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A Smart Card Based Authentication Scheme for Remote User Login and Verification

Abstract
With the advancement of Internet network technologies, remote user authentication schemes using smart cards have been widely adopted. In order to satisfy the requirements of a remote user authentication scheme, the smart card has become an essential device, one that is widely used because of its low computation cost and expedient portability. To achieve computation efficiency and system security, many researchers have focused on this field and published corresponding literature. Recently, Chen et al. proposed security enhancement on an improvement on two remote user authentication schemes using smart cards. They claimed their method does not have the security weaknesses of Wang et al.’s scheme such as impersonation attack and parallel session attack, and preserves important criteria through which a legal user can negotiate a specific session key with his remote authentication server by executing mutual authentication. Meanwhile, the scheme can provide high-level perfect forward secrecy. However, there is much room for security enhancement in Chen et al.’s scheme. In this paper, we suggest that serious vulnerabilities still threaten security requirements, and that security enhancements still cannot withstand known-key attack and off-line guessing attack. Accordingly, we propose an enhanced scheme to remedy these security weaknesses and prove that this scheme is more secure and efficient for network application with merits in its properties.
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1. Introduction
As far as current Internet technologies are concerned, providing concise and secure services has been extensively investigated for a long time. In this context, a remote authentication scheme has become essential, in which a remote user with a computer can receive quality service and secure communication from a homologous server that requires authentication from the user. 
It is generally known that the first proposed remote authentication scheme was based on a password to identify a legitimate user over even an insecure channel (Wu and Sung, 1996; Peyravian and Zunic, 2000; Chang et al., 2009), and this is the subject of a published research by Lamport in 1981 (Lamport, 1981). It has been claimed that there is a potential security threat caused by a stored verifier table on a remote authentication system, because the verifier table risks being modified by an adversary and has high maintenance cost, even through all secret passwords can be encrypted to the threat of disclosure. Later, Hwang and Li (2000) presented the weakness of Lamport’s scheme and proposed a new scheme based on the EIGamal public-key encryption system (Elgamal, 1985) to solve corresponding problem. In this novel method, there is no need to maintain any verifier table to achieve remote user authentication. In view of the low cost and capacity of cryptosystems, Sun (2000) developed an authentication scheme to enhance the performance efficiency of Hwang et al.’s scheme by involving only several one-way hash operations, so that the scheme could serve as an ideal substitute for high-cost modular exponentiations. Nevertheless, these two mentioned schemes could not provide users with a free choice of passwords and mutual authentication.
Since the smart card is with the tamper-resistant properties, it can solve the problem of maintaining the verifier table on the server side. In a smart card based authentication system only the user was required to hold a smart card, which was issued by the server for more convenient communication and which contained all kinds of stored secret information. Many related studies (Juang, 2004; Juang et al., 2008; Kim and Chung, 2009; Liu et al., 2008; Sun et al., 2009) have been investigated and the smart card has become essential in remote authentication schemes. More specifically, Chien et al. (2002) proposed an effective solution for remote authentication schemes by using smart cards. Their contributions contain several aspects such as mutual authentication between the user and the server, free choice of passwords, and the requirement of only one-way hash operations. Besides, there is no need to process extra computation cost for maintaining the verifier table which achieves the requirements of low cost. This complements the attributes of cryptographic capacity and portability. However, Chen et al.’s scheme has serious security weaknesses, in which it cannot protect against insider attack, guessing attack and reflection attack. In 2004, Ku and Chen (2004) proposed an improved scheme  to overcome these weaknesses, but Yoon et al. (2004) claimed that Ku and Chen’s scheme was still vulnerable to parallel attack; especially, they maintained that their scheme was unfeasible when the user arbitrarily changed his password. Then, Yoon et al. proposed an improvement to enhance Ku and Chen’s scheme. Unfortunately, Wang et al. (2007) found that an adversary could threaten both these schemes (Ku and Chen, 2004; Yoon et al., 2004) by achieving guessing attack, forgery attack and denial of service (DoS) attack; consequently, they proposed an efficient enhancement based on these two schemes.
Chen et al. (2011) pointed out that Wang et al.’s scheme could not withstand impersonation attack (Chan, 2000) and parallel session attack (Ku and Chen, 2004); hence, they proposed an improved approach over Wang et al.’s scheme. After an in-depth analysis, we found that Chen et al.’s scheme is actually not as secure as they claimed, since it is still susceptible to known-key attack and off-line guessing attack. Hence, we propose a novel scheme to defend against the mentioned security weaknesses. Furthermore, our proposed scheme has better computation efficiency, which has become clear by comparing previous works with ours. In addition, our scheme has the following properties:
P1. Freely chosen and exchanged password: A legal user can freely choose and change his password (Chien et al., 2002).
P2. No verification table: There is no need to maintain a verification table on the server side (Hwang and Li, 2000).
P3. No adversary can derive the known-key in the scheme: No one can utilize the secret information of a legal user to derive the session key.
P4. No malicious user can guess the secret long-term key of the server: The secret long-term key is protected against off-line guessing attack to prevent malicious users from imitating the authentication server.
P5. Mutual authentication: Both the legal user and the remote server can authenticate each other successfully (Chien et al., 2002).
P6. Session key agreement: The legal user and the remote server can negotiate a session key and utilize it to process subsequent communication (Wang et al., 2007).
P7. Perfect forward secrecy: Even if an adversary can obtain contiguous knowledge of long-term key, he cannot derive the session keys.
P8. [bookmark: OLE_LINK33][bookmark: OLE_LINK34]Efficiency and practicability: We ensure that our proposed scheme has higher computation efficiency by a comparison of performance, and is more practical for use in networking environments. 
The rest of this paper is organized as follows. In Section 2, we review Chen et al.’s scheme and demonstrate its security weaknesses. In Section 3, we present our proposed scheme, and in Section 4, we illustrate the security analysis. In Section 5, we compare the performance of our scheme with those of Wang et al. and Chen et al. Finally, our concluding remarks are shown in Section 6.

