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Classification of breast mass lesions using model-based analysis of the characteristic kinetic curve derived from fuzzy c-means clustering 
Abstract 
The purpose of this study is to evaluate the diagnostic efficacy of the representative characteristic kinetic curve of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI), extracted by fuzzy c-means (FCM) clustering for the discrimination of benign and malignant breast tumors using a novel computer-aided diagnosis (CAD) system. About the research dataset, DCE-MRI of 132 solid breast masses with definite histopathologic diagnosis (63 benign and 69 malignant) were used in this study. At first, the tumor region was automatically segmented using the region growing method based on the integrated color map formed by the combination of kinetic and area under curve (AUC) color map. Then, the fuzzy C-means (FCM) clustering was used to identify the time-signal curve with the larger initial enhancement inside the segmented region as the representative kinetic curve and then the parameters of the Tofts pharmacokinetic model for the representative kinetic curve were compared with conventional curve analysis (maximal enhancement, time to peak, uptake rate and washout rate) for each mass. The results were analyzed with a receiver operating characteristic (ROC) curve and student’s t-test to evaluate the classification performance. Accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the combined model-based parameters of the extracted kinetic curve from FCM clustering were 86.36% (114/132), 85.51% (59/69), 87.30% (55/63), 88.06% (59/67), and 84.62% (55/65), better than those from a conventional curve analysis. The AZ value was 0.9154 for Tofts model-based parametric features; better than that for conventional curve analysis (0.8673) for discriminating malignant and benign lesions. In conclusion, model-based analysis of the characteristic kinetic curve of breast mass derived from FCM clustering provides effective lesion classification. This approach has potential in the development of a CAD system for DCE breast MRI. 
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1. INTRODUCTION 
Magnetic Resonance (MR) of the breast is the most sensitive tool to detect breast cancer 
 ADDIN EN.CITE 
[1-2]
. Interpretation of breast MR requires not only a focus on morphologic changes but also on the pattern of the areas with increased enhancement 
 ADDIN EN.CITE 
[3-5]
. In view of the tremendous amount of three-dimensional (3-D) imaging data provided by a current state-of-art MR scanner, the requirement for computer assistance is increasing in order to avoid human error by the interpreting radiologist. The time-signal intensity curve (TIC) from dynamic contrast enhanced (DCE) MR imaging has been used as an effective tool to determine the possibility of malignancy in addition to the morphologic features 
 ADDIN EN.CITE 
[1,3-5]
. A rapid upslope and quick wash out pattern in TIC on DCE-MRI has been widely accepted as an important parameter for predicting the possibility of malignancy. However, the selection of a region of interest (ROI) as the representative area of the tumor is operator-dependent. Some automatic computer assistance programs have the capability of classifying the TIC of each voxel for a whole 3-D DCE breast MRI study and to alert the interpreting radiologist to possible malignancies, thus helping to avoid unnecessary human error [6]. These methods can effectively increase the awareness of radiologists but lack more specific characterization of particular lesions. There are, however, some problems with this approach, including false negative due to the adoption of a minimum threshold of enhancement [6] and inaccuracy of TIC pattern due to motion 
 ADDIN EN.CITE 
[7]
. 
For quantitative analysis of a tumor in DCE-MRI, the majority of prior studies focused on four conventional curve parameters of the TIC 
 ADDIN EN.CITE 
[7-8]
 (maximum enhancement, time to peak, uptake rate, and washout rate), rather than using a pharmacokinetic model to fit the TIC 
 ADDIN EN.CITE 
[9-12]
. It has been shown that the initial area under the gadolinium curve (IAUGC) is a mixed parameter that can display correlation with pharmacokinetic parameters [13]. Kinetic color mapping [14] can highlight area with greater enhancement in early phase and thus increase detection rate of occult breast cancers. IAUGC is considered associated with physiologic meaning with lack of assumption and ease of implementation [13]. It is hypothesized that a combination of kinetic color mapping and area-under-the-curve (AUC) can be potentially useful to find enhancing area with greater clinical significance. The fuzzy C-means (FCM) clustering algorithm is an unsupervised clustering technique and useful for image segmentation and pattern recognition [15]. The representative kinetic curve by FCM has been successfully applied in DCE breast MRI and shown better than using curve by averaging the entire lesion 


