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Abstract
Purpose. Gypenosides (Gyp) are the major components of Gynostemma pentaphyllum Makino. The authors investigated the
effects of Gyp on cell morphology, viability, cell cycle distribution, and induction of apoptosis in human oral cancer SAS cells
and the determination of murine SAS xenograft model in vivo. Experimental design. Flow cytometry was used to quantify
the percentage of viable cells; cell cycle distribution; sub-G1 phase (apoptosis); caspase-3, -8, and -9 activity; reactive oxygen
species (ROS) production, intracellular Ca2+ determination; and the level of mitochondrial membrane potential (ΔΨm).
Western blotting was used to examine levels of apoptosis-associated proteins, and confocal laser microscopy was used to
examine the translocation of proteins in cells. Results. Gyp induced morphological changes, decreased the percentage of
viable cells, caused G0/G1 phase arrest, and triggered apoptotic cell death in SAS cells. Cell cycle arrest induced by Gyp
was associated with apoptosis. The production of ROS, increased intracellular Ca2+ levels, and the depolarization of ΔΨm
were observed. Gyp increased levels of the proapoptotic protein Bax but inhibited the levels of the antiapoptotic proteins
Bcl-2 and Bcl-xl. Gyp also stimulated the release of cytochrome c and Endo G. Translocation of GADD153 to the nucleus
was stimulated by Gyp. Gyp in vivo attenuated the size and volume of solid tumors in a murine xenograft model of oral
cancer. Conclusions. Gyp-induced cell death occurs through caspase-dependent and caspase-independent apoptotic signaling
pathways, and the compound reduced tumor size in a xenograft nu/nu mouse model of oral cancer.
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Background and Introduction
Oral and pharyngeal cancers account for more than 300 000
cases annually worldwide, with men outnumbering women.1
In Taiwan, a 2009 report from the Department of Health,
ROC Taiwan, indicated that 9.7 individuals per 100 000 die
annually from oral cancer. Treatments for oral cancer,
including surgery, radiotherapy, and current chemotherapeutic
options, are inadequate, and there is a great need to
identify new agents and novel targets for treating oral cancer.2
To that end, complementary and alternative medicine (CAM)
is gaining attention in treating various cancers.3,4 Several
studies have reported that compounds from traditional
medicines and herbs are being widely investigated as potential
therapeutic agents.5-7 In the United States, approximately
36% of the population use alternative medicines based
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on a report from the National Institute of Health’s National
Center for Alternative and Complementary Medicine. Cancer
patients use CAM extensively as a mode of treatment or
as a means to reduce the side effects of conventional
treatments.8-10
Among the Chinese population, Gynostemma pentaphyllum
Makino has been a popular folk medicine for centuries,
and gypenosides (Gyp) in this plant species have been
used to treat hepatitis,11 hyperlipoproteinemia,12,13 cardiovascular
disease,14 and cancer.15 Gyp has biological activities
that include anti-inflammatory,16 antithrombotic,17 antioxidative,
18 and anticancer1,19,20 actions. We have reported that
Gyp induced apoptosis in human lung cancer A549 cells,21
colon cancer colo 205 cells,22 and tongue cancer SCC-4
cells23 and also inhibited migration and invasion of human
tongue cancer SCC-4 cells.24 Other investigators found that
Gyp induced apoptosis in human hepatoma cells.1 However,
there have not been any reports on Gyp-induced apoptosis
in human oral cancer SAS cells in vitro or in vivo. Therefore,
we investigated the effects of Gyp on induction of apoptosis
in vitro and the determination of the SAS murine xenograft
model in vivo.