2. Review of Chen et al.’s scheme
In this section, we review Chen et al.’s authentication scheme and then show that their scheme cannot protect against known-key attack and off-line guessing attack. The details and weaknesses of Chen et al.’s scheme are demonstrated in Subsections 2.1 and 2.2, respectively. 
We first introduce the notations throughout this paper as follows:
· 
: the user.
· 
: the identity of user.
· 

: the password of user .
· 
: the remote server.
· 

: the permanent private key of the remote server .
· 
: a one-way hash function without a cryptographic key.
· 

: a one-way hash function with a cryptographic key .
· 
: a secure channel.
· 
: a common channel.
· 
: a concatenation operator which combines two strings into one.
2.1. Review of Chen et al.’s scheme
In this subsection, we briefly review the specific procedures of Chen et al.’s scheme. This scheme includes four phases: the registration phase, the login phase, the verification phase, and the password change phase.
2.1.1. Registration phase


We illustrate the procedures of this phase in Fig. 1 and show the details as follows. Whenever  initially registers with , the registration phase is invoked: 
1. 





 chooses a random number  and computes , then sends it with his  to the server ; .
2. 






 calculates the following parameters: , , , and the server  stores the data  on a new smart card , and issues the smart cart to user .
3. 


 enters  into his smart card so that it contains .


Fig. 1. Registration phase of Chen et al.’s scheme
2.1.2. Login phase


When  attempts to login to the server , he should execute the following steps and this phase is depicted in Fig. 2.
1. 


 inserts the smart card into the smart card reader and inputs his  and .
2. 







The smart card computes  and checks whether  equals . If so, the smart card continues to calculate , , where  is a random number generated by the smart card and  is the current timestamp of .
3. 


 sends a login request message to the server ; .


[bookmark: OLE_LINK56][bookmark: OLE_LINK57]Fig. 2. Login and Verification phase of Chen et al.’s scheme
2.1.3. Verification phase
Upon receiving the login request message, the following steps can be depicted in Fig. 2 and the details can be shown:
1. 








[bookmark: OLE_LINK6][bookmark: OLE_LINK7][bookmark: OLE_LINK10][bookmark: OLE_LINK11] checks the validity of  and whether , where  is the current timestamp of the server. If one of them does not hold, then  rejects the login request; otherwise,  checks whether  is within a valid time interval . If not,  rejects the login request. 
2. 










[bookmark: OLE_LINK54][bookmark: OLE_LINK55][bookmark: OLE_LINK14][bookmark: OLE_LINK15][bookmark: OLE_LINK12][bookmark: OLE_LINK13]If  is really within the interval ,  computes  and  in order to check whether  equals the original . If so, the validity of  is authenticated and , where ; otherwise,  rejects the login request.
3. 








