[bookmark: OLE_LINK60][bookmark: OLE_LINK61][bookmark: OLE_LINK53][bookmark: OLE_LINK59]
A Smart Card Based Authentication Scheme for Remote User Login and Verification

Zi-Yao Cheng1, Yun Liu1, Chin-Chen Chang2, 3 and Shih-Chang Chang3

1Department of Electronic and Information Engineering,
Beijing Jiaotong University, Key Lab. of Communication and Information Systems,
Beijing Municipal Commission of Education Dept. Beijing, P.R. China
E-mail: 09111024@bjtu.edu.cn; liuyun@bjtu.edu.cn

2Department of Information Engineering and Computer Science,
Feng Chia University, Taichung, 40724, Taiwan, R.O.C.
E-mail: alan3c@gmail.com

3Department of Computer Science and Information Engineering,
National Chung Cheng University,
160 San-Hsing, Ming-Hsiung, Chiayi 621, Taiwan, R.O.C.
E-mail: chang.coby@gmail.com

Correspondence address:
Professor Chin-Chen Chang
Department of Information Engineering and Computer Science,
Feng Chia University,
No. 100 Wenhwa Rd., Seatwen,
Taichung 40724, Taiwan, R.O.C.
Email: alan3c@gmail.com
TEL: 886-4-24517250 ext. 3790
FAX: 886-4-27066495
A Smart Card Based Authentication Scheme for Remote User Login and Verification

Abstract
With the advancement of Internet network technologies, remote user authentication schemes using smart cards have been widely adopted. In order to satisfy the requirements of a remote user authentication scheme, the smart card has become an essential device, one that is widely used because of its low computation cost and expedient portability. To achieve computation efficiency and system security, many researchers have focused on this field and published corresponding literature. Recently, Chen et al. proposed security enhancement on an improvement on two remote user authentication schemes using smart cards. They claimed their method does not have the security weaknesses of Wang et al.’s scheme such as impersonation attack and parallel session attack, and preserves important criteria through which a legal user can negotiate a specific session key with his remote authentication server by executing mutual authentication. Meanwhile, the scheme can provide high-level perfect forward secrecy. However, there is much room for security enhancement in Chen et al.’s scheme. In this paper, we suggest that serious vulnerabilities still threaten security requirements, and that security enhancements still cannot withstand known-key attack and off-line guessing attack. Accordingly, we propose an enhanced scheme to remedy these security weaknesses and prove that this scheme is more secure and efficient for network application with merits in its properties.
Key words: mutual authentication, cryptanalysis, smart card, security, key agreement
[bookmark: OLE_LINK35][bookmark: OLE_LINK36]
1. Introduction
As far as current Internet technologies are concerned, providing concise and secure services has been extensively investigated for a long time. In this context, a remote authentication scheme has become essential, in which a remote user with a computer can receive quality service and secure communication from a homologous server that requires authentication from the user.
It is generally known that the first proposed remote authentication scheme was based on a password to identify a legitimate user over even an insecure channel (Wu and Sung, 1996; Peyravian and Zunic, 2000; Chang et al., 2009), and this is the subject of a published research by Lamport in 1981 (Lamport, 1981). It has been claimed that there is a potential security threat caused by a stored verifier table on a remote authentication system, because the verifier table risks being modified by an adversary and has high maintenance cost, even through all secret passwords can be encrypted to the threat of disclosure. Later, Hwang and Li (2000) presented the weakness of Lamport’s scheme and proposed a new scheme based on the EIGamal public-key encryption system (Elgamal, 1985) to solve corresponding problem. In this novel method, there is no need to maintain any verifier table to achieve remote user authentication. In view of the low cost and capacity of cryptosystems, Sun (2000) developed an authentication scheme to enhance the performance efficiency of Hwang et al.’s scheme by involving only several one-way hash operations, so that the scheme could serve as an ideal substitute for high-cost modular exponentiations. Nevertheless, these two mentioned schemes could not provide users with a free choice of passwords and mutual authentication.
Since the smart card is with the tamper-resistant properties, it can solve the problem of maintaining the verifier table on the server side. In a smart card based authentication system only the user was required to hold a smart card, which was issued by the server for more convenient communication and which contained all kinds of stored secret information. Many related studies (Juang, 2004; Juang et al., 2008; Kim and Chung, 2009; Liu et al., 2008; Sun et al., 2009) have been investigated and the smart card has become essential in remote authentication schemes. More specifically, Chien et al. (2002) proposed an effective solution for remote authentication schemes by using smart cards. Their contributions contain several aspects such as mutual authentication between the user and the server, free choice of passwords, and the requirement of only one-way hash operations. Besides, there is no need to process extra computation cost for maintaining the verifier table which achieves the requirements of low cost. This complements the attributes of cryptographic capacity and portability. However, Chen et al.’s scheme has serious security weaknesses, in which it cannot protect against insider attack, guessing attack and reflection attack. In 2004, Ku and Chen (2004) proposed an improved scheme to overcome these weaknesses, but Yoon et al. (2004) claimed that Ku and Chen’s scheme was still vulnerable to parallel attack; especially, they maintained that their scheme was unfeasible when the user arbitrarily changed his password. Then, Yoon et al. proposed an improvement to enhance Ku and Chen’s scheme. Unfortunately, Wang et al. (2007) found that an adversary could threaten both these schemes (Ku and Chen, 2004; Yoon et al., 2004) by achieving guessing attack, forgery attack and denial of service (DoS) attack; consequently, they proposed an efficient enhancement based on these two schemes.
Chen et al. (2011) pointed out that Wang et al.’s scheme could not withstand impersonation attack (Chan, 2000) and parallel session attack (Ku and Chen, 2004); hence, they proposed an improved approach over Wang et al.’s scheme. After an in-depth analysis, we found that Chen et al.’s scheme is actually not as secure as they claimed, since it is still susceptible to known-key attack and off-line guessing attack. Hence, we propose a novel scheme to defend against the mentioned security weaknesses. Furthermore, our proposed scheme has better computation efficiency, which has become clear by comparing previous works with ours. In addition, our scheme has the following properties:
P1. Freely chosen and exchanged password: A legal user can freely choose and change his password (Chien et al., 2002).
P2. No verification table: There is no need to maintain a verification table on the server side (Hwang and Li, 2000).
P3. No adversary can derive the known-key in the scheme: No one can utilize the secret information of a legal user to derive the session key.
P4. No malicious user can guess the secret long-term key of the server: The secret long-term key is protected against off-line guessing attack to prevent malicious users from imitating the authentication server.
P5. Mutual authentication: Both the legal user and the remote server can authenticate each other successfully (Chien et al., 2002).
P6. Session key agreement: The legal user and the remote server can negotiate a session key and utilize it to process subsequent communication (Wang et al., 2007).
P7. Perfect forward secrecy: Even if an adversary can obtain contiguous knowledge of long-term key, he cannot derive the session keys.
P8. [bookmark: OLE_LINK33][bookmark: OLE_LINK34]Efficiency and practicability: We ensure that our proposed scheme has higher computation efficiency by a comparison of performance, and is more practical for use in networking environments.
The rest of this paper is organized as follows. In Section 2, we review Chen et al.’s scheme and demonstrate its security weaknesses. In Section 3, we present our proposed scheme, and in Section 4, we illustrate the security analysis. In Section 5, we compare the performance of our scheme with those of Wang et al. and Chen et al. Finally, our concluding remarks are shown in Section 6.