Materials and Methods
Chemicals, Reagents, and Cell Culture
Gyp was kindly provided by Dr Jung-Chou Chen (Department
of Chinese Medicine, China Medical University, Taichung,
Taiwan).25 Dimethyl sulfoxide (DMSO), propidium iodide
(PI), potassium phosphates, ribonuclease-A, Triton X-100,
Tris–HCl, and trypan blue were obtained from Sigma
Chemical Co (St Louis, MO). 2,7-Dichlorodihydrofluorescein
diacetate, DiOC6, and Fluo-3/AM were obtained from
Molecular Probes/Invitrogen Corp (Eugene, OR). Dulbecco’s
modified Eagle’s medium (DMEM), L-glutamine, fetal bovine
serum (FBS), penicillin-streptomycin, and trypsin-EDTA
were obtained from GIBCO BRL/Invitrogen Corp (Grand
Island, NY). The SAS cell line (human oral squamous cell
carcinoma) was obtained from Dr Pei-Jung Lu (Graduate
Institute of Clinical Medicine, National Cheng Kung
University, Tainan, Taiwan). Cells were cultured in DMEM
containing 10% FBS, 2 mM L-glutamine, 100 U/mL penicillin,
and 100 μg/mL streptomycin in 75 cm2 tissue culture
flasks at 37°C under a humidified 5% CO2and 95% air atmosphere
as we have previously reported.22
In Vitro Studies
Assessment of cell morphology and viability. Gyp was prepared
and dissolved in DMSO. Cells (2 × 105 cells/well)
were plated in 12-well plates in 2 mL DMEM and incubated
at 37°C for 24 hours. Cells were then treated with 0, 60, 90,
120, 150, and 180 μg/mL Gyp for 24 hours. DMSO was
used as a vehicle control. At the end of the incubation period,
cells were photographed with a phase-contrast microscope.
They were then harvested, stained with PI (5 μg/mL) and
analyzed by flow cytometry (Becton-Dickinson, San Jose,
CA) as previously described.22,26,27
Flow cytometry analysis of sub-G1 phase in SAS cells. Cells
were incubated with 0, 60, 90, 120, 150, and 180 μg/mL
Gyp for different time periods, after which time they were
harvested by centrifugation and stained with PI (5 μg/mL).
The percentage of cells in the sub-G1 (apoptosis), G0/G1,
S, and G2/M phases were determined by flow cytometry as
previously described.22,28
4,6-Diamidino-2-phenylindole dihydrochloride (DAPI) staining
for apoptotic cell death. SAS cells were treated with or without
Gyp (0, 60, 90, 120, 150, and 180 μg/mL) for 48 hours.
They were then isolated, stained with DAPI, and photographed
using a fluorescence microscope, as previously
described.28,29
Detections of reactive oxygen species (ROS), intracellular
Ca2+ levels, and mitochondrial membrane potential (ΔΨ
m) in
SAS cells. SAS cells were treated with 180 μg/mL Gyp for
0.5, 1, 3, 6, 12, 24, and 48 hours. The cells were harvested
and washed twice, resuspended in 500 μL of  ,7-dichlorodihydrofluorescein diacetate (10 μM) for determining changes of ROS, in 500 μL of Fluo-3/AM (2.5 μg/mL) for staining of intracellular Ca2+, and in 500 μL of DiOC6 (1 μmol/L) for determining ΔΨm. The cells were incubated at 37°C for 30 minutes and were analyzed by flow cytometry.28,30,31
Confocal laser scanning microscopy for protein translocation
in SAS cells. SAS cells in DMEM were plated on 4-well
chamber slides and treated without or with 180 μg/mL Gyp
for 24 hours. Cells were then fixed in 4% formaldehyde in
PBS (phosphate-buffered saline) for 15 minutes and permeabilized
with 0.3% Triton-X 100 in PBS for 1 hour, with
nonspecific binding sites being blocked using 2% BSA.
Fixed cells were then incubated with primary antibodies to
AIF, Endo G, cytochrome c, and GADD153 (1:100 dilution;
green fluorescence) overnight and were then stained
by a secondary antibody (FITC-conjugated goat antimouse
IgG at 1:100 dilution), followed by DNA and mitochondria
staining with PI and rhodamine 123 (red fluorescence).