[7-8] ADDIN EN.CITE . In addition, pharmacokinetic model of DCE MRI is not only being used increasingly to noninvasively monitor the action of antiangiogenic and antivascular therapy 


[16] ADDIN EN.CITE  but also helpful in differentiating benign from malignant breast cancers [17]. In this study, we used the TIC acquired from DCE-MRI with a kinetic color map [14] and area-under-the-curve (AUC) analysis 


[13,18] ADDIN EN.CITE  followed by a region growing method [16] for tumor segmentation, and then using the fuzzy C-means (FCM) clustering technique [17] to produce a representative TIC of the targeted lesion. Each representative TIC derived from FCM clustering was then fitted by using a pharmacokinetic model and compared with the results of a conventional curve analysis. The purpose of our study was to evaluate the accuracy of tumor classification with the information from the TIC with this novel computed aided diagnosis (CAD) system.
2. MATERIALS AND METHODS 

2.1 Patients 
In this study, we used the MR dataset of 99 consecutive patients between August 2006 and September 2009. A total of 132 mass lesions (63 benign and 69 malignant, size range from 0.7 to 8.5 cm, 2.33±1.84cm), diagnosed by three breast radiologists (3, 3 and 8 years of experience in interpreting breast MRI) using BI-RADS lexicon in 3-D DCE-MRI, in 82 patients (age range, 32 to 85 years; mean ± standard deviation, 53.24±9.82 years) were used to evaluate the performance of our computer aided diagnosis (CAD) system. All the 132 breast lesions had clinical impression of breast mass based on image findings of mammograms or ultrasound and all had the final histological proof through pathological examination of tumor tissue specimen obtained from core needle biopsy or surgical resection. None of them received breast MRI for screening. The pathological diagnosis was made by each in-charge pathologist who had at least 3 years of clinical experience. The final diagnosis of these breast tumors included invasive ductal carcinoma (n=51), invasive lobular carcinoma (n=3), ductal carcinoma in situ (n=15), fibroadenoma (n=19), papillomas (n=6) and focal fibrocystic change (n=38). This study was approved by the Institutional Review Board, and informed consent was waived for our retrospective study. 
2.2 DCE-MRI Imaging
All DCE-MRI studies were acquired with a 1.5T MR scanner (Signa Excite HD, GE Healthcare, Milwaukee, WI, USA) with dedicated 8-channel breast coils in the prone position. The dynamic study with bilateral whole breast coverage was performed with the following parameters: fat suppressed 3D fast spoiled gradient echo (FSGR), TR/TE/TI = 3.5/1.7/14 ms, flip angle 12 degrees, matrix 256×160, image size 256 × 256 pixels, slice thickness 2-2.5 mm without gap, acquisition 0.75, and field of view 24×24 to 30×30 cm. There were a total of 35 acquisitions for the DCE-MRI study. Each acquisition included 56 axial slices and covered 11.2-14 cm distance in cranial-caudal (Z-axis) direction. The temporal resolution of DCE-MRI was 18-20 seconds. Intravenous injection of MR contrast agent (CA) (0.5 mmol/ml, Gadodiamide, Omniscan, GE Healthcare; Magnevist, Bayer-Shering Pharmaceuticals) was performed with a bolus injection (flow rate 4 ml per second) simultaneous with the beginning of the acquisition and followed by saline flushing.
2.3 Conventional Time-signal Curve Analysis
Conventional kinetic analysis of the TIC in all studies was performed by three in-charge breast radiologists with the information of clinical history and other breast imaging findings using the software (FuncTool 3.1.01, GE Healthcare, Milwaulkee, USA) in a commercially available workstation. The ROI was placed at the area with most intense enhancement in the suspicious lesion [3]. Usually, multiple ROIs of a lesion were obtained and the most characteristic or suspicious ROI was used to make a conclusion. At least 3-5 pixels were used for small enhancing lesions. For large lesion, the most enhancing part of the tumor was selected.
3. FCM Clustering of Pharmacokinetic Model
There were two major steps, 1) tumor extraction and, 2) curve identification, for obtaining characteristic curve of each targeted mass lesion identified on DCE MRI. The whole procession time, including manual selection of the interested tumor area, was about 90 seconds.
3.1 Tumor Extraction