2. Review of Chen et al.’s scheme
In this section, we review Chen et al.’s authentication scheme and then show that their scheme cannot protect against known-key attack and off-line guessing attack. The details and weaknesses of Chen et al.’s scheme are demonstrated in Subsections 2.1 and 2.2, respectively.
We first introduce the notations throughout this paper as follows:
·
: the user.
·
: the identity of user.
·

: the password of user .
·
: the remote server.
·

: the permanent private key of the remote server .
·
: a one-way hash function without a cryptographic key.
·

: a one-way hash function with a cryptographic key .
·
: a secure channel.
·
: a common channel.
·
: a concatenation operator which combines two strings into one.
2.1. Review of Chen et al.’s scheme
In this subsection, we briefly review the specific procedures of Chen et al.’s scheme. This scheme includes four phases: the registration phase, the login phase, the verification phase, and the password change phase.
2.1.1. Registration phase

We illustrate the procedures of this phase in Fig. 1 and show the details as follows. Whenever initially registers with , the registration phase is invoked:
1.

 chooses a random number and computes , then sends it with his to the server ; .
2.

 calculates the following parameters: , , , and the server stores the data on a new smart card , and issues the smart cart to user .
3.

 enters into his smart card so that it contains .

Fig. 1. Registration phase of Chen et al.’s scheme
2.1.2. Login phase

When attempts to login to the server , he should execute the following steps and this phase is depicted in Fig. 2.
1.

 inserts the smart card into the smart card reader and inputs his and .
2.

The smart card computes and checks whether equals . If so, the smart card continues to calculate , , where is a random number generated by the smart card and is the current timestamp of .
3.

 sends a login request message to the server ; .

[bookmark: OLE_LINK56][bookmark: OLE_LINK57]Fig. 2. Login and Verification phase of Chen et al.’s scheme
2.1.3. Verification phase
Upon receiving the login request message, the following steps can be depicted in Fig. 2 and the details can be shown:
1.

[bookmark: OLE_LINK6][bookmark: OLE_LINK7][bookmark: OLE_LINK10][bookmark: OLE_LINK11] checks the validity of and whether , where is the current timestamp of the server. If one of them does not hold, then rejects the login request; otherwise, checks whether is within a valid time interval . If not, rejects the login request.
2.

[bookmark: OLE_LINK54][bookmark: OLE_LINK55][bookmark: OLE_LINK14][bookmark: OLE_LINK15][bookmark: OLE_LINK12][bookmark: OLE_LINK13]If is really within the interval , computes and in order to check whether equals the original . If so, the validity of is authenticated and , where ; otherwise, rejects the login request.
3.

After receiving , checks the validity of and whether . If it does not hold, terminates the connection; otherwise, checks whether equals the received . If so, the validity of is authenticated.
4.

Moreover, and establish a common session key for private communication.
2.1.4. Password change phase

 can freely change his password to in this phase as follows:
1.

 inserts the smart card into the smart card reader , inputs his and and requests to change his password. Thus, the smart card computes , .
2.

The smart card checks whether equals the original stored in the smart card. If so, then selects a new password ; otherwise, the smart card rejects the password change request.
3.

The smart card computes and , then stores them and replaces the original and , respectively.
2.2. Weaknesses of the reviewed scheme
Chen et al. claimed their method is an enhanced version of Wang et al.’s scheme that can withstand impersonation attack (Chan, 2000) and parallel session attack (Ku and Chen, 2004). In this sub-section, we show that Chen et al.’s scheme is still vulnerable to known-key attack and off-line guessing attack.
2.2.1. The known-key attack

[bookmark: OLE_LINK22][bookmark: OLE_LINK23][bookmark: OLE_LINK1][bookmark: OLE_LINK2]A similar description of the known-key attack was presented (Wang et al., 2011). We assume that an adversary compromises the parameter and ; he can easily intercept the parameter from the login request message , and then derive the secret parameter . Thus, the adversary can utilize the derived parameter and select two random numbers and to perform the following computations: , . As a result, we can see that the adversary can execute the following procedure by sending a fabricated login request message to the server . After receiving the adversary’s login message, the verification phase is followed step by step:
1.

 checks either if the format of is invalid or , where is the current timestamp of the server. Due to the transmission delay or the adversary delay on purpose, cannot be equal to . Hence, the adversary can smoothly pass this step.
2.

 computes and . Upon calculating the result, can get the verification in Chen et al.’s scheme. It is clear the identity of can be authenticated.
3.

[bookmark: OLE_LINK18][bookmark: OLE_LINK19][bookmark: OLE_LINK30][bookmark: OLE_LINK20][bookmark: OLE_LINK21] responds to the message to , where and is the current timestamp of the server . Upon receiving the message from , the verification of is achieved. This way, user and server have a mutual authentication.

Thus, they obtain a new session key so that the known-key attack happens in this scheme.
2.2.2. Off-line guessing attack

[bookmark: OLE_LINK24][bookmark: OLE_LINK25][bookmark: OLE_LINK26][bookmark: OLE_LINK27] Assume that a malicious (legitimate) user can derive the parameter in the login phase, such as , since all these two random numbers and stem from the choice of the user’s smart card. By utilizing the derived parameter , the malicious user can achieve a guessing attack as follows:
1.

 can make use of the derived information to guess the long-term key of the authentication server , since he can assume the long-term key is and then computes .
2.

 can check whether the is equal to the derived . If so, the malicious user has correctly guessed the private long-term key of the server .
Consequently, the malicious user can easily imitate a legal server in the next session. Hence, this scheme has definitely suffered from the risk of this guessing attack.