Photomicrographs were obtained using a Leica TCS SP2
Confocal Spectral Microscope.22,28
Determination of levels of certain proteins associated with
apoptotic cell death. Cells were incubated with 180 μg/mL
Gyp for 0, 6, 12, 24, 48, and 72 hours, isolated, and lysed,
and specific protein levels associated with cell cycle arrest
and apoptosis were determined. All samples were separated
by sodium dodecyl sulfate polyacrylamide (SDS-PAGE)
gel electrophoresis and Western blotting as previously
described.22,28,29
Real-time polymerase chain reaction (PCR) for caspase-3, -8,
-9 mRNA levels. Cells were incubated with 180 μg/mL Gyp
for 0 and 48 hours. Total RNA was extracted using the Qiagen RNeasy Mini Kit (Qiagen, Inc, Valencia, CA), and
RNA samples were then reverse transcribed with the High
Capacity cDNA Reverse Transcription Kit according to the
standard protocol of the supplier (Applied Biosystems,
Carlsbad, CA) as previously described.32 Quantitative PCR
was performed on 200 nM of forward (F) and reverse (R)
primers (caspase-3, F-CAGTGGAGGCCGACTTCTTG,
R TGGCACAAAGCGACTGGAT; caspase-8, F-GGATG
GCCACTGTGAATAACTG, R-TCGAGGACATCGCTCT
CTCA; caspase-9, F-TGTCCTACTCTACTTTCCCAGGT
TTT, R-GTGAGCCCACTGCTCAAAGAT; GAPDH, F-AC
ACCCACTCCTCCACCTTT, R-TAGCCAAATTCGTTGTC
ATACC). Each assay was run on an Applied Biosystems 7300
Real-Time PCR system in triplicate, and fold changes in
expression were derived using the comparative CT method.27,33
Determinations of caspase-3, -8, and -9 activity. Cells were
treated with 180 μg/mL of Gyp for 0, 6, 12, 24, 48, and
72 hours. They were then collected by centrifugation; 50 μL
of each 10 μM substrate solution (PhiPhiLux-G1D2 for caspase-3, CaspaLux8-L1D2 for caspase-8, and CaspaLux9-M1D2 for caspase-9; OncoImmunin, Inc, Gaithersburg, MD)
was added, and individual caspase activity was analyzed
according to the manufacturer’s instructions using flow
cytometry as previously described.34,35 Cells were also treated
with 180 μg/mL Gyp in the presence or absence of 10 μM
of caspase-9 inhibitor (Z-IETD-FMK), 10 μM of caspase-8
inhibitor (Z-IETD-FMK), 10 μM of caspase-3 inhibitor
(Z-DEVD-FMK), and 10 μM of general caspase inhibitor
(Z-VAD-FMK; R&D Systems, Minneapolis, MN), or 5 mM
of NAC (Sigma Chemical Co) for ROS and 5 μM of BAPTA
(Ca2+ chelator, Molecular Probes/Invitrogen Corp.) for
intracellular Ca2+. Cell viability was determined as previously
described.21,36
In Vivo Studies
SAS mouse xenograft model. A total of 18 male athymic
BALB/cnu/nu nude mice 4 to 6 weeks of age were purchased
from the National Laboratory Animal Center of National
Applied Research Laboratories (Taipei, Taiwan). Mice were
maintained on a commercial diet and water ad libitum. For
the injections, SAS cells were resuspended in serum-free
DMEM. The cell suspension (5 × 106 cells/0.2 mL) was
subcutaneously injected into the flanks of mice for an
8-day incubation period. After xenografts reached volumes
of 200 mm3, treatment was initiated. Body weight and
tumor size were measured every 2 days. Mice bearing tumors
were randomly divided into 3 treatment groups and intraperitoneally
injected every 2 days in the morning with 30 μL of
DMSO control vehicle, 2 mg/kg doxorubicin, and 20 mg/kg
Gyp. The measurement of tumor volume was based on the
following formula: Tumor volume (mm3) = L × W2/2 (L is the
length and W the width). At the end of the 28 days of
treatment, mice were killed, and tumors were removed,
measured, and weighted as previously described.33,37,38 All
animal studies were conducted according to institutional
guidelines (Affidavit of Approval of Animal Use Protocol)
approved by the Institutional Animal Care and Use Committee
(IACUC) of China Medical University (Taichung, Taiwan).
Statistical Analysis
Data of control and experimental groups were expressed as
mean ± standard deviation for at least 3 separate experiments.
Statistical analyses of the data were performed using
Student’s t test and 1-way analysis of variance (ANOVA).
Statistical significance was set at P < .05.
Results
In Vitro Studies
Effects of Gyp on morphology, viability, cell cycle distribution,
and sub-G1 phase of SAS cells. Cells were morphologicallyaltered
by Gyp treatment as shown in Figure 1A. There were
fewer viable cells as incubation time and Gyp concentration
increased (Figure 1B). It can be seen in Figure 1C that
there was an increase in the percentage of cells in G0/G1
(enhanced G0/G1 peak) and a decrease in the percentage of
cells in the S phase. The sub-G1 group also appeared in the
cell cycle (Figure 1C), and increasing concentrations of
Gyp led to an increase in G0/G1- and sub-G1 phases.
