有抗小鼠白血病細胞 P-388 (IC₅₀ = 0.83 μg/ml)³⁹ 的生物活性。

Stigmast-5-en-3β-ol acetate (5)、(+)-lupeol 及 5-carboxymellein (14) 則不具有明 顯的抗癌活性^{13,31,40}。而β-sitosterol(1)、24-ethylcholest-4-en-3-one(3)、stigmast-5,22dien-3β-ol acetate (6)、3β-hydroxystigmast-5-en-7-one (9)、3β-hydroxystigmast-5,22dien-7-one (10) 及 protocatechuic acid (13) 暫無抗癌活性之相關報告。

由於本研究並未對已分離出的化合物進行抗癌活性分析,因此有待進一步測試 化合物對 HSC-3 和 CH27 的細胞存活率之影響,以了解分層中的活性主要來自何化 合物。此外,已純化且具有生物活性的化合物,有潛力做化學合成,成為新藥開發 的前導物。 伍、結論

由三葉崖爬藤莖部甲醇萃取物可以發現具有抑制 HSC-3 和 CH27 細胞株生長的 能力。經由初步分離,得到的各個分劃經過 MTT assay 的測試也具有 HSC-3 和 CH27 細胞株的選擇性細胞毒活性,進一步使用不同的分離方法,共鑑定出 15 個化合物, 主要為固醇類,分別為β-sitosterol (1), stigmasterol (2), 24-ethylcholest-4-en-3-one (3), 24-ethylcholest-4,22-dien-3-one (4), stigmast-5-en-3β-ol acetate (5), stigmast-5,22-dien-3β-ol acetate (6), (-)-6β-hydroxystigmasta-4-en-3-one (7), (-)-6β-hydroxystigmast-4,22-dien-3-one (8), 3β-hydroxystigmast-5-en-7-one (9), 3β-hydroxystigmast-5,22-dien-7-one (10), (3β,5α,8α,22*E*,24*R*)-5,8-epidioxyergosta-6,22-dien-3-ol (11), 其他分類的化 合物包括三萜類: (-)-lupeol (12), phenylalkanoid: protocatechuic acid (13), 異香豆 素類: 5-carboxymellein (14), α-tocopheranoid: α-tocospiro B (15)。這些化合物在過 去均已經被分離並且鑑定,其中 (-)-6β-hydroxystigmasta-4-en-3-one (7), (-)-6βhydroxystigmast-4,22-dien-3-one (8) 以及 (-)-lupeol (12) 的比旋光度與文獻不同, 推測為鏡像異構物。

在文獻中顯示 stigmasterol (2)、24-ethylcholest-4,22-dien-3-one (4)、6βhydroxystigmasta-4-en-3-one、6β-hydroxystigmast-4,22-dien-3-one、(3β,5α,8α,22E, 24R)-5,8-epidioxyergosta-6,22-dien-3-ol (11) 及 α-tocospiro B (15) 具有不同的細胞 毒性,可推測此植物之抗癌活性表現由此而來。

從三葉崖爬藤莖部萃取物純化分離的化合物,有待進一步進行 CH27 和 HSC-3 細胞的細胞毒活性試驗。由於萃取物有良好的細胞毒活性,值得未來繼續純化出尚 未發現的化合物,並且探討其抗癌活性機轉。

陸、研究材料、方法

第一節、實驗儀器及藥品

核磁共振光譜儀 (Nuclear Magnetic Resonace, NMR)

- (1) Bruker DMX-500
- (2) Bruker DMX-400

高效率液相層析儀 (High Performance Liquid Chromatography, HPLC)

HITACHI

Pump: L-2130

RI detector: L-2490

Column: Merck[®] 1.50183 Hlbar[®] 250-10 Purospher[®] STAR Si (5µm)

層析材料 (Chromatographic materials)

(1)管柱層析固定相

SILICYCLE Silica Flash® Silica gel 15-35 µm, 40-63 µm

(2)薄板層析片

Merck TLC Silica gel 60F254

(3) Sephadex

Sephadex[®] LH-20

紫外線光譜儀 (UV-Vis Spectrophotometer, UV)

Shimadzu UV-160A spectrophotometer

旋光儀 (Polarimeter)

Jasco-Dip-180 Digital Polarimeter

熔點測定儀 (Melting Point, MP)

Yanaco MP-S3

質譜儀 (Mass Spectrometer, MS)

EI-MS: Finnigan/Thermo Quest MAT 95XL Mass Spectrometer

紅外線光譜儀 (Infrared Spectrometer, IR)

Shimadzu-IRPrestge-21 FT-IR

第二節、抽取與分離步驟

於2008年10月在台中后里與屏東獅子鄉採集三葉崖爬藤莖部,陰乾切片 後得15.12公斤,以甲醇萃取三次,萃取液經過減壓濃縮得到萃取物840.9g。 萃取物以同體積的正己烷、乙酸乙酯、正丁醇和水各2.5L進行液液層析。濃縮 後得到正己烷層萃取物62.5g,乙酸乙酯層萃取物66.2g,正丁醇層萃取物125.8 g,水層萃取物399.4g。

取正已烷層 62.5g以矽膠 (40-63 µm) 1.9 kg 充填的管柱作層析,從正已烷 /丙酮 99:1 開始沖提,依次增加丙酮所佔比例 (正已烷/丙酮 98:2, 97:3, 95:5, 90:10, 85:15, 80:20, 75:25, 50:50),最後以甲醇沖提,進行初步分離,每瓶以 500 mL 作收集,共收集 231 瓶,經減壓乾燥後合併,得到樣品重量為下表:

表2 正已烷層樣品重量分配

Fr.	移動相比例	重量(g)	Fr.	移動相比例	重量(g)
1	正己烷/丙酮 97:3	0.7	6	正己烷/丙酮 80:20	3.6
2	正己烷/丙酮 95:5	7.0	7	正已烷/丙酮 1:1	9.1
3	正己烷/丙酮 95:5	2.4	8	正已烷/丙酮 1:1	2.7
4	正已烷/丙酮 90:10	9.1	9	丙酮	1.2
5	正己烷/丙酮 85:15	20.5	10	甲醇	5.5

取 Fr. 4 (9.1 g) 以甲醇洗晶得到甲醇可溶物 Fr. 4-P (8.6 g)以矽膠 (15-35 μm) 300 g,移動相以正已烷/氯仿 1:1 開始沖提,並以氯仿和甲醇依序沖提,得到 6 個 fractions。取 Fr. 4-P-3 (1.8 g) 以矽膠 (15-35 μm) 90 g,移動相以正已烷/氯仿 /丙酮 10:10:1 開始沖提,得到 3 個 fractions。取 Fr. 4-P-3-2 (1.6 g) 以矽膠 (1535 μm) 90 g,移動相以正已烷/氯仿/丙酮 20:5:1 開始沖提,得到 5 個 fractions。 取 Fr. 4-P-3-2-2 (245.7 mg) 以矽膠 (15-35 μm) 90 g,移動相以 二氯甲烷開始 沖提,得到 4 個 fractions。取 Fr. 4-P-3-2-2-4 (159.2 mg)以 prep. TLC 進行純化, 展開劑 正已烷/氯仿/丙酮 10:10:1 展開,得到化合物 (-)-lupeol (12) (9.5 mg)。

取 Fr. 4-P-4 (3.9 g) 以矽膠(15-35 μm) 200 g,移動相以正已烷/氯仿/丙酮 20:5:1 開始沖提,得到3個 fractions。取 Fr. 4-P-4-1 (2.9 g) 以矽膠 (15-35 μm) 90 g,移動相從二氯甲烷/乙酸乙酯 80:1 依次增加乙酸乙酯比例 (二氯甲烷/乙 酸乙酯 80:1,40:1,20:1),最後依序加入乙酸乙酯與甲醇進行沖提,得到10 個 fractions。取 Fr. 4-P-4-1-2 (208.4 mg),以 HPLC 流速1 mL/min,移動相為正已 烷/乙酸乙酯 10:1 進行純化,得到10 個 fractions。取 Fr. 4-P-4-1-2-4 (7.8 mg) 以 prep. TLC 進行純化,展開劑正已烷/乙酸乙酯 10:1,得到α-tocospiro B (15) (3.9 mg)。

取 Fr. 4-P-4-1-6 (199.6 mg) 以矽膠 (15-35 μm) 80g,移動相以二氯甲烷/乙酸乙酯 20:1 開始沖提,得到4個 fractions。取 Fr. 4-P-4-1-6-2 (84.2 mg) 以矽膠 (15-35 μm) 80g,移動相以正已烷/氯仿/丙酮 20:5:1 開始沖提,得到化合物 24-ethylcholest-4-en-3-one (3) 及 24-ethylcholest-4,22-dien-3-one (4) 的混合物 (72.8 mg)。

取 Fr. 5 (20.5 g) 以矽膠 (15-35 μm) 600 g,移動相以正已烷/乙酸乙酯 99:1 開始沖提,依次增加乙酸乙酯比例 (正己烷/乙酸乙酯 98:2,97:3,95:5,90:10, 80:20,70:30,50:50) 最後依序加入乙酸乙酯與甲醇進行沖提,得到 15 個 fractions。 取 Fr. 5-9 (1.1 g) 以矽膠 (15-35 μm) 70 g,移動相以氯仿/甲醇 50:1 開始沖提, 得到β-sitosterol (1) 和 stigmasterol (2) 的混合物 (690.2 mg)。 取 Fr. 7 (9.1 g) 以矽膠 (15-35 μm) 300 g,移動相以氯仿/丙酮 20:1 開始沖 提,得到 10 個 fractions。取 Fr. 7-7 (1.5 g) 以矽膠 (15-35 μm) 110 g,移動相以 正已烷/乙酸乙酯 1:1 開始沖提,得到 9 個 fractions。取 Fr. 7-7-3 (604.8 mg) 以 矽膠 (15-35 μm) 100 g,移動相以氯仿/甲醇 20:1 開始沖提,得到 4 個 fractions。 取 Fr. 7-7-3-2 (665.4 mg) 以矽膠 (15-35 μm) 85 g,移動相以氯仿/丙酮 10:1 開 始沖提,得到 6 個 fractions。取 Fr. 7-7-3-2-4 (152.7 mg) 得到甲醇難溶物(-)-6β-hydroxystigmasta-4-en-3-one (7) 和 (-)-6β-hydroxystigmast-4,22-dien-3-one (8) 的混合物 (22.8 mg)。

取 Fr. 7-7-5 (0.1 g) 得到甲醇不溶物 Fr. 7-7-5-C (11.3 mg)。取 Fr. 7-7-5-C 以 prep. TLC 進行純化,展開劑為二氯甲烷/丙酮 20:1 展開兩次,得到 3βhydroxystigmast-5-en-7-one (9) 和 3β-hydroxystigmast-5,22-dien-7-one (10) 的混 合物 (6.1 mg)。