3. The proposed scheme
 In this section, we propose a robust and secure remote user authentication scheme to overcome the weakness of Chen et al.’s scheme. Taking computation efficiency into consideration, we execute our proposed scheme by utilizing simple one-way hash functions. There are four phases accordingly and all these phases work as follows:
3.1. Registration phase

 This phase is invoked whenever initially registers or reregisters with . Suppose is the long-term key of the authentication server . As shown in Fig. 3, the following steps are performed in this phase:
1.

 chooses a random number and computes , then sends it with his to the server ; .
2.

[bookmark: OLE_LINK58] calculates the following parameters: , , , and the server stores the data on a new smart card , and issues the smart cart to user .
3.

 enters into his smart card so that it contains .

Fig. 3. Registration phase of our proposed scheme
3.2. Login phase

This phase is depicted in Fig. 4. When intends to login , the following computations should be performed:
1.

 inserts the smart card into the smart card reader and inputs his and .
2.

The smart card computes and checks whether equals . If so, the smart card continues to calculate , , where is the current timestamp of .
3.

 sends a login request message to the server ; .

Fig. 4. Login and Verification phase of our proposed scheme
3.3. Verification phase

Upon receiving the login request message, the server and the user should perform the following steps to achieve mutual authentication and compute a session key. The details of this phase are shown in Fig. 4.
1.

 checks the validity of and whether , where is the current timestamp of the server. If one of them cannot hold, then rejects the login request; otherwise, checks whether is within a valid time interval . If not, then rejects the login request.
2.

If the is really within the interval , computes in order to check whether the result equals . If so, the validity of is authenticated and , where ; otherwise, rejects the login request.
3.

After receiving , checks the validity of and whether . If it does not hold, terminates the connection; otherwise, checks whether equals the received . If so, the validity of is authenticated.
4.

Moreover, and establish a common session key for private communication.
3.4. Password change phase

 can freely change his password to in this phase as follows:
1.

 inserts the smart card into the smart card reader , inputs his and and requests to change his password. Thus, the smart card computes , .
2.

The smart card checks whether equals the original stored in the smart card. If so, then selects a new password ; otherwise, the smart card rejects the password change request.
3.

The smart card computes and , then stores them and replaces the original and , respectively.

[bookmark: OLE_LINK48][bookmark: OLE_LINK49]4. Security analysis of our proposed scheme
[bookmark: OLE_LINK45][bookmark: OLE_LINK46] In this section, we present the logic analysis based on BAN logic to prove the authority of authentication procedure and the correctness of our scheme execution. The details will be shown in Subsection 4.1. Then, we discuss several significant attacks and demonstrate the security strength of our proposed scheme in Subsection 4.2. Moreover, we show that our proposed scheme enhances the security of Chen et al.’s scheme and withstands its corresponding weaknesses.
4.1. BAN logic demonstration for our proposed scheme
We use BAN logic to verify our remote user authentication scheme using smart cards. Our scheme not only provides the mutual authentication requirement but also achieves to establish a common session key between the user and the server. According to the analytical procedures of BAN logic, each round of the scheme has to be transformed into the idealized form. Next, we briefly describe basic notations of BAN logic as follows.

: and may communicate with each other using the shared key . The key will never be discovered by any principal except or .

: Formula is a secretly known only to and . Only and may use to prove their identities to one another.

: This represents Formula X encrypted under the key .

: This represents Formula X combined with Formula .

Then, we first give the following logical postulates to present that and can mutually authenticate and cooperate to obtain a session key.

 believes ,

 believes fresh (),

 believes fresh (),

 believes ,

 believes believes ,

 believes ,

 believes believes .
In our scheme, there are two messages that used to achieve the mutual authentication and key agreement requirements. These messages are shown in Fig. 4. Then, we idealize the scheme as follows.

Message 1. : , , .

Message 2. : , .
Before starting to analyze our scheme, we first make the following assumptions:

A 1. believes .

A 2. believes .

A 3. believes fresh ().

A 4. believes (controls).

A 5. believes .

A 6. believes .

A 7. believes fresh ().

A 8. believes (controls).

A 9. believes (controls).
Then, we analyzed the idealized form of our proposed scheme using the above assumptions and rules of BAN logic. Details of the logic proof are presented as follows.

 receives Message 1. The rules show that

 sees {, , }. 								 	(Statement 1)
We break conjunctions and produce

 believes said , 	(Statement 2)

 believes said ,							 		(Statement 3)
and

 believes said . 	(Statement 4)
By A 4 and Statement 2, we apply the nonce-verification rule to deduce

 believes . 											 	(Statement 5)
By A 6 and Statement 3, we apply the message-meaning rule to derive

 believes said . 		(Statement 6)
By A 7 and Statement 6, the nonce-verification rule applies and yields

 believes . 										 		(Statement 7)
By A 7 and Statement 4, we apply the nonce-verification rule to deduce

 believes . 												(Statement 8)

Then, receives Message 2. The annotation rule yields that

 sees {, }.										(Statement 9)
We break conjunctions and produce as following:

 believes said 								(Statement 10)
and

 believes said . 										(Statement 11)
By A 2 and Statement 10, the message-meaning rule to obtain

 believes said .									(Statement 12)
By A 3 and Statement 12, we apply the nonce-verification rule to deduce

 believes .											(Statement 13)
By A 3 and Statement 11, the nonce-verification rule applies and yields

 believes . 												(Statement 14)
Finally, we apply the message-meaning rule to derive

 controls 												(Statement 15)
and

 controls .												(Statement 16)
By A 8 and Statement 16, the jurisdiction rule applies to deduce

 believes .												(Statement 17)
By A 9 and Statement 15, we apply the jurisdiction rule to derive

 believes .												(Statement 18)

Based on Statement 7 and Statement 13, we prove our proposed scheme can achieve the mutual authentication requirement. Due to the results of Statement 17 and Statement 18, we also prove our proposed scheme can establish a common session key between and .
[bookmark: OLE_LINK43][bookmark: OLE_LINK44]4.2. Protection against possible attacks
In this subsection, we show our proposed scheme can withstand all these possible attacks as follows so that it successfully remedied the security drawbacks of Chen et al.’s scheme.
4.2.1. The known-key attack