The first step consisted of a tumor extraction algorithm performed by finding the intersection of a kinetic color map [14] and an AUC color map [15] for the whole breast (Figure 1). The kinetic color map was obtained from categorization of TIC according to relative enhancement (RE) ratio. The AUC color map was generated from the relative accumulation of contrast enhancement on TIC. The concept was to obtain the most enhancement region representing functioning part of the tumor on the integrated color map. This approach could improve the performance of our system. Therefore, a specific intensely enhanced area with well defined margin could be extracted. After reviewing the DCE MR images and the integrated functional map, only one seed was manually placed in the target mass lesion within a volume of interest (VOI) which included the whole tumor region in the 3-D spatial domain on the integrated functional color map. Because some enhanced normal tissues would be connected to the target mass lesion, the proper VOI could assist in excluding these tissues for correct segmentation. Finally, a 3-D tumor segmentation was obtained using a region growing method [16] (Figure 1 and Figure 2).
Because malignant lesions tend to have a RE ratio greater than 100% in the early phase [3], we used 50%, 100% and 200% enhancement as cutoff points for kinetic color map. After evaluating the contrast-to-noise ratio of segmented targeted mass lesions, we assigned three colors for representing different ranges of relative kinetic enhancement: 1) yellow for a RE ≥ 200%, 2) red for a RE ratio < 200% but ≥ 100%, 3) blue for a RE ratio < 100% but ≥ 50%. 
The AUC color map was used to find the largest cumulated signal intensity over time on the TIC of each voxel of the segmented mass lesion. Different colors (red, yellow and blue) were used to display the larger values of the AUC color map based on cumulative histogram. The thresholds, 90%, 80% and 60%, were chosen after reviewing all processed data in which all mass lesions in our study group showed AUC value larger than 80%. Because most tumors had larger AUC value (≥90% of whole distribution in the cumulative histogram), they maintained a greater cumulative enhancement which was obviously different from neighbor tissues. However, some lesions with smaller AUC value (≥80% and < 90% in the cumulative histogram) were difficult to separate from surrounding normal tissue. Hence, the regions with AUC value larger than 80% were more appropriate to use as the threshold for segmentation. Moreover, the some normal tissues were enhanced with middle AUC value between 80% and 60%, it was assigned as blue region for visualization and confirmation of the clinic examination. No color was assigned if the AUC was less than 60%. Therefore, mass like lesions were marked by yellow and red. For the integrated color map, purple region is both red in the AUC color map and yellow in the kinetic color map. Besides the purple region, the red region in the integrated color map is red in the AUC color map, the yellow region is yellow in the kinetic color map.
3.2 Curve Identification and Analysis
To obtain the specific and characteristic information from the targeted tumor from the segmented VOI, the FCM clustering technique [17] was applied to find the most characteristic and significant curve that fitted the TICs of all pixels in the segmented tumor. In the previous study 
 ADDIN EN.CITE 
[7]
, manual definition of the VOI containing the tumor region was applied first.  Tumor region was segmented by the FCM clustering technique and then the maximum enhanced curve was picked up by the FCM to extract four conventional features for analysis. In contrast, integrated color map of the whole breast was built first and the targeted regions were highlighted by the characteristic of tissue enhancement for segmentation in our study. Moreover, the only one representative TIC (cselect) was extracted from FCM selection function to represent the characteristic of the selected mass, the selection function was defined as 
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where ckt is the intensity of center ck at tth time point, and C is the number of clusters. Then the representative TIC was then fitted with a Tofts pharmacokinetic model using compartmental model 


[11-12] ADDIN EN.CITE . 
The representative TIC was also analyzed using conventional curve analysis, i.e., maximum enhancement (Fk1), time to peak (Fk2) (min), uptake rate (Fk3) (min-1), and washout rate (Fk4) (min-1) for comparison (Table 1).
 For extracting the diagnosis features, the representative curve derived from FCM clustering for each tumor was fitted with the Tofts pharmacokinetic model 