取乙酸乙酯層 66.2g 以矽膠 (40-63 µm)取 2.0 kg 充填的管柱作層析,從二 氯甲烷開始沖提,依次增加甲醇所佔比例 (二氯甲烷/甲醇 99:1,98:2,97:3,95:5, 90:10,80:20),最後以甲醇沖提,進行初步分離,每瓶以 500 mL 作收集,共收 集 234 瓶,經減壓乾燥後合併,得到樣品重量為下表:

Fr.	移動相比例	重量(mg)	Fr.	移動相比例	重量(mg)
1	二氯甲烷	0.02	12	二氯甲烷/甲醇 95:5	1.7
2	二氯甲烷	0.9	13	二氯甲烷/甲醇 95:5	4.5
3	二氯甲烷	0.7	14	二氯甲烷/甲醇 95:5	3.4
4	二氯甲烷	1.7	15	二氯甲烷/甲醇 90:10	7.2
5	二氯甲烷	0.3	16	二氯甲烷/甲醇 90:10	2.0
6	二氯甲烷	0.7	17	二氯甲烷/甲醇 90:10	2.2
7	二氯甲烷	0.6	18	二氯甲烷/甲醇 90:10	0.9
8	二氯甲烷	1.0	19	二氯甲烷/甲醇 80:20	0.1
9	二氯甲烷/甲醇99:1	3.2	20	甲醇	3.6
10	二氯甲烷/甲醇 99:1	1.0	21	甲醇	12.2
11	二氯甲烷/甲醇98:2	1.5			

表3 乙酸乙酯層樣品重量分配

取 Fr. 4 (1.7 g) 以矽膠 (15-35 μm) 85 g,移動相以正己烷/丙酮 5:1 開始沖 提,得到6個 fractions。取 Fr. 4-2 (1.2 g) 以矽膠 (15-35 μm) 80 g,移動相以正 己烷/乙酸乙酯 10:1 開始沖提,得到3個 fractions。取 Fr. 4-2-1 (1.0 g) 以 HPLC 流速 1 mL/min,移動相為正己烷/乙酸乙酯 10:1 進行純化,得到3個 fractions。 取 Fr. 4-2-1-2 (922.0 mg) 以 HPLC 流速 0.5 mL/min,移動相為正己烷/乙酸乙酯 40:1 進行純化,得到 stigmast-5-en-3β-ol acetate (5) 和 stigmast-5,22-dien-3β-ol acetate (6) 的混合物 (6.7 mg)。

取 Fr. 12 (1.7 g) 以矽膠 (15-35 μm) 85 g,移動相從氯仿/丙酮 99:1 開始沖 提,依序提高丙酮比例 (95:5,90:10),得到 8 個 fractions。取 Fr. 12-6 (180.4 mg) 以矽膠 (15-35 μm) 90 g,移動相正已烷/丙酮 5:1 開始沖提,得到 5 個 fractions。 取 Fr. 12-6-2 (92.2 mg) 得到甲醇不溶物 Fr. 12-6-2-C,以 HPLC 流速 1 mL/min, 移動相為正已烷/乙酸乙酯 1:1 進行純化,得到 (3β,5α,8α,22E,24R)-5,8epidioxyergosta-6,22-dien-3-ol (11) (6.6 mg)。

取 Fr. 12-8 (596.9 mg) 以 sephadex LH-20 (丙酮) 進行純化,得到 5carboxymellein (14) (4.8 mg)。

取 Fr. 15 (7.2 g) 以矽膠 (15-35 µm) 180 g,移動相正已烷/丙酮 1:1 開始沖 提,得到 5 個 fractions。取 Fr. 15-3 (1.6 g) 以矽膠 (15-35 µm) 90 g,移動相以 正己烷/乙酸乙酯 1:1 開始沖提,得到 6 個 fractions。取 Fr. 15-3-3 (195.4 mg) 以 HPLC 流速 1 mL/min,移動相為正己烷/丙酮 1:1 進行純化,得到 protocatechuic acid (13) (3.6 mg)。

第三節、藥理活性試驗

(細胞毒活性試驗由中國醫藥大學藥學院藥學系李鳳琴 教授進行)

完全培養液 (complete medium)

CH27 與 Hep 3B 細胞株之完全培養液: DMEM medium (Gibco, USA)中含 有 10 U/ml penicillin、10% fetal bovine serum (FBS)、10 g/ml streptomycin 及 100 M non-essential amino acid。

H460 細胞株之完全培養液: DMEM medium 中含有 10 U/ml penicillin、5% FBS、10 g/ml streptomycin 及 100 M non-essential amino acid。

HSC-3 細胞株之完全培養液: 10 U/ml penicillin、DMEM/F12(1:1) medium (Gibco, USA)中含有 10% FBS、10 g/ml streptomycin 及 100 M non-essential amino acid。

M21 細胞株之完全培養液: 10 U/ml penicillin、RPMI1640 medium (Gibco, USA)中含有 10% FBS、10 g/ml streptomycin 及 100 M non-essential amino acid。

<u>細胞培養 (cell culture)</u>

人類癌細胞株以 1×10⁶ 個種植於 10 公分的培養皿中(除 CH27 細胞株另外 以 1.7×10⁶ 個),以各自之完全培養液在 5% CO₂、37℃的環境下培養,每隔 48 小時以 TEG (2.5 mM EDTA、0.05% trypsin 及 2.8 mM glucose)作用 1.5 分鐘, 將細胞打散,重新種植於培養皿中作繼代培養。

細胞存活測試 (cell viability assay)