 Chen et al.’s scheme is vulnerable to the known-key attack because an adversary can easily intercept a legal user’s login request message and get the parameter , when the has been compromised. Upon getting the parameters, the secret information can be derived by computing . Nevertheless, it is impossible for the adversary to intercept any secret information from the user’s login request message in our proposed scheme, since the login request message includes . This is because is protected in the secure one-way hash function belonging to , where . Moreover, a legal user’s smart card has no need to select random number to continue the following verification phase. It is no longer possible to reveal any secret information to the adversary. Hence, an adversary cannot obtain validation from the authentication server . We surmount the weakness of Chen et al.’s scheme, because our proposed scheme prevents an adversary from deriving the secret information and sending a fabricated login request message to obtain a new session key.
4.2.2. Off-line guessing attack

In the aforementioned scenario where a malicious user can derive the essential parameter in Chen et al.’s scheme, it is obvious the malicious user can premeditate imitating a legal server by guessing the private long-term key . If the malicious user attempts to achieve this purpose in our proposed scheme, he needs to obtain the parameter in the login phase by calculating , then execute the operation of an off-line guessing attack. However, after obtaining the parameter , the malicious user’s purpose of off-line guessing attack will fail, because the malicious user cannot achieve his purpose by using his own identity and the derived parameter . The reason is that he first assumes a long-term key and computes the equation . Then, he checks whether the equation equals the original or not. However, the malicious user cannot successfully perform the off-line guessing attack without knowing the hash value . In general, the off-line guessing attack can be achieved because an adversary can guess one part of the secret information by utilizing the other known part. Nevertheless, the equation of contains the long-term key and the corresponding hash value in our proposed scheme. The malicious user cannot guess a correct value of long-term key to make equal the original , so the off-line guessing attack on Chen et al.’s scheme has been defeated in our proposed scheme.
4.2.3. Replay attack

 An adversary can intercept either the login request message or the response message that are transmitted among a legal user and the authentication server . Both of these messages include the corresponding timestamps and , respectively. If the adversary replays his intercepted message, the server should check the validity of the corresponding and . Unfortunately, cannot be within a valid time interval . Similarly, it cannot be verified in Step 3 of the verification phase when the adversary might replay the response message , since he cannot pass the time interval validation. Hence, the adversary makes replay attack very hard.
4.2.4. Impersonation attack

 An adversary desires to forge a legal user’s login request message into message and transmits it to the remote server . After receiving the message , should check whether equals the result of or not. However, the adversary cannot acquire the value of . He cannot be validated by the server in the verification phase. Similarly, there is no way the adversary can forge the authentication server by transmitting an impersonation response message . The adversary cannot be validated since the equation cannot hold. Meanwhile, the and are unavailable parameters for the adversary in our scheme. Hence, the impersonation attempts of adversaries cannot be achieved.
4.2.5. Parallel attack

 In Chen et al.’s scheme, an adversary who attempts to masquerade as a legal user by eavesdropping on communication between the server and cannot make a parallel attack among the two different sessions, because and have disparate functions. We inherit the advantage in our proposed scheme, in which the adversary cannot start a new session with server by sending a fabricated login request message . Because in Step 2 of the authentication phase, computes to check whether the result equals the received . However, it is obvious when , the result does not equal the value of . Hence, the adversary cannot make a parallel attack.
4.2.6. Mutual authentication

 In our proposed scheme, user can validate server by checking whether equals the received ; at the same time, server can also validate user by checking whether equals the received . Mutual authentication protects the validity of both sides for user and server .
4.2.7. Perfect forward secrecy

[bookmark: OLE_LINK37][bookmark: OLE_LINK38] This is an essential security property to ensure that it is impossible for an adversary to derive the session keys used previously, even if he obtains the contiguous knowledge of the current session key. We assume that the adversary has corrupted a legal user and acquired the long-term key . However, the session key is protected with a one-way hash function and the equation is guaranteed to be secure since it contains an unavailable value of for any adversary. Moreover, due to the different login and authentication processes, the corresponding timestamps and should be updated accordingly. Thus, there is no way for the adversary to derive the session keys in our scheme. In this way, our proposed scheme can achieve perfect forward secrecy.

5. Performance analysis of our proposed scheme

 In this section, we compare computation cost with previous works such as Wang et al.’s scheme (2007) and Chen et al.’s scheme (2011) to estimate the performance of our proposed scheme. The detailed comparison is depicted in Table 1. We note that means a one-way hash operation and denotes an exclusive-or operation. It is obvious the computation capability of one-way hash function is most practical in terms of efficiency. In our proposed scheme, we utilize nearly all one-way hash functions to enhance system efficiency and simultaneously remedy the security weaknesses of Chen et al.’s scheme.

Table 1
Performance comparison between our scheme and previous schemes
	Items
	Wang et al.’s scheme
	Chen et al.’s scheme
	Our scheme

	Registration phase
	

+
	

+
	

+

	Login phase
	

+
	

+
	

+

	Verification phase
	

+
	

+
	

+

	Password change phase
	

+
	

+
	

+

	Total
	

+
	

+
	

+

·
: the operation of one-way hash function
·
: the operation of exclusive-or computation

 From the viewpoint of system efficiency, the computation cost of the registration phase in our proposed scheme requires an extra one-way hash operation to calculate the parameter so that our remedy is resistant to off-line guessing attack. In the login and verification phases, we utilize only seven one-way hash operations and eight exclusive-or operations which are lower than the computation cost of two comparison targets. Because we try to avoid known-key attack occurring, we don’t use the random number to compute the essential parameter . Note that this step remedy is superior to previous works on computation efficiency. In the password change phase, we require the same computation cost as the other two comparison schemes.

Table 2
Property comparison between our scheme and previous schemes
	Items
	Wang et al.’s scheme
	Chen et al.’s scheme
	Our scheme

	P1
	Yes
	Yes
	Yes

	P2
	Yes
	Yes
	Yes

	P3
	No
	No
	Yes

	P4
	No
	No
	Yes

	P5
	Yes
	Yes
	Yes

	P6
	Yes
	Yes
	Yes

	P7
	No
	Yes
	Yes

	P8
	No
	No
	Yes

Consequently, we not only achieve the goal of remedying Chen et al.’s security weaknesses but also require lower computation cost totally in our proposed scheme, which compares favorably with the relevant schemes. In Table 2, we show a comparison of the properties we have mentioned in Section 1 between our scheme and the related works. It is obvious we really propose a novel scheme to remedy the security drawback of Chen et al.’s scheme, and it also satisfies all the above-mentioned properties. In brief, due to the analysis of our proposed scheme, which focuses on the security and performance aspects, our scheme proves to be more secure and efficient than the schemes proposed previously.