[11-12] ADDIN EN.CITE .
 The Tofts model is defined by 


[11-12] ADDIN EN.CITE 
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where Ct(t) is the contrast agent concentration in the tissue with time t, vp is the fractional volume of blood plasma, Cp(t) is the contrast agent concentration in the blood plasma with time t, Ktrans is the volume transfer constant between the blood plasma and extracellular extravascular space (EES), kep is the rate constant between blood plasma and EES, and 
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 is the convolution operator. The fractional volume of EES (ve) is defined by
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Because the Tofts model requires the arterial input function (AIF) for Cp(t), in this paper the AIF was estimated from the concentration of contrast agent concentration in the ascending aorta. The Levenberg-Marquardt algorithm [18] which can approximate the curve to find the numerical solution of nonlinear function was iteratively used to fit the nonlinear equation, and the parameters. This approach could smooth the characteristic TIC extracted from FCM clustering as well as reduce motion artifact. The analysis of conventional curve and pharmacokinetic model was shown in Table 1.
A general binary logistic regression [19] was applied to classify these solid breast masses based on the parameters of the pharmacokinetic model. The leave-one-out cross-validation method [20] was used to estimate the performance of the binary logistic regression.
3.3 Statistical Analysis
An unpaired Student’s t-test was used to analyze the parameters associated with benign or malignant lesions. A p value of less than 0.05 was considered significant. The parameters from the conventional curve analysis and pharmacokinetic models for the FCM clustering TIC for discriminating benign from malignant were individually tested by the one-sample Kolmogorov-Smirnov test. The overall performance was evaluated by using a receiver operator characteristic (ROC) curve analysis program (LABROC1, 1993; Charles E. Metz MD, University of Chicago, Chicago, Ill). Accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and AZ index of the ROC were used to evaluate the diagnostic performance. The results were also compared with results of breast radiologists’ diagnosis solely based on malignant and benign kinetic types proposed by Kuhl et al. [3].
4. RESULTS 
4.1 Tumor Extraction and Features 
Using the intersection of the kinetic color mapping and the AUC mapping, mass-like breast lesions with enhanced components were segmented (Figure 2). FCM clustering was capable of extracting the most characteristic and representative TIC, as shown in Figure 3. 
The parametric values of the conventional curve analysis and pharmacokinetic models for the FCM clustering extracted TIC in both benign and malignant masses are shown in Table 1. The mean value, standard deviation (SD), median value, and p-value of Student’s t test or Mann-Whitney U test for various features were calculated. The Kolmogorov-Smirnov test was applied to test for a normal distribution. If the distribution of a feature was normal, the mean value and standard deviation were listed and the Student’s t test was used (Fk1 and vp). Otherwise, the median value was listed and the Mann-Whitney U test was used (Fk2, Fk3, Fk4, Ktrans, kep and ve). Before the calculation of the Student’s t-test, the Levene’s test had been used for verifying the equality of variances. There were significant differences between benign and malignant lesions using each conventional curve characteristics in Table 1. Benign lesions were lower in maximum enhancement (Fk1) (1.233±0.681 vs. 1.589±0.452) (p<0.001), showed a longer time to reach peak enhancement (Fk2) (465.372 vs. 180.144 seconds) (p<0.001), slower uptake (Fk3) (0.003 vs. 0.009) (p<0.001) and slower washout (4.914×10-4 vs. 8.969×10-4) (p=0.005) compared with those of malignant lesions. The findings were comparable with the characteristics of benign or malignant lesions in TIC classification [3]. Using a Tofts pharmacokinetic model, it was also found that benign lesions had significant lower kep (0.142 vs. 0.411) and vp values (0.415±0.162 vs. 0.600±0.215) (p< 0.001) than malignant lesions. The Ktrans and ve value of benign lesions was significantly higher than malignant lesions (0.860 vs. 0.652 and 5.639 vs. 1.438) (p< 0.001). 
The groups of combined features with different curve identifications were tested by using a binary logistic regression (Table 2). There was obviously higher accuracy, sensitivity, specificity, PPV, and NPV if a combination of all pharmacokinetic parameters was used (p=0.7258, 0.3690 and 0.5078, respectively) while higher specificity and PPV if using conventional kinetic characteristics (p=0.5708 and 0.7032, respectively) (Table 2). However, none of the comparison between the two methods reached statistical significance. 
Each conventional curve parameters and pharmacokinetic parameter was significantly different (Table 1), there was no significant improvement in discriminating benign from malignant lesions when all parameters were considered together (Table 2). The scatter plots show that there was better performance for Fk2 (time to peak) than the other three conventional curve features (Figure 4). There is an overlap in the distribution of Fk2 with the distributions of Fk3 and Fk4 which indicates that Fk3 and Fk4 would not improve the ability to distinguish the tumor type if Fk2 was known. For the pharmacokinetic parameters, kep and ve could effectively differentiate the malignant from the benign tumors. The distribution of Ktrans and vp in malignant and benign tumors (Figure 5) were not separable and it could be not useful to improve the diagnosis performance. Our results suggest that a combination of all parametric features from the pharmacokinetic model is significantly better than a combination of all conventional features from the FCM clustering kinetic curve for predicting the benignity and malignancy in CAD system.