CH27、H460、Hep 3B、M21、HSC-3 等五種人類癌細胞株分別以 5.5×10⁴、 3×10⁴、3×10⁴、3×10⁴、4×10⁴ 個種植於 24 孔盤中,培養 48 小時後,細胞以指定 濃度的欲篩選植物之甲醇萃取物或單離之純化合物處理 24 小時(對照組給予 0.1% DMSO)。經藥物處理過後的細胞,以 PBS 清洗一次,加入 MTT 試劑 [3- (4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazoliumbromide, 2.4×10⁻⁴ M],培養 1 小時,然後再以 PBS 清洗 2 次,加入 DMSO 溶解產物 formazan 後,以 570 nm 的波長在 ELISA reader 下讀取吸光值。

第四節、化合物數據

<u>β-Sitosterol (1) & stigmasterol (2)</u>

Colorless needle. M.p. 136.5-137.5 °C (CH₂Cl₂). $[\alpha]_D^{26}$: -30.5° (*c* 4.07, CHCl₃) (lit.¹⁴ $[\alpha]_D^{20}$: -33.1° (*c* 0.1, CHCl₃)). IR: v_{max} (KBr) cm⁻¹ = 3412 (-OH), 2945, 2870, 1658, 1458 (C=C), 1373 (C=C), 1055. ¹H-NMR (CHCl₃, 400 MHz) δ : 1: 0.67 (3H, s, H-18), 0.80 (3H, d, *J* = 6.8 Hz, H-27), 0.83 (3H, d, *J* = 6.8 Hz, H-26), 0.85 (3H, t, *J* = 7.2 Hz, H-29), 0.91 (3H, d, *J* = 6.2 Hz, H-21), 1.00 (3H, s, H-19), 3.51 (1H, m, H-3), 5.34 (1H, br d, H-6). δ : 2: 0.67 (3H, s, H-18), 0.80 (3H, d, *J* = 6.8 Hz, H-27), 0.83 (3H, d, *J* = 6.8 Hz, H-26) 0.85 (3H, t, *J* = 7.2 Hz, H-29), 0.91 (3H, d, *J* = 6.2 Hz, H-21), 1.00 (3H, s, H-19), 3.51 (1H, m, H-3), 5.02 (1H, dd, *J* = 15.2, 8.4 Hz, H-23), 5.14 (1H, dd, *J* = 15.2, 8.4 Hz, H-22), 5.34 (1H, br d, H-6). EI-MS *m/z* (rel. int.): 1: 414 [M]⁺ (100), 2: 412 [M]⁺ (23), 396 (47), 303 (51), 145 (47), 135 (43), 107 (64), 95 (61), 93 (40), 91 (44), 81 (60), 69 (49), 57 (52), 55 (61).

24-Ethylcholest-4-en-3-one (3) & 24-ethylcholest-4,22-dien-3-one (4)

Colorless needle. M.p. 76 °C (CH₂Cl₂). UV λ_{max}^{MeOH} (log ε): 242 (4.17), 203 (3.79) nm. IR: v_{max} (KBr) cm⁻¹ = 2947, 2866, 1724, 1674 (C=O), 1620, 1458, 1375, 1271, 1231, 1186, 1123, 960, 866. [α]_D²⁷: +66.5 °(*c* 3.74, CHCl₃) (lit.¹⁶ [α]_D²⁵: +83 °(*c* 0.5, CHCl₃)). ¹H-NMR (CDCl₃, 500 MHz) δ : **3**: 0.71 (3H, s, H-18), 0.81 (3H, d, *J* = 7.2 Hz, H-26), 0.85 (3H, t, *J* = 7.4 Hz, H-29), 0.92 (3H, d, *J* = 6.8 Hz, H-27), 1.02 (3H, d, *J* = 6.4 Hz, H-21), 1.18 (3H, s, H-19), 5.72 (1H, d, *J* = 0.8 Hz, H-4). δ : **4**: 0.71 (3H, s, H-18), 0.81 (3H, d, *J* = 7.2 Hz, H-26), 0.85 (3H, t, *J* = 7.4 Hz, H-29), 0.92 (3H, d, *J* = 6.8 Hz, H-27), 1.02 (3H, d, *J* = 6.4 Hz, H-21), 1.18 (3H, s, H-19), 5.03 (1H, dd, *J* = 15.2, 8.8 Hz, H-23), 5.15 (1H, dd, *J* = 15.2, 8.8 Hz, H-22), 5.72 (1H, d, *J* = 0.8 Hz, H-4). EI-MS *m/z* (rel. int.): **3**: 412 [M]⁺ (78), **4**: 410 [M]⁺ (9), 229 (64), 124 (100).

Stigmast-5-en-3B-ol acetate (5) & stigmast-5,22-dien-3B-ol acetate (6)

Colorless needle. M.p. 118-119 °C (CH₂Cl₂). $[\alpha]_D^{27}$: -44.1° (*c* 0.29, CHCl₃) (lit.¹⁸ $[\alpha]_D^{25}$: -43° (*c* 0.85, CHCl₃)). IR: v_{max} (KBr) cm⁻¹ = 3441, 2943, 2864, 1730 (ester), 1653, 1460, 1373, 1256, 1132, 1037. ¹H-NMR (CDCl₃, 500 MHz) δ : **5**: 0.68 (3H, s, H-18), 0.78-0.86 (9H, m, H-26, H-27 and H-29), 0.92 (3H, d, H-21), 1.01 (3H, s, H-19), 2.03 (3H, s, COCH₃), 2.32 (2H, d, *J* = 71 Hz, H-4), 4.59 (1H, m, H-3), 5.37 (1H, d, *J* = 4.3 Hz, H-6). δ : **6**: 0.68 (3H, s, H-18), 0.78-0.86 (9H, m, H-26, H-27 and H-29), 0.92 (2H, d, *J* = 7.05 Hz, H-6). δ : **6**: 0.68 (3H, s, H-19) 2.03 (3H, s, COCH₃)], 2.32 (2H, d, *J* = 7.05 Hz, H-4), 4.59 (1H, m, H-3), 5.01 (1H, dd, *J* = 15.2, 8.5 Hz, H-23), 5.15 (1H, dd, *J* = 15.2, 8.5 Hz, H-22), 5.37 (1H, d, *J* = 4.3, H-6). EI-MS *m*/*z* (rel. int.): **5**: 397 [M-OCOCH₃]⁺ (32), **6**: 395 [M-OCOCH₃]⁺ (3), 396 (100), 147 (24), 81 (21).