After receiving ,  checks the validity of  and whether . If it does not hold,  terminates the connection; otherwise,  checks whether  equals the received . If so, the validity of  is authenticated.
4. 


Moreover,  and  establish a common session key  for private communication.
2.1.4. Password change phase



 can freely change his password  to  in this phase as follows:
1. 




 inserts the smart card into the smart card reader , inputs his  and  and requests to change his password. Thus, the smart card computes , .
2. 



The smart card checks whether  equals the original  stored in the smart card. If so, then  selects a new password ; otherwise, the smart card rejects the password change request.
3. 



The smart card computes  and , then stores them and replaces the original  and , respectively.
2.2. Weaknesses of the reviewed scheme
Chen et al. claimed their method is an enhanced version of Wang et al.’s scheme that can withstand impersonation attack (Chan, 2000) and parallel session attack (Ku and Chen, 2004). In this sub-section, we show that Chen et al.’s scheme is still vulnerable to known-key attack and off-line guessing attack.
2.2.1. The known-key attack 












[bookmark: OLE_LINK22][bookmark: OLE_LINK23][bookmark: OLE_LINK1][bookmark: OLE_LINK2]A similar description of the known-key attack was presented (Wang et al., 2011). We assume that an adversary compromises the parameter  and ; he can easily intercept the parameter  from the login request message , and then derive the secret parameter . Thus, the adversary can utilize the derived parameter  and select two random numbers  and  to perform the following computations: , . As a result, we can see that the adversary can execute the following procedure by sending a fabricated login  request message  to the server . After receiving the adversary’s login message, the verification phase is followed step by step:
1. 





 checks either if the format of  is invalid or , where  is the current timestamp of the server. Due to the transmission delay or the adversary delay on purpose,  cannot be equal to . Hence, the adversary can smoothly pass this step.
2. 





 computes  and . Upon calculating the result,  can get the verification  in Chen et al.’s scheme. It is clear the identity of  can be authenticated.
3. 









[bookmark: OLE_LINK18][bookmark: OLE_LINK19][bookmark: OLE_LINK30][bookmark: OLE_LINK20][bookmark: OLE_LINK21] responds to the message  to , where  and  is the current timestamp of the server . Upon receiving the message from , the verification of  is achieved. This way, user  and server  have a mutual authentication. 

Thus, they obtain a new session key  so that the known-key attack happens in this scheme.
2.2.2. Off-line guessing attack







[bookmark: OLE_LINK24][bookmark: OLE_LINK25][bookmark: OLE_LINK26][bookmark: OLE_LINK27]   Assume that a malicious (legitimate) user  can derive the parameter  in the login phase, such as , since all these two random numbers  and  stem from the choice of the user’s smart card. By utilizing the derived parameter , the malicious user  can achieve a guessing attack as follows:
1. 




 can make use of the derived information to guess the long-term key  of the authentication server , since he can assume the long-term key is  and then computes .
2. 




 can check whether the  is equal to the derived . If so, the malicious user  has correctly guessed the private long-term key of the server .
Consequently, the malicious user can easily imitate a legal server in the next session. Hence, this scheme has definitely suffered from the risk of this guessing attack.

3. The proposed scheme
  In this section, we propose a robust and secure remote user authentication scheme to overcome the weakness of Chen et al.’s scheme. Taking computation efficiency into consideration, we execute our proposed scheme by utilizing simple one-way hash functions. There are four phases accordingly and all these phases work as follows:
3.1. Registration phase




  This phase is invoked whenever  initially registers or reregisters with . Suppose  is the long-term key of the authentication server . As shown in Fig. 3, the following steps are performed in this phase:
1. 





 chooses a random number  and computes , then sends it with his  to the server ; .
2. 






[bookmark: OLE_LINK58] calculates the following parameters: , , , and the server  stores the data  on a new smart card , and issues the smart cart to user .
3. 


 enters  into his smart card so that it contains .


Fig. 3. Registration phase of our proposed scheme
3.2.  Login phase


This phase is depicted in Fig. 4. When  intends to login , the following computations should be performed:
1. 


 inserts the smart card into the smart card reader and inputs his  and .
2. 