Gyp-induced apoptosis in SAS cells. Induction of apoptosis
by Gyp in SAS cells was confirmed by DAPI staining, as
seen in Figure 2A, which showed that Gyp induced nuclei
condensation. These effects were time dependent as noted
in Figure 2B. Higher concentrations of Gyp resulted in a
greater number of apoptotic cells being stained.
Gyp induced production of ROS and intracellular Ca2+ and
reduction of mitochondrial membrane potential (ΔΨm) in SAS
cells. Gyp induced ROS production quite early, and this was
time dependent, as seen in Figure 3A. After 0.5 hours of
incubation, there was a decrease in ROS levels in the Gyp
group. Gyp stimulated intracellular Ca2+ release, which was
time dependent (Figure 3B), and reduced the levels of ΔΨm
in a time-dependent manner (Figure 3C). Both ROS and
intracellular Ca2+ were increased by Gyp (Figure 3). We
next determined if the ROS scavenger (NAC) and Ca2+ chelator
(BAPTA) could inhibit effects of Gyp on cell viability
and apoptosis. It can be seen in Figure 3 (panels A, B, C,
and D) that Gyp increased the levels of ROS, but NAC protected
Gyp-treated SAS cells against induction of cell death
(Figure 4A) and reduction of apoptotic cells (Figure 4C).
Gyp increased intracellular Ca2+, but BAPTA was protective
(Figure 4B) and reduced apoptotic SAS cell numbers
(Figure 4D). NAC and BAPTA significantly blocked Gypinduced
cell death. 
Gyp increased the translocation of proteins in SAS cells. The
results from confocal laser microscopy indicated that the
protein levels of AIF (Figure 5A), Endo G (Figure 5B), cytochrome
c (Figure 5C), and GADD153 (Figure 5D) were
increased when compared with the levels in controls. It can
be seen that cytochrome c is released from mitochondria, as
seen by the higher green fluorescence intensity. AIF, Endo G,
and GADD153 trafficked to nuclei, which indicated higher
fluorescence in SAS cells.
Effects of Gyp on levels of proteins associated with cell cycle
and apoptosis. Results are presented in Figures 6A, 6B, 6C,
6C, and 6D (A: chk2, p53, p21, Cdc25A, Cyclin E, Cyclin
A, Cdk2; B: Bax, Bcl-2, puma, cytochrome c, Endo G, AIF,
XIAP, CAD, Caspase-9, Caspase-3, caspase-7; C: TRAIL,
Bid, Fas, FasL; D: ATF-4, GRP78, and GADD153). Gyp
treatment reduced the levels of cdc25A, cyclin E and A and
cdk2 (Figure 6A), Bcl-2 and XIAP (Figure 6B), and Bid (Figure 6C), whereas the levels of p53 and p21 (Figure 6A)
were increased. Gyp increased protein levels of Bax, puma,
cytochrome c, Endo G, AIF, CAD, caspase-9 and caspase-3
(Figure 6B), TRAIL, Fas and FasL (Figure 6C), ATF-4,
GRP78, and GADD153 (Figure 6D) but reduced levels of
Bcl-2 and XIAP (Figure 6B) and Bid (Figure 6C). Expression
levels of mRNA of caspase-3, -8, and -9 were increased
after Gyp treatment (Figure 6E).
Gyp stimulated activity of caspase-3, -8, and -9. Data seen in
Figure 7 indicate that Gyp increased the activity of caspase-3,
caspase-8, and caspase-9, and these effects were time dependent.