<u>(-)-6β-Hydroxystigmasta-4-en-3-one (7) & (-)-6β-hydroxystigmast-4,22-dien-3-one</u> (8)

Colorless prism. M.p. 208-210 °C (CH₂Cl₂). UV $\lambda_{\text{max}}^{\text{MeOH}}$ (log ε):237 (4.13), 203 (3.85) nm. [α]_D²⁷: -22.4° (*c* 0.85, CHCl₃) (lit.²¹ [α]_D¹⁹: +30° (*c* 0.1, CHCl₃)). IR: v_{max} (KBr) cm⁻¹ = 3495, 3396 (-OH), 2936, 2857, 1659 (C=O), 1440, 1371, 1033. ¹H-NMR (CDCl₃, 500 MHz) δ : 7: 0.73 (3H, s, H-18), 0.82 (3H, d, *J* = 7.2 Hz, H-26), 0.84 (3H, t, *J* = 7.2 Hz, H-29), 0.85 (3H, d, *J* = 7.2 Hz, H-27), 0.92 (3H, d, *J* = 6.4 Hz, H-21), 1.36 (3H, s, H-19), 4.34 (1H, br s, H-6 α), 5.80 (1H, s, H-4). δ : **8**: 0.73 (3H, s, H-18), 0.81 (3H, d, *J* = 7.2 Hz, H-26), 0.84 (3H, t, *J* = 7.2 Hz, H-29), 0.85 (3H, d, *J* = 7.2 Hz, H-27), 0.92 (3H, d, *J* = 6.4 Hz, H-21), 1.36 (3H, s, H-19), 4.34 (1H, br s, H-6 α), 5.02 (3H, dd, *J* = 15.2, 8.4 Hz, H-23), 5.14 (3H, dd, *J* = 15.2, 8.4 Hz, H-22), 5.80 (1H, s, H-4). EI-MS *m*/*z* (rel. int.): 7: 428 [M]⁺ (100), **8**: 426 [M]⁺ (1), 152 (32).

<u>3β-Hydroxystigmast-5-en-7-one (9) & 3β-hydroxystigmast-5,22-dien-7-one (10)</u>

Colorless needle. M.p. 138-140 °C (CH₂Cl₂). UV λ_{max}^{MeOH} (log ε): 238 (4.08), 203 (3.76) nm. [α]_D²⁶: -113.6° (*c* 0.27, CHCl₃) (lit.²⁴ [α]_D²⁵: -105.6° (*c* 0.02, CHCl₃)). IR: ν_{max} (KBr) cm⁻¹ = 3379 (OH), 2949, 2873, 1658 (C=C), 1454, 1373, 1307, 1186, 1063. ¹H-NMR (CDCl₃, 500 MHz) δ : **9**: 0.68 (3H, s, H-18), 0.79 (3H, d, *J* = 6.8 Hz, H-27), 0.81 (3H, d, *J* = 6.8 Hz, H-26), 0.84 (3H, t, *J* = 8.4 Hz, H-29), 0.92 (3H, d, *J* = 6.4 Hz, H-21), 1.20 (3H, s, H-19), 3.67 (1H, m, H-3), 5.69 (1H, d, *J* = 1.6 Hz, H-6). δ : **10**: 0.68 (3H, s, H-18), 0.79 (3H, d, *J* = 6.8 Hz, H-27), 0.81 (3H, d, *J* = 6.8 Hz, H-26), 0.84 (3H, t, *J* = 8.4 Hz, H-29), 0.92 (3H, d, *J* = 6.4 Hz, H-21), 1.20 (3H, s, H-19), 3.67 (1H, m, H-3), 5.02 (3H, dd, *J* = 15.2, 8.8 Hz, H-23), 5.17 (3H, dd, *J* = 15.2, 8.8 Hz, H-22), 5.69 (1H, d, *J* = 1.6 Hz, H-6). EI-MS *m/z* (rel. int.): **9**: 428 [M]⁺ (100), **10**: 426 [M]⁺ (5), 257 (23), 192 (25), 161 (22).