The smart card computes  and checks whether  equals . If so, the smart card continues to calculate , , where  is the current timestamp of .
3. 


 sends a login request message to the server ; .


Fig. 4. Login and Verification phase of our proposed scheme
3.3.  Verification phase


Upon receiving the login request message, the server  and the user  should perform the following steps to achieve mutual authentication and compute a session key. The details of this phase are shown in Fig. 4.
1. 








 checks the validity of  and whether , where  is the current timestamp of the server. If one of them cannot hold, then  rejects the login request; otherwise,  checks whether  is within a valid time interval . If not, then  rejects the login request.
2. 








If the  is really within the interval , computes  in order to check whether the result equals . If so, the validity of  is authenticated and , where ; otherwise,  rejects the login request.
3. 








After receiving ,  checks the validity of  and whether . If it does not hold,  terminates the connection; otherwise,  checks whether  equals the received . If so, the validity of  is authenticated.
4. 


Moreover,  and  establish a common session key  for private communication.
3.4.  Password change phase



 can freely change his password  to  in this phase as follows:
1. 




 inserts the smart card into the smart card reader , inputs his  and  and requests to change his password. Thus, the smart card computes , .
2. 



The smart card checks whether  equals the original  stored in the smart card. If so, then  selects a new password ; otherwise, the smart card rejects the password change request.
3. 



The smart card computes  and , then stores them and replaces the original  and , respectively.

[bookmark: OLE_LINK48][bookmark: OLE_LINK49]4. Security analysis of our proposed scheme
[bookmark: OLE_LINK45][bookmark: OLE_LINK46]  In this section, we present the logic analysis based on BAN logic to prove the authority of authentication procedure and the correctness of our scheme execution. The details will be shown in Subsection 4.1. Then, we discuss several significant attacks and demonstrate the security strength of our proposed scheme in Subsection 4.2. Moreover, we show that our proposed scheme enhances the security of Chen et al.’s scheme and withstands its corresponding weaknesses.
4.1. BAN logic demonstration for our proposed scheme
We use BAN logic to verify our remote user authentication scheme using smart cards. Our scheme not only provides the mutual authentication requirement but also achieves to establish a common session key between the user and the server. According to the analytical procedures of BAN logic, each round of the scheme has to be transformed into the idealized form. Next, we briefly describe basic notations of BAN logic as follows.







:  and  may communicate with each other using the shared key . The key  will never be discovered by any principal except  or .







: Formula  is a secretly known only to  and . Only  and  may use  to prove their identities to one another.


: This represents Formula X encrypted under the key .


: This represents Formula X combined with Formula .


Then, we first give the following logical postulates to present that and  can mutually authenticate and cooperate to obtain a session key.


 believes ,


 believes fresh (),


 believes fresh (),


 believes ,



 believes  believes ,


 believes ,



 believes  believes .
In our scheme, there are two messages that used to achieve the mutual authentication and key agreement requirements. These messages are shown in Fig. 4. Then, we idealize the scheme as follows.




Message 1. : , , .



Message 2. : , .
Before starting to analyze our scheme, we first make the following assumptions:


A 1.  believes .


A 2.  believes .


A 3.  believes fresh ().



A 4.  believes ( controls ).


A 5.  believes .


A 6.  believes .


A 7.  believes fresh ().



A 8.  believes ( controls ).



A 9.  believes ( controls ).
Then, we analyzed the idealized form of our proposed scheme using the above assumptions and rules of BAN logic. Details of the logic proof are presented as follows.

 receives Message 1. The rules show that




 sees {, , }. 								   	(Statement 1)
We break conjunctions and produce



 believes  said ,                                  	(Statement 2)



 believes  said ,							   		(Statement 3)
and



 believes  said .                                   	(Statement 4)
By A 4 and Statement 2, we apply the nonce-verification rule to deduce


 believes . 											   	(Statement 5)
By A 6 and Statement 3, we apply the message-meaning rule to derive



 believes  said .                            		(Statement 6)
By A 7 and Statement 6, the nonce-verification rule applies and yields


 believes . 										   		(Statement 7)
By A 7 and Statement 4, we apply the nonce-verification rule to deduce


 believes . 												(Statement 8)