6. Conclusions
 In this paper, we propose a remote user authentication that is novel, has high-level of security, and is efficient for smart cards use. According to the above analysis, we not only enhance Chen et al.’s scheme but also provide evidence that our proposed scheme requires lower computation load than the related works. Moreover, we demonstrate that our new scheme has advanced security features and performance, which have been summarized as properties that distinguished our scheme from previous ones. Therefore, our proposed scheme is more secure and practical for the remote user authentication environment.

References
Wu T-C, Sung H-S. Authentication passwords over an insecure channel. Computer & Security 1996;15(5):431-9.
Peyravian M, Zunic N. Methods for protecting password transmission. Computer & Security 2006;19(5):466-9.
[bookmark: OLE_LINK41][bookmark: OLE_LINK42][bookmark: OLE_LINK47][bookmark: OLE_LINK52]Chang C-C, Lee C-Y, Chiu Y-C. Enhanced authentication scheme with anonymity for roaming service in global mobility networks. Computer Communications 2009;32(4):611-8.
Lamport L. Password authentication with insecure communication. Communications of the ACM 1981;24(11):770-2.
Hwang M-S, Li L-H. A new remote user authentication scheme using smart card. IEEE Transactions on Consumer Electronics 2000;46(1):28-30.
Elgamal T. A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 1985;31(4):469-72.
Sun H-M. An efficient remote use authentication scheme using smart cards. IEEE Transactions on Consumer Electronics 2000;46(4):958-61.
Juang W-S. Efficient multi-server password authenticated key agreement using smart cards. IEEE Transactions on Consumer Electronics 2004;50(1):251-5.
Juang W-S, Chen S-T, Liaw H-T. Robust and efficient password-authenticated key agreement using smart cards. IEEE Transactions on Consumer Electronics 2008;55(6):2551-6.
Kim S-K, Chung M-G. More secure remote user authentication scheme. Computer Communications 2009;32(6):1018-21.
Liu J-Y, Zhou A-M, Gao M-X. A new mutual authentication scheme based on nonce and smart card. Computer Communications 2008;31(10):2205-9.
Sun D-Z, Huai J-P, Sun J-Z, Li J-X. Cryptanalysis of a mutual authentication scheme based on nonce and smart cards. Computer Communications 2009;32(6):1015-7.
Chien H-Y, Jan J-K, Tseng Y-M, An efficient and practical solution to remote authentication: smart card. Computer & Security 2002;2 (4):372-5.
Ku W-C, Chen S-M. Weaknesses and improvements of an efficient password based remote user authentication scheme using smart cards. IEEE Transactions on Consumer Electronics 2004;50(1):204-7.
[bookmark: OLE_LINK50][bookmark: OLE_LINK51]Yoon E-J, Ryu E-K, Yoo K-Y. Further improvement of an efficient password based remote user authentication scheme using smart cards. IEEE Transactions on Consumer Electronics 2004;50(2):612-4.
[bookmark: OLE_LINK39][bookmark: OLE_LINK40]Wang X-M, Zhang W-F, Zhang J-S, Khan M-K. Cryptanalysis and improvement on two efficient remote user authentication scheme using smart cards. Computer Standard & Interfaces 2007;29(5):507-12.
[bookmark: OLE_LINK31][bookmark: OLE_LINK32]Chen T-H, Hsiang H-C, Shih W.K. Security enhancement on an improvement on two remote user authentication schemes using smart cards. Future Generation Computer Systems 2011;27 (4):377-80.
Chan C-K. Cryptanalysis of a remote user authentication scheme using smart cards. IEEE Transactions on Consumer Electronics 2000;46(4):992-3.
Wang R-C, Juang W-S, Lei C-L. Robust authentication and key agreement scheme preserving the privacy of secret key. Computer Communications 2011;34(3):274-80.

21

image1.wmf
U

oleObject51.bin

image41.wmf
su

TT

>

oleObject52.bin

image42.wmf
s

T

oleObject53.bin

oleObject54.bin

oleObject55.bin

image43.wmf
su

TT

-

oleObject56.bin

image44.wmf
T

D

oleObject1.bin

oleObject57.bin

oleObject58.bin

image45.wmf
su

TT

-

oleObject59.bin

image46.wmf
T

D

oleObject60.bin

image47.wmf
S

oleObject61.bin

image48.wmf
()

phIDx

=Å

oleObject62.bin

image2.wmf
ID

image49.wmf
'

11

cpc

=Å

oleObject63.bin

image50.wmf
'

1

()

pu

hcT

P

oleObject64.bin

image51.wmf
2

c

oleObject65.bin

image52.wmf
U

oleObject66.bin

image53.wmf
{

}

3

:,

s

SUcT

®

oleObject67.bin

oleObject2.bin

image54.wmf
'

31

()

ps

chcTp

=Å

P

oleObject68.bin

oleObject69.bin

image55.wmf
{

}

3

,

s

cT

oleObject70.bin

image56.wmf
U

oleObject71.bin

oleObject72.bin

image57.wmf
su

TT

>

oleObject73.bin

image3.wmf
PW

oleObject74.bin

oleObject75.bin

image58.wmf
(())

ps

hhrbTp

ÅÅ

P

oleObject76.bin

image59.wmf
3

c

oleObject77.bin

image60.wmf
S

oleObject78.bin

oleObject79.bin

oleObject80.bin

oleObject3.bin

image61.wmf
'

1

()

chrb

=Å

oleObject81.bin

oleObject82.bin

image62.wmf
PW

oleObject83.bin

image63.wmf
new

PW

oleObject84.bin

oleObject85.bin

oleObject86.bin

oleObject87.bin

oleObject4.bin

image64.wmf
()

pRhbPW

*

=ÅÅ

oleObject88.bin

image65.wmf
*

(())

p

VhhbPW

*

=Å

oleObject89.bin

image66.wmf
V

*

oleObject90.bin

image67.wmf
V

oleObject91.bin

oleObject92.bin

oleObject93.bin

image4.wmf
S

image68.wmf
()

newnew

RphbPW

*

=ÅÅ

oleObject94.bin

image69.wmf
*

(())

newnew

p

VhhbPW

=Å

oleObject95.bin

image70.wmf
R

oleObject96.bin

image71.wmf
V

oleObject97.bin

image72.wmf
'

1

c

oleObject98.bin

oleObject5.bin

image73.wmf
'

11

cpc

=Å

oleObject99.bin

image74.wmf
1

c

oleObject100.bin

image75.wmf
{

}

12

,,,

u

IDccT

oleObject101.bin

image76.wmf
'