(3β,5α,8α,22E,24R)-5,8-Epidioxyergosta-6,22-dien-3-ol (11)

Colorless needle. M.p. 175-177 °C (acetone). $[\alpha]_D^{26}$: -38.5° (*c* 0.08, CHCl₃) (lit.²⁶ $[\alpha]_D^{20}$: -30° (*c* 0.06, CHCl₃)). IR: v_{max} (KBr) cm⁻¹ = 3518 (-OH), 3347, 2945, 2878, 1724 (C=O), 1653, 1456 (C=C), 1379 (C=C), 1043, 960. ¹H-NMR (acetone-*d*₆, 500 MHz) &total 0.79 (3H, s, H-18), 0.80 (3H, d, *J* = 6.8 Hz, H-27), 0.84 (3H, d, *J* = 6.8 Hz, H-26), 0.87 (3H, s, H-19), 0.89 (3H, d, *J* = 8.0 Hz, H-28), 0.99 (3H, d, *J* = 6.6 Hz, H-21), 5.11 (1H, dd, *J* = 16.0, 7.6 Hz, H-23), 5.18 (1H, dd, *J* = 16.0, 7.6 Hz, H-22), 6.23 (1H, d, *J* = 8.4 Hz, H-7), 6.49 (1H, d, *J* = 8.4 Hz, H-6). EI-MS *m*/*z* (rel. int.): 428 [M]⁺ (6), 396 (48), 372 (68), 139 (47), 91 (100), 81 (43), 69 (87), 55 (60).

(-)-Lupeol (12)

Colorless needle. M.p. 164-168 °C (methanol). $[\alpha]_D^{27}$: -36.6° (*c* 0.09, CHCl₃) (lit.²⁸ $[\alpha]_D^{20}$: +44° (*c* 0.026, CHCl₃)). IR: v_{max} (KBr) cm⁻¹ = 3377 (-OH), 2935, 2662, 1458, 1379,
1184, 1095, 1038, 982, 881 (=CH₂). ¹H-NMR (CDCl₃, 500 MHz) δ : 0.76 (3H, s, H-23), 0.79 (3H, s, H-24), 0.83 (3H, s, H-25), 0.94 (3H, s, H-26), 0.97 (3H, s, H-27), 1.03 (3H, s, H-28), 1.68 (3H, s, H-30), 2.37 (1H, td, J = 10.8, 5.2 Hz, H-20β), 3.19 (1H, dd, J = 5.1, 9.9 Hz, H-3 α), 4.57 (1H, br s, H-29b), 4.69 (1H, br s, H-29a). EI-MS *m*/*z* (rel. int.): 440 [M]⁺ (3), 384 (67), 218 (100), 207 (74), 203 (51), 189 (75), 123 (46), 121 (55), 109 (63), 107 (50), 95 (67), 81 (50), 69 (53).

Protocatechuic acid (13)

Brown needle. M.p. 191-195 °C (acetone). UV $\lambda_{\text{max}}^{\text{MeOH}}$ (log ε): 294 (3.70), 258 (3.96), 208 (4.29) nm. UV $\lambda_{\text{max}}^{\text{MeOH}+\text{NaOH}}$ (log ε): 295 (3.82), 254 (3.78), 209 (4.35) nm. IR: v_{max} (KBr) cm⁻¹ = 3309 (-OH), 1676, 1601, 152, 1466, 1420, 1381, 1298, 1192, 1126, 1098, 941, 883, 824, 764, 634, 559, 453. ¹H-NMR (acetone- d_6 , 500 MHz) δ : 6.90 (1H, d, J = 8.3 Hz, H-5), 7.47 (1H, dd, J = 8.3, 1.9 Hz, H-6), 7.53 (1H, d, J = 1.9 Hz, H-2). EI-MS m/z (rel. int.): 154 [M]⁺ (92), 137 (100), 124 (59), 109 (40), 91 (31), 57 (40).

5-Carboxymellein (14)

Yellowish powder. M.p. 189-190 °C. UV $\lambda_{\text{max}}^{\text{MeOH}}$ (log ε): 314 (3.55), 225 (4.47). UV $\lambda_{\text{max}}^{\text{MeOH}+\text{NaOH}}$ (log ε): 321 (3.55), 223 (4.37), 208 (4.34) nm. [α]_D²⁶: -70.7° (*c* 0.06, CHCl₃) (lit.³¹ [α]_D²⁰: -51.2° (*c* 0.002, EtOH)). IR: v_{max} (KBr) cm⁻¹ = 3192 (-OH), 2986, 2930, 1697, 1658, 1579, 1470, 1393, 1323, 1281, 1246, 1182, 1131, 1053, 870, 822, 750, 683. ¹H-NMR (acetone-*d*₆, 500 MHz) δ : 1.52 (3H, d, *J* = 6.3 Hz, H-9) , 3.05 (1H, dd, *J* = 17.8, 3.0 Hz, H-7b), 3.36 (1H, dd, *J* = 17.8, 3.0 Hz, H-7a), 6.96 (1H, m, H-8), 6.96 (1H, d, *J* = 8.9 Hz, H-2), 8.19 (1H, d, *J* = 8.9 Hz, H-3). ¹³C-NMR (acetone-*d*₆, 100 MHz) δ : 170.0 (C-11), 166.2 (C-10), 165.0 (C-1), 144.1 (C-5), 138.6 (C-3), 119.2 (C-4), 115.4 (C-2), 109.1 (C-6), 75.5 (C-8), 32.4 (C-7), 20.0 (C-9). EI-MS *m/z* (rel. int.): 222 [M]⁺ (100) , 193 (45) , 189 (47), 77 (38).