4.2 ROC Analysis
The ROC area index AZ over the testing output values was examined to evaluate the overall performance of the proposed method 
 ADDIN EN.CITE 
[21]
. The AZ values of the representative characteristic TIC extracted by FCM clustering were analyzed by combination of the four conventional curve parameters and four pharmacokinetic parameters (Figure 6). Comparison of the AZ values between different groups of features was made with the z-test. There was  better performance from using Tofts pharmacokinetic model parameters (0.9154) than by using conventional curve parameters (0.8673) for the FCM clustering extracted TIC though the difference did not reach statistical significance (p= 0.2331).
4.3 Diagnostic Accuracy
    The diagnostic performance of 3-D DCE-MRI classification using the binary logistic regression is illustrated in Table 2 The results show that the accuracy (86.36%), sensitivity (85.51%) and NPV (84.62%) of combination of the four Tofts pharmacokinetic parameters were better than the combination of conventional kinetic curve parameters (accuracy 84.85%, sensitivity 79.71%, and NPV 80.28%) while the specificity (87.30%) and PPV (88.06%) were slightly worse than conventional analysis (specificity 90.48%, PPV 90.16%), (Table 2). The results from the TIC selected by the interpreting radiologists are shown in Table 3. According to the classification of the TIC [3], Type I is progressive increased enhancement, type II plateau enhancement, and type III early peak and rapid wash out. The distribution of kinetic curve types which belong to benign and malignant tumors is shown in Table 3, and the performance of these curves using the initial judgment of the interpreting radiologists is shown in Table 4. If type II is considered a malignant feature, the results from the interpreting radiologists (accuracy 84.09%, sensitivity 100%, specificity 66.67%, PPV 76.67%, NPV 100%) were better insensitivity and NPV but much worse in accuracy, specificity and PPV compared to the results from using conventional curve characteristics and pharmacokinetic parameters. The discrepancy in the results might be related to the area of highest clinical concern for the interpreting radiologists being different from the area extracted by the FCM clustering technique. Some benign lesions showed a wash out pattern (type III) and plateau pattern (type II), while some malignant lesions showed progressive increased enhancement (type I), as shown in Table 3.
5. DISCUSSION 
Due to the heterogeneity of tumor composition and tremendous amount of 3-D volume data, manual selection of a ROI in DCE-MRI may fail to pick up the most representative TIC of the tumor based on visual inspection. Therefore, an automatic or semiautomatic method for DCE-MRI data analysis may be of value to assist clinical interpretation of breast MRI [22]. Color mapping with voxel-based TIC can demonstrate the heterogeneous composition of breast mass lesions. The final malignancy result of the breast mass with many voxel-based TIC will be dominated by the TIC component with most relative enhancement. Though representative curve analysis may lose the information of heterogeneous composition, using FCM clustering technique was shown to increase the malignant kinetic appearance of cancerous lesion while overlooking that of benign lesions 
 ADDIN EN.CITE 
[7]
. Many investigations have shown the relationship between pharmacokinetic modeling of DCE MRI and angiogenesis in breast cancer 
 ADDIN EN.CITE 
[21,23]
. In our study, it demonstrated the additional information and value of using pharmacokinetic model to increase diagnostic accuracy of CAD in DCE breast MRI.
In our pilot study, tumor segmentation using the combined kinetic color mapping and AUC color map has the advantages of highlighting the most significant area representing tumor with greatest enhancement and localizing VOI for imaging processing in a shorter time compared to processing the whole 3D DCE-MRI data set. Our approach emphasized tumor segmentation of the significant enhancement component which is associated with physiologic meaning and correlated with the pharmacokinetic analysis [13]. This approach might be useful to segment functioning or enhancing pixel in DCE- MRI.
According to prior studies, some quantitative matrices are commonly extracted from kinetic DCE-MRI, such as initial enhancement rate, maximal enhancement rate and amplitude, and enhancement rate at various time points 
 ADDIN EN.CITE 
[7]
. These quantitative features are usually not included as interpretive criteria because of their complexity, ambiguity in visual perception, and variation of different MR techniques. In a recent study, a significant decrease in false positive readings of breast MRI has been shown when using a threshold enhancement from a commercially available CAD system [6]. Using a threshold method to highlight the voxels with significantly increased enhancement can enable total evaluation of the kinetic curves of all voxels of the whole breast and, therefore, has the benefit to demonstrate tumor heterogeneity. However, the judgment of lesion category relies on that individual experience and significant inter-observer variation exists. FCM is a method of clustering which allows one piece of data to belong to two or more clusters. FCM has been used for automatic segmentation and generation of a clustered concentration data set in DCE-MRI [24]. Using FCM clustering to extract a representative TIC has been shown to be better than simple averaging over the entire lesion in DCE-MRI of the breast 
 ADDIN EN.CITE 
[7]