11

pcc

=Å

oleObject102.bin

image77.wmf
p

oleObject103.bin

image5.wmf
x

image78.wmf
'

r

oleObject104.bin

image79.wmf
'

b

oleObject105.bin

image80.wmf
*''

1

()

cphrb

=ÅÅ

oleObject106.bin

image81.wmf
*'''

2

(())

pu

chhrbT

=Å

P

oleObject107.bin

image82.wmf
{

}

**'

12

,,,

u

IDccT

oleObject108.bin

oleObject6.bin

image83.wmf
S

oleObject109.bin

oleObject110.bin

image84.wmf
ID

oleObject111.bin

image85.wmf
''

us

TT

=

oleObject112.bin

image86.wmf
'

s

T

oleObject113.bin

image87.wmf
'

u

T

oleObject7.bin

oleObject114.bin

image88.wmf
'

s

T

oleObject115.bin

oleObject116.bin

oleObject117.bin

image89.wmf
''*''

11

()

cpchrb

=Å=Å

oleObject118.bin

image90.wmf
S

oleObject119.bin

image91.wmf
''''''''*

212

()(())

pupu

chcThhrbTc

==Å=

PP

image6.wmf
()

h

g

oleObject120.bin

image92.wmf
U

oleObject121.bin

oleObject122.bin

image93.wmf
{

}

*'

3

,

s

cT

oleObject123.bin

image94.wmf
U

oleObject124.bin

image95.wmf
*'''

31

()

ps

chcTp

=Å

P

oleObject125.bin

oleObject8.bin

image96.wmf
'

s

T

oleObject126.bin

image97.wmf
S

oleObject127.bin

oleObject128.bin

oleObject129.bin

oleObject130.bin

oleObject131.bin

image98.wmf
''''

1

()

chrb

=Å

oleObject132.bin

image7.wmf
()

p

h

g

oleObject133.bin

image99.wmf
p

oleObject134.bin

image100.wmf
1

()

pchrb

=ÅÅ

oleObject135.bin

image101.wmf
r

oleObject136.bin

image102.wmf
b

oleObject137.bin

image103.wmf
p

oleObject9.bin

oleObject138.bin

oleObject139.bin

oleObject140.bin

image104.wmf
x

oleObject141.bin

image105.wmf
S

oleObject142.bin

image106.wmf
'

x

oleObject143.bin

image107.wmf
''

()

phIDx

=Å

image8.wmf
p

oleObject144.bin

oleObject145.bin

image108.wmf
'

p

oleObject146.bin

oleObject147.bin

oleObject148.bin

oleObject149.bin

image109.wmf
U

oleObject150.bin

image110.wmf
S

oleObject10.bin

oleObject151.bin

image111.wmf
x

oleObject152.bin

image112.wmf
S

oleObject153.bin

oleObject154.bin

oleObject155.bin

oleObject156.bin

oleObject157.bin

oleObject158.bin

image9.wmf
Þ

image113.wmf
:,()

USIDhbPW

ÞÅ

oleObject159.bin

image114.wmf
S

oleObject160.bin

image115.wmf
()()

phIDxhx

=Å

P

oleObject161.bin

oleObject162.bin

oleObject163.bin

image116.wmf
S

oleObject164.bin

oleObject11.bin

oleObject165.bin

image117.wmf
U

oleObject166.bin

oleObject167.bin

oleObject168.bin

oleObject169.bin

image118.emf
Randomly selects

b

,() IDhbPW



Computes

()(), phIDxhx



(), RphbPW 

(())

p

VhhbPW



 

,,(),()

p

VRhh



Smart card Stores

Stores

b

into smart card

 

,,(),(),

p

VRhhb



User Server

[Registration]

oleObject170.bin
Randomly selects

Computes

Smart card

Stores

Stores

into smart card

User

Server

[Registration]

image119.wmf
U

oleObject171.bin

image10.wmf
®

image120.wmf
S

oleObject172.bin

oleObject173.bin

oleObject174.bin

oleObject175.bin

oleObject176.bin

oleObject177.bin

oleObject178.bin

image121.wmf
1

()

cRhbPW

=ÅÅ

oleObject179.bin

oleObject12.bin

image122.wmf
21

()

pu

chcT

=

P

oleObject180.bin

oleObject181.bin

oleObject182.bin

oleObject183.bin

image123.wmf
S

oleObject184.bin

image124.wmf
{

}

2

:,,

u

USIDcT

®

oleObject185.bin

image125.emf
Inputs

Checks

User Server

[Login and Verification]

ID

and

PW

Verifies

(())

p

hhbPW

 with

V

() pRhbPW



Computes

Computes

1

(), cRhbPW



21

()

pu

chcT

 

2

{,,}

u

IDcT

su

TT



Verifies

(()())

pu

hhIDxhxT



with

2

c

3

((()()))

ps

chhIDxhxTp

 

Computes

 

3

,

s

cT

Checks

s

T

Verifies

1

()

ps

hcTp

with

3

c

1

(())

us

SKhcIDTT



Session key

Session key

(((()())))

us

SKhhIDxhxIDTT

 

image11.wmf
P

oleObject186.bin
Inputs

Checks

User

Server

[Login and Verification]

and

Verifies

with

Computes

Computes

Verifies

with

Computes

Checks

Verifies

with

Session key

Session key

image126.wmf
S

oleObject187.bin

image127.wmf
U

oleObject188.bin

oleObject189.bin

oleObject190.bin

image128.wmf
su

TT

>

oleObject191.bin

oleObject192.bin

oleObject13.bin

oleObject193.bin

oleObject194.bin

oleObject195.bin

oleObject196.bin

oleObject197.bin

image129.wmf
su

TT

-

oleObject198.bin

image130.wmf
T

D

oleObject199.bin

image131.wmf
S

image12.wmf
U

oleObject200.bin

image132.wmf
(()())

pu

hhIDxhxT

Å

PP

oleObject201.bin

oleObject202.bin

image133.wmf
U

oleObject203.bin

oleObject204.bin

image134.wmf
3

((()()))

ps

chhIDxhxTp

=ÅÅ

PP

oleObject205.bin

oleObject206.bin

oleObject14.bin

oleObject207.bin

oleObject208.bin

oleObject209.bin

oleObject210.bin

oleObject211.bin

oleObject212.bin

image135.wmf
1

()

ps

hcTp

Å

P

oleObject213.bin

oleObject214.bin

oleObject215.bin

image13.wmf
S

oleObject216.bin

oleObject217.bin

image136.wmf
1

(())(((()())))