Then,  receives Message 2. The annotation rule yields that



 sees {, }.										(Statement 9)
We break conjunctions and produce as following:



 believes  said 								(Statement 10)
and 



 believes  said . 										(Statement 11)
By A 2 and Statement 10, the message-meaning rule to obtain



 believes  said .									(Statement 12)
By A 3 and Statement 12, we apply the nonce-verification rule to deduce


 believes .											(Statement 13)
By A 3 and Statement 11, the nonce-verification rule applies and yields


 believes . 												(Statement 14)
Finally, we apply the message-meaning rule to derive


 controls 												(Statement 15)
and 


 controls .												(Statement 16)
By A 8 and Statement 16, the jurisdiction rule applies to deduce


 believes .												(Statement 17)
By A 9 and Statement 15, we apply the jurisdiction rule to derive


 believes .												(Statement 18)


Based on Statement 7 and Statement 13, we prove our proposed scheme can achieve the mutual authentication requirement. Due to the results of Statement 17 and Statement 18, we also prove our proposed scheme can establish a common session key between  and .
[bookmark: OLE_LINK43][bookmark: OLE_LINK44]4.2. Protection against possible attacks
In this subsection, we show our proposed scheme can withstand all these possible attacks as follows so that it successfully remedied the security drawbacks of Chen et al.’s scheme.
4.2.1. The known-key attack












  Chen et al.’s scheme is vulnerable to the known-key attack because an adversary can easily intercept a legal user’s login request message  and get the parameter , when the  has been compromised. Upon getting the parameters, the secret information  can be derived by computing . Nevertheless, it is impossible for the adversary to intercept any secret information from the user’s login request message in our proposed scheme, since the login request message includes . This is because  is protected in the secure one-way hash function belonging to , where . Moreover, a legal user’s smart card has no need to select random number  to continue the following verification phase. It is no longer possible to reveal any secret information to the adversary. Hence, an adversary cannot obtain validation from the authentication server . We surmount the weakness of Chen et al.’s scheme, because our proposed scheme prevents an adversary from deriving the secret information and sending a fabricated login request message  to obtain a new session key.
4.2.2. Off-line guessing attack






















In the aforementioned scenario where a malicious user  can derive the essential parameter  in Chen et al.’s scheme, it is obvious the malicious user can premeditate imitating a legal server by guessing the private long-term key . If the malicious user  attempts to achieve this purpose in our proposed scheme, he needs to obtain the parameter  in the login phase by calculating , then execute the operation of an off-line guessing attack. However, after obtaining the parameter , the malicious user’s purpose of off-line guessing attack will fail, because the malicious user  cannot achieve his purpose by using his own identity  and the derived parameter . The reason is that he first assumes a long-term key  and computes the equation . Then, he checks whether the equation equals the original  or not. However, the malicious user  cannot successfully perform the off-line guessing attack without knowing the hash value . In general, the off-line guessing attack can be achieved because an adversary can guess one part of the secret information by utilizing the other known part. Nevertheless, the equation of  contains the long-term key  and the corresponding hash value  in our proposed scheme. The malicious user  cannot guess a correct value of long-term key  to make  equal the original , so the off-line guessing attack on Chen et al.’s scheme has been defeated in our proposed scheme.
4.2.3. Replay attack












  An adversary can intercept either the login request message  or the response message  that are transmitted among a legal user and the authentication server . Both of these messages include the corresponding timestamps  and , respectively. If the adversary replays his intercepted message, the server  should check the validity of the corresponding  and . Unfortunately,  cannot be within a valid time interval . Similarly, it cannot be verified in Step 3 of the verification phase when the adversary might replay the response message , since he cannot pass the time interval validation. Hence, the adversary makes replay attack very hard.
4.2.4. Impersonation attack














  An adversary desires to forge a legal user’s login request message  into message  and transmits it to the remote server . After receiving the message ,  should check whether  equals the result of  or not. However, the adversary cannot acquire the value of . He cannot be validated by the server  in the verification phase. Similarly, there is no way the adversary can forge the authentication server  by transmitting an impersonation response message . The adversary cannot be validated since the equation  cannot hold. Meanwhile, the  and  are unavailable parameters for the adversary in our scheme. Hence, the impersonation attempts of adversaries cannot be achieved. 
4.2.5. Parallel attack