. In our study, a single representative TIC of a segmented mass was automatically obtained after placing a seed in a VOI, instead of many signal time curves from all pixels in a manually selected mass, as in a prior study [6]. Our approach could simplify the result from a representative TIC after fitting with the Tofts pharmacokinetic model, with an acceptable sensitivity and accuracy (both approximately 86%), better than conventional curve analysis and thus more suitable for the screening purpose due to relatively high sensitivity. Voxel-based TICs of the tumor are possibly quite variable due to their heterogeneous composition, while the FCM clustering technique can produce one single representative TIC. In the future development of CAD for DCE-MRI, we believe that using a combination of the information from TICs of all voxels and the FCM clustering extracted TIC of the segmented mass might complement each other to obtain an even better result for lesion characterization. 
In clinical practice, several representative ROIs are usually selected by radiologists in the most enhancing or suspicious region [3]. In contrast, FCM clustering is used to cluster all curves into several groups and the center of each group indicates the most significant curve vector to represent this tumor. The discrepancy between the representative TIC from FCM clustering and that selected by interpreting radiologists was difficult to compare due to significant overlap in the curve patterns among benign and malignant mass-like lesions as well as influence of lesion morphology during manual selection of TIC by radiologists as shown in our study. However, there is no doubt that an additional automatic system is of help to assist radiologists in making a better choice and a more precise diagnosis.
Though different patient groups were enrolled, the results obtained in this study using the pharmacokinetic model to fit the FCM clustering derived curve without inclusion of morphologic features showed equivalent or even better performance compared with combined morphologic, conventional TIC features (AZ = 0.9154 vs. AZ = 0.86) in a prior study [8]. It is therefore reasonable to anticipate that with the combination of this new technique with morphological features, the diagnostic performance using this proposed system can be further increased. As compared with the representative curve selected by interpreting radiologists in our study, the sensitivity and NPV of the expert’s selection were higher than our CAD system (100% and 100% vs. 85.51% and 84.62%) but the accuracy, specificity and PPV were lower (84.09%, 66.67% and 76.67% vs. 86.36%, 87.30% and 88.06%) (Table 2, Table 4). It was presumed that FCM clustering might not identify the same representative TIC as selected by expert radiologists. In view of knowing information of clinical history, lesion morphology and other breast imaging findings, radiologists might adjust their ROI to find out a more suspicious enhancing region of breast masses to avoid underestimation of any possible malignancy. Therefore, a combination of the information of morphologic features should be an important issue to improve the current pilot CAD system with the use of TIC information. With combination of both conventional kinetic and morphologic information from DCE breast MRI, computer aided diagnosis was reported further improved to distinguish between non-invasive and invasive lesions and discriminating between metastatic and nonmetastatic lesions 
 ADDIN EN.CITE 
[25]
. It is expected to improve the performance of CAD system if the features of pharmacokinetic model in FCM clustering TIC are added.
Our results of using Tofts model parameters showed distinct differences between benign and malignant lesions in Table 1. There were significantly higher values of Ktrans and ve in benign lesions while higher values of kep and vp were found in malignant lesions. According to Furman-Haran E et al [17], highest values of Ktran, kep and ve were found in invasive ductal carcinomas, followed by DCIS and benign lesions while fibroadenoma group demonstrated highest value of ve using histogram analysis of parametric mapping. There were more heterogeneous components of either benign or malignant group in our study. The possible explanations included the difference of subgroup categorization and methods of quantifications.
There were some limitations of this pilot study. First, this system was semiautomatic with the requirement of operator to select the most important VOI from integrated color mapping of kinetic curve and AUC. This approach could fasten the speed of computation but might lose some important information such as mildly enhanced breast tumor like ductal carcinoma in situ (DCIS). A wider range of thresholding should be applied to include more mildly enhanced in the future. Second, no morphologic information of segmented breast mass lesions will be a drawback of the results. However, the performance of our design was at least equivalent to or slightly better than prior report using both morphologic information and conventional curve analysis [8]. It is reasonably presumed that combined pharmacokinetic information of the representative TIC using FCM clustering technique will be a better approach.
In conclusion, our study found that combined pharmacokinetic parametric analysis of the representative TIC extracted from FCM clustering can provide a more accurate approach to DCE-MRI with a reasonably acceptable result, when compared with conventional kinetic analytic method. With more and more popular incorporation of CAD diagnosis 
 ADDIN EN.CITE 
[7,26]
 in the clinical practice, this new approach can potentially be implemented and combined with morphologic features to increase the diagnostic performance of CAD system for DCE-MRI of the breast.
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 FIGURE LEGENDS
Figure 1.
Illustration of the 3-D segmentation procedure for an invasive ductal carcinoma at a representative slice. The kinetic color map represents the distribution of the maximum enhancement in the DCE study. The AUC color map represents the largest cumulated signal intensity over time in the time-signal intensity curve (TIC). The integrated color map, which is a combined color map of the yellow part of the kinetic color map and the red part of the AUC color map. After obtaining user selected volume of interest (VOI), tumor of interest is then applied for extracting tumor in DCE MRI.