usus

SKhcIDTThhIDxhxIDTT

=Å=ÅÅ

PPPPP

oleObject218.bin

oleObject219.bin

oleObject220.bin

oleObject221.bin

oleObject222.bin

oleObject223.bin

oleObject224.bin

oleObject15.bin

oleObject225.bin

oleObject226.bin

oleObject227.bin

oleObject228.bin

oleObject229.bin

oleObject230.bin

oleObject231.bin

oleObject232.bin

oleObject233.bin

image137.wmf
V

oleObject16.bin

oleObject234.bin

image138.wmf
Q

P

K

«

oleObject235.bin

image139.wmf
P

oleObject236.bin

image140.wmf
Q

oleObject237.bin

image141.wmf
K

oleObject238.bin

oleObject239.bin

image14.wmf
b

oleObject240.bin

oleObject241.bin

image142.wmf
Q

P

X

Û

oleObject242.bin

image143.wmf
X

oleObject243.bin

oleObject244.bin

oleObject245.bin

oleObject246.bin

oleObject247.bin

oleObject17.bin

image144.wmf
X

oleObject248.bin

image145.wmf
{}

K

X

oleObject249.bin

oleObject250.bin

image146.wmf
Y

X

áñ

oleObject251.bin

image147.wmf
Y

oleObject252.bin

image148.wmf
U

image15.wmf
()

hbPW

Å

oleObject253.bin

image149.wmf
S

oleObject254.bin

oleObject255.bin

image150.wmf
ID

oleObject256.bin

oleObject257.bin

image151.wmf
u

T

oleObject258.bin

image152.wmf
U

oleObject18.bin

oleObject259.bin

image153.wmf
s

T

oleObject260.bin

oleObject261.bin

image154.wmf
S

U

SK

«

oleObject262.bin

oleObject263.bin

oleObject264.bin

image155.wmf
S

U

SK

«

oleObject265.bin

image16.wmf
ID

oleObject266.bin

oleObject267.bin

oleObject268.bin

oleObject269.bin

oleObject270.bin

image156.wmf
US

®

oleObject271.bin

oleObject272.bin

image157.wmf
1

()

u

pT

hc

áñ

oleObject273.bin

oleObject19.bin

oleObject274.bin

image158.wmf
SU

®

oleObject275.bin

image159.wmf
()

psp

hpT

áÅñ

oleObject276.bin

oleObject277.bin

oleObject278.bin

image160.wmf
S

U

h

()

Û

oleObject279.bin

oleObject280.bin

image17.wmf
S

image161.wmf
S

U

p

h

()

Û

oleObject281.bin

oleObject282.bin

image162.wmf
s

T

oleObject283.bin

oleObject284.bin

oleObject285.bin

oleObject286.bin

oleObject287.bin

oleObject288.bin

oleObject20.bin

oleObject289.bin

oleObject290.bin

oleObject291.bin

oleObject292.bin

oleObject293.bin

oleObject294.bin

oleObject295.bin

oleObject296.bin

oleObject297.bin

oleObject298.bin

image18.wmf
:,()

USIDhbPW

ÞÅ

oleObject299.bin

oleObject300.bin

oleObject301.bin

image163.wmf
1

()

u

pT

hc

áñ

oleObject302.bin

oleObject303.bin

oleObject304.bin

oleObject305.bin

oleObject306.bin

oleObject307.bin

oleObject21.bin

oleObject308.bin

oleObject309.bin

oleObject310.bin

oleObject311.bin

oleObject312.bin

oleObject313.bin

oleObject314.bin

oleObject315.bin

oleObject316.bin

image164.wmf
1

u

T

c

áñ

oleObject22.bin

oleObject317.bin

oleObject318.bin

oleObject319.bin

oleObject320.bin

oleObject321.bin

oleObject322.bin

oleObject323.bin

image165.wmf
()

psp

hpT

áÅñ

oleObject324.bin

image166.wmf
s

T

image19.wmf
()

phIDx

=Å

oleObject325.bin

oleObject326.bin

oleObject327.bin

oleObject328.bin

oleObject329.bin

oleObject330.bin

oleObject331.bin

oleObject332.bin

oleObject333.bin

image167.wmf
sp

pT

áÅñ

oleObject23.bin

oleObject334.bin

oleObject335.bin

oleObject336.bin

oleObject337.bin

oleObject338.bin

oleObject339.bin

oleObject340.bin

oleObject341.bin

oleObject342.bin

oleObject343.bin

image20.wmf
()

RphbPW

=ÅÅ

oleObject344.bin

oleObject345.bin

oleObject346.bin

oleObject347.bin

oleObject348.bin

image168.wmf
{

}

12

,,,

u

IDccT

oleObject349.bin

image169.wmf
1

c

oleObject350.bin

image170.wmf
'

1

c

oleObject24.bin

oleObject351.bin

image171.wmf
()

phIDx

=Å

oleObject352.bin

image172.wmf
'

11

cc

Å

oleObject353.bin

image173.wmf
{

}

2

,,

u

IDcT

oleObject354.bin

image174.wmf
1

c

oleObject355.bin

image175.wmf
2

c

image21.wmf
(())

p

VhhbPW

=Å

oleObject356.bin

image176.wmf
21

()

pu

chcT

=

P

oleObject357.bin

image177.wmf
r

oleObject358.bin

image178.wmf
S

oleObject359.bin

image179.wmf
{

}

*'

2

,,

u

IDcT

oleObject360.bin

image180.wmf
U

oleObject25.bin

oleObject361.bin

image181.wmf
p

oleObject362.bin

image182.wmf
x

oleObject363.bin

oleObject364.bin

oleObject365.bin

image183.wmf
()

pRhbPW

=ÅÅ

oleObject366.bin

oleObject367.bin

image22.wmf
S

image184.wmf
U

oleObject368.bin

image185.wmf
ID

oleObject369.bin

image186.wmf
p

oleObject370.bin

image187.wmf
'

x

oleObject371.bin

image188.wmf
'''

()()

phIDxhx

=Å

P

oleObject372.bin

oleObject26.bin

image189.wmf
p

oleObject373.bin

image190.wmf
U

oleObject374.bin

image191.wmf
()

hx

oleObject375.bin

image192.wmf
p

oleObject376.bin

image193.wmf
x

oleObject377.bin

image23.wmf
{

}

,,(),()

p

VRhh

gg

oleObject378.bin

image194.wmf
U

oleObject379.bin

image195.wmf
'

x

oleObject380.bin

image196.wmf
'''