  In Chen et al.’s scheme, an adversary who attempts to masquerade as a legal user  by eavesdropping on communication between the server  and  cannot make a parallel attack among the two different sessions, because  and  have disparate functions. We inherit the advantage in our proposed scheme, in which the adversary cannot start a new session with server  by sending a fabricated login request message . Because in Step 2 of the authentication phase,  computes  to check whether the result equals the received . However, it is obvious when , the result does not equal the value of . Hence, the adversary cannot make a parallel attack. 
4.2.6. Mutual authentication










  In our proposed scheme, user  can validate server  by checking whether  equals the received ; at the same time, server  can also validate user  by checking whether  equals the received . Mutual authentication protects the validity of both sides for user  and server .
4.2.7. Perfect forward secrecy






[bookmark: OLE_LINK37][bookmark: OLE_LINK38]  This is an essential security property to ensure that it is impossible for an adversary to derive the session keys used previously, even if he obtains the contiguous knowledge of the current session key. We assume that the adversary has corrupted a legal user  and acquired the long-term key . However, the session key  is protected with a one-way hash function and the equation is guaranteed to be secure since it contains an unavailable value of  for any adversary. Moreover, due to the different login and authentication processes, the corresponding timestamps  and  should be updated accordingly. Thus, there is no way for the adversary to derive the session keys in our scheme. In this way, our proposed scheme can achieve perfect forward secrecy.  

5. Performance analysis of our proposed scheme


  In this section, we compare computation cost with previous works such as Wang et al.’s scheme (2007) and Chen et al.’s scheme (2011) to estimate the performance of our proposed scheme. The detailed comparison is depicted in Table 1. We note that  means a one-way hash operation and  denotes an exclusive-or operation. It is obvious the computation capability of one-way hash function is most practical in terms of efficiency. In our proposed scheme, we utilize nearly all one-way hash functions to enhance system efficiency and simultaneously remedy the security weaknesses of Chen et al.’s scheme. 

Table 1
Performance comparison between our scheme and previous schemes
	Items
	Wang et al.’s scheme
	Chen et al.’s scheme
	Our scheme

	Registration phase
	

+
	

+
	

+

	Login phase
	

+
	

+
	

+

	Verification phase
	

+
	

+
	

+

	Password change phase
	

+
	

+
	

+

	Total
	

+
	

+
	

+


· 
: the operation of one-way hash function
· 
: the operation of exclusive-or computation




  From the viewpoint of system efficiency, the computation cost of the registration phase in our proposed scheme requires an extra one-way hash operation to calculate the parameter  so that our remedy is resistant to off-line guessing attack. In the login and verification phases, we utilize only seven one-way hash operations and eight exclusive-or operations which are lower than the computation cost of two comparison targets. Because we try to avoid known-key attack occurring, we don’t use the random number  to compute the essential parameter . Note that this step remedy is superior to previous works on computation efficiency. In the password change phase, we require the same computation cost as the other two comparison schemes.

Table 2
Property comparison between our scheme and previous schemes
	Items
	Wang et al.’s scheme
	Chen et al.’s scheme
	Our scheme

	P1
	Yes
	Yes
	Yes

	P2
	Yes
	Yes
	Yes

	P3
	No
	No
	Yes

	P4
	No
	No
	Yes

	P5
	Yes
	Yes
	Yes

	P6
	Yes
	Yes
	Yes

	P7
	No
	Yes
	Yes

	P8
	No
	No
	Yes



Consequently, we not only achieve the goal of remedying Chen et al.’s security weaknesses but also require lower computation cost totally in our proposed scheme, which compares favorably with the relevant schemes. In Table 2, we show a comparison of the properties we have mentioned in Section 1 between our scheme and the related works. It is obvious we really propose a novel scheme to remedy the security drawback of Chen et al.’s scheme, and it also satisfies all the above-mentioned properties. In brief, due to the analysis of our proposed scheme, which focuses on the security and performance aspects, our scheme proves to be more secure and efficient than the schemes proposed previously. 

6. Conclusions
  In this paper, we propose a remote user authentication that is novel, has high-level of security, and is efficient for smart cards use. According to the above analysis, we not only enhance Chen et al.’s scheme but also provide evidence that our proposed scheme requires lower computation load than the related works. Moreover, we demonstrate that our new scheme has advanced security features and performance, which have been summarized as properties that distinguished our scheme from previous ones. Therefore, our proposed scheme is more secure and practical for the remote user authentication environment.
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