Figure 2.
Two examples of invasive ductal carcinoma. The tumors are segmented step by step. (a) The kinetic color map. (b) The AUC color map. (c) The integrated color map with VOI (the green region), and (d) the contour of segmented tumor (the red line) on the enhanced source image at the fourth phase of the dynamic contrast enhanced study.
Figure 3.  Feature extraction of a representative time-signal intensity curve (TIC) in an invasive ductal carcinoma using the fuzzy C mean (FCM) clustering technique. (a) A heterogeneous segmented breast cancer marked with three points for TIC analysis. (b) Three different types of TIC (A, B, and C) due to heterogeneous tumor compositions. (c) The representative kinetic curve identified by the FCM clustering shows a characteristic rapid slope and wash-out pattern suggestive of malignancy.
Figure 4.  The scatter plots of the conventional curve characteristics. (a) Fk2 vs. Fk1, (b) Fk2 vs. Fk3, and (c) Fk2 vs. Fk4, based on the fuzzy c-means (FCM) clustering..
Figure 5.  The scatter plots of the Tofts curve characteristics. (a) Ktrans vs. kep, (b) kep vs. vp, and (c) vp vs. ve, based on the fuzzy c-means (FCM) clustering 
Figure 6. 
Comparison between the receiver operating curves (ROC) from using conventional curve characteristics and Tofts pharmacokinetic model parameters for the representative time-signal intensity curve (TIC) extracted by the fuzzy c-means (FCM) clustering technique.