<u>α-Tocospiro B (15)</u>

Colorless oil. UV $\lambda_{\text{max}}^{\text{MeOH}}$ (log ε): 233 (3.62), 204 (3.69) nm. $[\alpha]_D^{27}$: -113.1° (*c* 0.12, CHCl₃) (lit.³² $[\alpha]_D^{24}$: -107.3° (*c* 0.04, CHCl₃)). IR: v_{max} (KBr) cm⁻¹ = 3429 (-OH), 2930, 2862, 1714 (C=O), 1653, 1570, 1456, 1373, 1238, 1169, 1084, 1015. ¹H-NMR (CDCl₃, 500 MHz) δ : 0.84 (3H, d, *J* = 6.8 Hz, H-17a), 0.85 (3H, d, *J* = 6.8 Hz, H-13a), 0.87 (6H, d, *J* = 6.8 Hz, H-21a, H-22), 1.31 (3H, s, H-9a), 1.82 (3H, s, H-5a), 1.78 (2H, m, H-8), 1.84 (3H, s, H-6a), 1.87 (3H, m, H-7a), 2.02 (3H, s, H-3a), 2.37 (1H, dt, *J* =12.4, 7.2 Hz, H-7b), 4.69 (1H, s, HO-4). EI-MS *m/z* (rel. int.): 462 [M]⁺ (0.9), 304 (30), 303 (100), 290 (38).

参考文獻

- Lu, Fu Yuan. *Vitaceae in Flora of Taiwan*. 2nd ed. Vol. 3. Editorial Committee of Flora of Taiwan Taipei. 1994.
- 2 甘偉松。台灣藥用植物誌。495。Vol. 2。1980。
- 3 行政院衛生署。中華民國 100 年死因統計。2012。
- 4 陳巧利; 鞏江;曹夢曄;賴智捷;倪士峰;趙婷;劉晨;趙峰倉。三葉青藥學研 究新進展。遼寧中醫藥大學學報,72-74,2011。
- 5 丁麗;紀其雄。三葉青抗腫瘤活性部位的篩選研究。海峽藥學,46-48,2011。
- 6 徐彩菊;白寧寧;孟佳;傅劍云;姚亞萍;丁鋼強。三葉青提取物體內抑瘤作 用及其機理研究。中國衛生檢驗雜誌,278-280,2009。
- 7 徐彩菊;吴平國;姚亞萍;孟佳;鹿偉;陳玉滿;白寧寧;丁鋼強。三葉青提 取物對白血病 HL60 細胞增殖抑制作用研究。浙江預防醫學, 20-22, 2011。
- 8 徐彩菊;吴平谷;孟佳;姚亞萍;傅劍云;鹿偉;白寧寧;丁鋼強。三葉青提 取物對白血病 K562 細胞增殖的抑制作用。中國衛生檢驗雜誌,2801-2803,2010。
- 9 劉東; 鞠建華; 楊峻山。狹葉崖爬藤化學成分的研究。 中草藥, 7-9, 2003。
- 10 伍昭龍;呂江明。中藥三葉青的研究現狀。中國民族民間醫藥雜誌,15-18,2006。
- 11 邵加春;何翠紅;雷婷;洪愛華;岑穎洲。瑤藥扁擔藤化學成分的研究。中國 藥學雜誌,1615-1617,2010。
- 12 楊大堅;劉紅亞;李新中;廖睿;黃小平。破石珠化學成分研究。中國中藥雜 誌, 35-37,1998。

- 13 Tao, Ran; Wang, Cheng-Zhang; Kong, Zhen-Wu. Antibacterial/antifungal activity and synergistic interactions between polyprenols and other lipids isolated from *Ginkgo biloba* L. leaves. *Molecules* 18, 2166-2182, 2013.
- 14 Khaliq, Simin; Volk, Franz-Josef; Frahm, August Wilhelm. Phytochemical investigation of *Perovskia abrotanoides*. *Planta Medica* **73**, 77-83, 2007.
- 15 Cui, Jian-Guo; Fan, Lei; Huang, Li-Liang; Liu, Hong-Li; Zhou, Ai-Min. Synthesis and evaluation of some steroidal oximes as cytotoxic agents: structure/activity studies (I). *Steroids* 74, 62-72, 2009.
- 16 Topcu, Gulacti; Altiner, Esra N.; Gozcu, Seyda; Halfon, Belkis; Aydogmus, Zeynep; Pezzuto, J. M.; Zhou, Bing-Nan; Kingston, David G. I. Studies on di- and triterpenoids from *Salvia staminea* with cytotoxic activity. *Planta Medica* 69, 464-467, 2003.
- 17 Foley, David A.; O'Callaghan, Yvonne; O'Brien, Nora M.; McCarthy, Florence O.; Maguire, Anita R. Synthesis and characterization of stigmasterol oxidation products. *Journal of Agricultural and Food Chemistry* 58, 1165-1173, 2010.
- 18 Sucrow, Wolfgang; Slopianka, Marion. β-Sitosterin und clionasterin aus (24*R*)-bzw. (24*S*)-24-äthylcholesta-5,22,25-trien-3β-ol. *Chemische Berichte* 108, 3721-3729, 1975.
- 19 Kuo, Yueh-Hsiung; Chu, Pei-Hung. Studies on the constituents from the bark of *Bauhinia purpurea. Journal of the Chinese Chemical Society* **49**, 269-274, 2002.
- 20 Georges, Patricia; Sylvestre, Muriel; Ruegger, Heinz; Bourgeois, Paul. Ketosteroids and hydroxyketosteroids, minor metabolites of sugarcane wax. *Steroids* **71**, 647-652, 2006.
- 21 Su, Bao-Ning; Yang, Li; Gao, Kun; Jia, Zhong-Jian. Aquaticol, a bis-sesquiterpene and iridoid glucosides from *Veronica anagallis-aquatica*. *Planta Medica* **66**, 281-283, 2000.
- 22 Shu, Youheng; Jones, Stephen R.; Kinney, William A.; Selinsky, Barry S. The synthesis of spermine analogs of the shark aminosterol squalamine. *Steroids* **67**, 291-304, 2002.
- 23 Zhang, Xin; Geoffroy, Philippe; Miesch, Michel; Julien-David, Diane; Raul, Francis; Aoudé-Werner, Dalal; Marchioni, Eric. Gram-scale chromatographic purification of β-sitosterol: synthesis and characterization of β-sitosterol oxides. *Steroids* **70**, 886-895, 2005.