To determine whether caspase activation was involved
in apoptotic cell death, cells were pretreated with inhibitors of
caspase-3, caspase-8, and caspase-9 and a general inhibitor of
caspases. As shown in Figures 8A, 8B, 8C, and 8D, these
inhibitors significantly blocked Gyp-triggered cell death. Gyp inhibited tumor size in a xenograft mouse model. Results
from our in vitro studies indicated that Gyp induced cell cycle
arrest and apoptosis in SAS cells through mitochondrialdependent
and -independent pathways. We next examined
the in vivo antitumor activities of Gyp in BALB/cnu/nu nude
mice injected with SAS cells and treated with Gyp and
doxorubicin (positive control). Representative tumors in the
xenograft mice treated with or without Gyp are shown in
Figure 9A. Treatment with Gyp and doxorubicin did not
significantly alter body weight (Figures 9B and 9D). Gyp
significantly (P < .01) decreased the tumor weight by 34%,
compared with controls, after treatment from the 10th to the
28th day, as shown in Figure 9C. In Figures 9A and 9C, it
can be seen that doxorubicin (2 mg/kg) also significantly
reduced tumor mass by ~49% after 28 days of treatment.
Overall, the tumors in treatment groups were significantly
smaller than those in the control group.
Discussion
We had previously reported that Gyp induced apoptosis in
human colon cancer cells, which was mitochondria dependent
and involved caspase-3 activation,23 and in human
tongue cancer SCC-4 cells through endoplasmic reticulum
(ER) stress and mitochondria-dependent pathways.22
Effects of Gyp on human oral cancer cells have not been
examined, and the purpose of the present study was to
determine whether or not Gyp induced S phase arrest and
apoptosis in human oral cancer SAS cells. We found that
Gyp induced cell death through cell cycle arrest and
induction of apoptosis. Apoptosis followed Gyp-induced
S phase arrest. Gyp may have therapeutic efficacy in the
treatment of oral cancers.
Gyp-induced morphological changes and reduced viability
of SAS cells were dose and time dependent. Gyp induced cell cycle arrest, and the compound altered levels of proteins
associated with the S phase in SAS cells. Protein levels of
CDK2, Cyclin A, and Cyclin E were reduced. Furthermore, in
model cells, it has been shown that upregulation of p53 was
sufficient to activate protein kinase c–mediated p53 gene transcription,
induce G1 phase arrest, and promote cellular repair
mechanisms.39,40 Gyp-induced apoptosis in SAS cells was also
confirmed by DAPI staining and DNA gel electrophoresis
(data not shown). Gyp-induced apoptosis in SAS cells and
these effects were dose and time dependent. It is well documented
that the Bcl-2 family plays an important role in apoptosis
with respect to both antiapoptotic11 and proapoptotic41
signaling. The ratio of Bcl-2 to Bax is an indicator of sensitivity
or resistance to apoptotic stimuli.42 
Figure 3A indicates that Gyp promoted ROS production
in the earlier time periods of treatment of SAS cells. Much
evidence suggests that ROS play an important role in apoptosis
induced by certain chemopreventive agents via the
engagement of downstream proteins involved in the execution
of apoptosis.42-44 The intracellular generation of H2O2 (the most stable ROS) has been shown to be an important
mediator of apoptosis, including exogenous addition of
H2O2.45 H2O2 can diffuse into the mitochondria and may
cause damage to the mitochondrial membrane.33,45 Results
from Figure 3B indicate that Gyp increased Ca2+ levels at
earlier time points, suggesting that Gyp treatment induced
ER stress, which elicited a rise in intracellular Ca2+ and subsequent mitochondrial membrane depolarization (decreased the levels of ΔΨ m) in SAS cells. This finding is in agreement with other reports that Ca2+-mediated signaling is involved in Gyp-induced apoptosis.23,24 
In the present study, Gyp increased Bax levels but reduced
Bcl-2 levels. Gyp decreased the levels of ΔΨm  and promoted
the release of cytochrome c, AIF, and Endo G and increased
both the levels and activity of caspase-9 and -3 resulting in
apoptosis. Gyp-induced cell survival or death may occur
through the interaction of Bcl-2- and p53-mediated mechanisms
followed by caspase-9 and -3 activation. One conclusion
is that Gyp-induced apoptosis involves multisignaling
pathways that are caspase dependent and independent. To further
understand the role of Gyp we used an in vivo SAS xenograft
mouse model and found that Gyp decreased the weight
and size of SAS cells tumors, which is certainly in agreement
with our in vitro results. Findings of the present study provide
new insight into possible multiple signaling pathways of
Gyp-induced apoptosis in human oral cancer SAS cells. It is
well known that certain products from plants are known to
induce apoptosis in tumor cells.43-45 Understanding the mech-anisms of Gyp on tumor cells may provide valuable information
that can be used in cancer therapy and prevention.
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