Table 1 Comparison among different parameters, derived from conventional classification and pharmacokinetic models, of kinetic curves obtained from DCE-MRI for discriminating benign from malignant masses based on the fuzzy c-means (FCM) clustering. 

	Method
	Parameters
	Type
	Mean ±

SD
	Median
	p-value

	Conventional curve characteristics
	Fk1

	Benign
	1.233±0.681
	-
	<0.001

	
	
	Malignant
	1.589±0.452
	-
	

	
	Fk2
(min)
	Benign
	-
	465.372
	<0.001

	
	
	Malignant
	-
	180.144
	

	
	Fk3
(min-1)
	Benign
	-
	0.003
	<0.001

	
	
	Malignant
	-
	0.009
	

	
	Fk4
(min-1)
	Benign
	-
	4.914×10-4
	0.005

	
	
	Malignant
	-
	8.969×10-4
	

	Tofts model parameters
	Ktrans
(min-1)
	Benign
	-
	0.860
	<0.001

	
	
	Malignant
	-
	0.652
	

	
	kep
(min-1)
	Benign
	-
	0.142
	<0.001

	
	
	Malignant
	-
	0.411
	

	
	vp
	Benign
	0.415±0.162
	-
	<0.001

	
	
	Malignant
	0.600±0.215
	-
	

	
	ve
	Benign
	
	5.639
	<0.001

	
	
	Malignant
	
	1.438
	


* 
The conventional curve characteristics are maximum enhancement (Fk1), time to peak (Fk2), uptake rate (Fk3), and washout rate (Fk4) while the Tofts pharmacokinetic model parameters are Ktrans, kep, vp, and veb representing re-parameterizations of the Tofts variables.  Ktrans, kep, vp, and ve are respectively volume transfer constant between plasma and EES, rate constant between plasma and EES, fractional volume of plasma and fractional volume of EES.
** 
The mean value, standard deviation (SD), median value, and p-value of Student’s t test or Mann-Whitney U test for various features in the benign and malignant cases.
Table 2.
Comparison of the performance of using combined conventional curve characters and combined pharmacokinetic parameters of the representative time-signal intensity curve (TIC) extracted by using fuzzy c-means (FCM) clustering in the diagnosis of mass-like breast lesion. 
	Item
	Combined conventional curve characteristics*
	Combined pharmacokinetic parameters*

	Accuracy
	84.85

(112/132)
	86.36

(114/132)

	Sensitivity
	79.71

(55/69)
	85.51

(59/69)

	Specificity
	90.48

(57/63)
	87.30

(55/63)

	PPV
	90.16

(55/61)
	88.06

(59/67)

	NPV
	80.28

(57/71)
	84.62

(55/65)


Note: The test results of combined conventional curve characteristics and combined pharmacokinetic parameters of the representative time-signal intensity curve (TIC) extracted with fuzzy c-means (FCM) clustering were tested by binary logistic regression with the leave-one-out cross-validation method. TP, true positive; TN, true negative; FP, false positive; FN, false negative.
Accuracy = (TP+TN) / (TP+TN+FP+FN)
Sensitivity = TP / (TP+FN)

Specificity = TN / (TN+FP)

Positive Predictive Value = TP / (TP+FP)
Negative Predictive Value = TN / (TN+FN)
Table 3. The distribution of curve types in benign and malignant breast masses according to interpreting radiologists.
	
	Type I
	Type II
	Type III

	Benign (N=46)
	42
	18
	3

	Malignant (N=78)
	0
	8
	61


Table 4. The performance of the time-signal intensity curve (TIC) selected by interpreting radiologists.

	Item
	TIC Categorization by Radiologists

	Accuracy
	84.09% (111/132)

	Sensitivity
	100% (69/69)

	Specificity
	66.67% (42/63)

	PPV
	76.67% (69/90)

	NPV
	100% (42/42)


Note that both type II (plateau enhancement) and type III (early peak enhancement followed by wash out) are considered malignant.
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