- 24 Das, B.; Srinivas, K. V. N. S. Minor C29-steroids from the marine red alga, *Gracilaria edulis*. *Phytochemistry* **31**, 2427-2429, 1992.
- 25 Liu, Fang-Fang; Li, Guo-Hong; Yang, Zhong-Shan; Zheng, Xi; Yang, Yue; Zhang, Ke-Qin. Two new sesquiterpenes from the fungus *Stereum* sp. *Helvetica Chimica Acta* 93, 1737-1741, 2010.
- 26 Xiong, Hui-Yan; Fei, Dong-Qing; Zhou, Jin-Song; Yang, Chun-Jiang; Ma, Guo-Liang. Steroids and other constituents from the mushroom *Armillaria lueo-virens*. *Chemistry* of Natural Compounds 45, 759-761, 2009.
- 27 Lugemwa, Fulgentius N. Extraction of betulin, trimyristin, eugenol and carnosic acid using water-organic solvent mixtures. *Molecules* **17**, 9274-9282, 2012.
- 28 Weng, Jing-Ru; Su, Huey-Jen; Yen, Ming-Hong; Won, Shen-Jeu; Lin, Chun-Nan. The cytotoxic constituents of *Euphorbia makinoi*. *Chinese Pharmaceutical Journal* 55, 267-272, 2003.
- 29 Al-Musayeib, Nawal; Perveen, Shagufta; Fatima, Itrat; Nasir, Muhammad; Hussain, Ajaz. Antioxidant, anti-glycation and anti-inflammatory activities of phenolic constituents from *Cordia sinensis*. *Molecules* **16**, 10214-10226, 2011.
- 30 Anderson, John R.; Edwards, Raymond L.; Whalley, Anthony J. S. Metabolites of the higher fungi. Part 21. 3-Methyl-3,4-dihydroisocoumarins and related compounds from the ascomycete family Xylariaceae. *Journal of the Chemical Society, Perkin Transactions 1*, 2185-2192, 1983.
- 31 Klaiklay, Saranyoo; Rukachaisirikul, Vatcharin; Sukpondma, Yaowapa; Phongpaichit, Souwalak; Buatong, Jirayu; Bussaban, Boonsom. Metabolites from the mangrovederived fungus *Xylaria cubensis* PSU-MA34. *Archives of Pharmacal Research* 35, 1127-1131, 2012.
- 32 Chiang, Yi-Ming; Kuo, Yueh-Hsiung. Two novel α-tocopheroids from the aerial roots of *Ficus microcarpa*. *Tetrahedron Letters* **44**, 5125-5128, 2003.
- 33 Mah, Siau Hui; Ee, Gwendoline Cheng Lian; Teh, Soek Sin; Rahmani, Mawardi; Lim, Yang Mooi; Go, Rusea. Phylattrin, a new cytotoxic xanthone from *Calophyllum soulattri*. *Molecules* **17**, 8303-8311, 2012.
- 34 Shen, Tao; Zhang, Li; Wang, Yan-Yan; Fan, Pei-Hong; Wang, Xiao-Ning; Lin, Zhao-Min; Lou, Hong-Xiang. Steroids from *Commiphora mukul* display antiproliferative effect against human prostate cancer PC3 cells via induction of apoptosis. *Bioorganic*

& Medicinal Chemistry Letters 22, 4801-4806, 2012.

- 35 Putz, Mihai V.; Lazea, Marius; Sandjo, Louis P. Quantitative structure inter-activity relationship (QSInAR). Cytotoxicity study of some hemisynthetic and isolated natural steroids and precursors on human fibrosarcoma cells HT1080. *Molecules* **16**, 6603-6620, 2011.
- 36 Chen, Jih-Jung; Hung, Hsin-Chih; Sung, Ping-Jyun; Chen, Ih-Sheng; Kuo, Wen-Lung. Aporphine alkaloids and cytotoxic lignans from the roots of *Illigera luzonensis*. *Phytochemistry* **72**, 523-532, 2011.
- Ayyad, S. N. A new cytotoxic stigmastane steroid from *Pistia stratiotes*. *Pharmazie* 57, 212-214, 2002.
- 38 Ioannou, Efstathia; Abdel-Razik, Ayman F.; Zervou, Maria; Christofidis, Dimitrios; Alexi, Xanthippi; Vagias, Constantinos; Alexis, Michael N.; Roussis, Vassilios. 5α,8α-Epidioxysterols from the gorgonian *Eunicella cavolini* and the ascidian *Trididemnum inarmatum*: isolation and evaluation of their antiproliferative activity. *Steroids* 74, 73-80, 2009.
- 39 Chen, Jih-Jung; Chou, En-Tzu; Duh, Chang-Yih; Yang, Sheng-Zehn; Chen, Ih-Sheng. New cytotoxic tetrahydrofuran- and dihydrofuran-type lignans from the stem of *Beilschmiedia tsangii*. *Planta Medica* 72, 351-357, 2006.
- 40 Zou, Jian-Hua; Dai, Jungui; Chen, Xiaoguang; Yuan, Jing-Quan. Pentacyclic triterpenoids from leaves of *Excoecaria agallocha*. *Chemical and Pharmaceutical Bulletin* **54**, 920-921, 2006.