()()

phIDxhx

=Å

P

oleObject381.bin

oleObject382.bin

image197.wmf
{

}

2

,,

u

IDcT

oleObject383.bin

oleObject27.bin

image198.wmf
{

}

3

,

s

cT

oleObject384.bin

image199.wmf
U

oleObject385.bin

image200.wmf
S

oleObject386.bin

image201.wmf
u

T

oleObject387.bin

image202.wmf
s

T

oleObject388.bin

image24.wmf
U

image203.wmf
S

oleObject389.bin

image204.wmf
ID

oleObject390.bin

image205.wmf
u

T

oleObject391.bin

oleObject392.bin

oleObject393.bin

image206.wmf
{

}

3

,

s

cT

oleObject394.bin

oleObject28.bin

image207.wmf
{

}

2

,,

u

IDcT

oleObject395.bin

image208.wmf
{

}

''

2

,,

u

IDcT

oleObject396.bin

image209.wmf
S

oleObject397.bin

oleObject398.bin

oleObject399.bin

image210.wmf
'

2

c

oleObject400.bin

oleObject29.bin

image211.wmf
'

(()())

pu

hhIDxhxT

Å

PP

oleObject401.bin

image212.wmf
()()

hIDxhx

Å

P

oleObject402.bin

image213.wmf
S

oleObject403.bin

oleObject404.bin

image214.wmf
{

}

''

3

,

s

cT

oleObject405.bin

image215.wmf
''

31

()

ps

chcTp

=Å

P

oleObject30.bin

oleObject406.bin

image216.wmf
1

c

oleObject407.bin

image217.wmf
p

oleObject408.bin

image218.wmf
U

oleObject409.bin

oleObject410.bin

oleObject411.bin

image219.wmf
2

c

image25.wmf
{

}

,,(),(),

p

VRhhb

gg

oleObject412.bin

image220.wmf
3

c

oleObject413.bin

image221.wmf
S

oleObject414.bin

image222.wmf
{

}

3

,,

s

IDcT

oleObject415.bin

oleObject416.bin

oleObject417.bin

oleObject418.bin

oleObject31.bin

image223.wmf
3

((()()))

ps

chhIDxhxTp

=ÅÅ

PP

oleObject419.bin

oleObject420.bin

image224.wmf
U

oleObject421.bin

image225.wmf
S

oleObject422.bin

oleObject423.bin

oleObject424.bin

oleObject425.bin

image26.emf
Randomly selects

b

,() IDhbPW



Computes

(), phIDx



(), RphbPW 

(())

p

VhhbPW



 

,,(),()

p

VRhh



Smart card Stores

Stores

b

into smart card

 

,,(),(),

p

VRhhb



User Server

[Registration]

oleObject426.bin

image226.wmf
(()())

pu

hhIDxhxT

Å

PP

oleObject427.bin

image227.wmf
2

c

oleObject428.bin

oleObject429.bin

oleObject430.bin

image228.wmf
U

oleObject431.bin

image229.wmf
x

oleObject32.bin
Randomly selects

Computes

Stores

Smart card

Stores

into smart card

User

Server

[Registration]

oleObject432.bin

image230.wmf
1

(())

us

SKhcIDTT

=Å

PP

oleObject433.bin

image231.wmf
1

()()

chIDxhx

=Å

P

oleObject434.bin

image232.wmf
u

T

oleObject435.bin

image233.wmf
s

T

oleObject436.bin

image234.wmf
h

oleObject33.bin

oleObject437.bin

image235.wmf
Å

oleObject438.bin

image236.wmf
3

h

oleObject439.bin

image237.wmf
3

Å

oleObject440.bin

oleObject441.bin

oleObject442.bin

image238.wmf
4

h

oleObject34.bin

oleObject443.bin

oleObject444.bin

image239.wmf
4

h

oleObject445.bin

image240.wmf
5

Å

oleObject446.bin

oleObject447.bin

image241.wmf
4

Å

oleObject448.bin

oleObject449.bin

oleObject35.bin

image242.wmf
2

Å

oleObject450.bin

oleObject451.bin

oleObject452.bin

oleObject453.bin

oleObject454.bin

oleObject455.bin

oleObject456.bin

oleObject457.bin

oleObject458.bin

image27.wmf
ID

oleObject459.bin

oleObject460.bin

oleObject461.bin

oleObject462.bin

image243.wmf
15

h

oleObject463.bin

image244.wmf
17

Å

oleObject464.bin

oleObject465.bin

image245.wmf
14

Å

oleObject36.bin

oleObject466.bin

oleObject467.bin

image246.wmf
11

Å

oleObject468.bin

image247.wmf
h

oleObject469.bin

image248.wmf
Å

oleObject470.bin

image249.wmf
()()

phIDxhx

=Å

P

oleObject471.bin

image28.wmf
PW

image250.wmf
r

oleObject472.bin

image251.wmf
1

c

oleObject473.bin

oleObject37.bin

image29.wmf
()

pRhbPW

=ÅÅ

oleObject38.bin

image30.wmf
(())

p

hhbPW

Å

oleObject39.bin

image31.wmf
V

oleObject40.bin

image32.wmf
1

()

cphrb

=ÅÅ

oleObject41.bin

image33.wmf
2

(())

pu

chhrbT

=Å

P

oleObject42.bin

image34.wmf
r

oleObject43.bin

image35.wmf
u

T

oleObject44.bin

oleObject45.bin

image36.wmf
U

oleObject46.bin

image37.wmf
S

oleObject47.bin

image38.wmf
{

}

12

:,,,

u

USIDccT

®

oleObject48.bin

image39.emf
Inputs

Checks

User Server

[Login and Verification]

ID

and

PW

Verifies

(())

p

hhbPW

 with

V

() pRhbPW



Computes

Computes

1

(), cphrb



2

(())

pu

chhrbT



12

{,,,}

u

IDccT

su

TT



(), phIDx



Computes

'

11

cpc



Verifies

'

1

()

pu

hcT



with

2

c

'

31

()

ps

chcTp





Computes

 

3

,

s

cT

Checks

s

T

Verifies

(())

ps

hhrbTp

with

3

c

'

1

() chrb

 Session key Session key

'

1

() chrb



oleObject49.bin
Inputs

with

Checks

Computes

Verifies

Checks

Verifies

User

Server

[Login and Verification]

with

and

Verifies

Computes

Computes

with

Computes

Session key

Session key

oleObject50.bin

image40.wmf
ID

