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Potential value of dual-time-point 18F-FDG PET compared
with initial single-time-point imaging in differentiating
malignant from benign pulmonary nodules: a systematic
review and meta-analysis
Yu-Yi Lina, Jin-Hua Chenc, Hueisch-Jy Dinge, Ji-An Liangb,d, Jun-Jun Yehd,e,g,*

and Chia-Hung Kaoa,b,*

We performed a meta-analysis to assess the potential

value of dual-time-point (DTP) imaging as compared

with initial single-time-point (STP) scanning with
18F-fluorodeoxyglucose (18F-FDG) PET in differentiating

malignant from benign single pulmonary nodules. Data on

the performance of DTP 18F-FDG PET imaging in assessing

lung nodules were extracted from articles of prospective or

retrospective original research published between January

2001 and April 2010. The Quality Assessment of Diagnostic

Accuracy Studies (QUADAS) tool was used to assess the

quality of study methodology. Heterogeneity in the results

of the studies was assessed, and summary receiver

operating characteristic (SROC) curves were constructed.

Eleven studies comprising a total of 788 patients who

underwent initial scanning, 778 of whom also underwent

DTP imaging, were included in the final analysis. The quality

of study methodology was judged to be moderate.

Substantial heterogeneity in the results of the studies, with

inconsistency (I2) index values above 85%, reflected

important differences in study methods and populations,

including varying lesion sizes, 18F-FDG avidity, uptake

interval for delayed imaging, and threshold for positive

result on DTP imaging. SROC curve analysis revealed a

statistically nonsignificant trend toward higher sensitivity

with DTP imaging, at moderate levels of specificity, when

compared with initial STP scanning. The area under the

curve (SE) values for DTP and initial STP imaging were

0.839 (0.079) and 0.757 (0.074), respectively. Although the

results of our analysis do not support the routine use of

DTP imaging with 18F-FDG PET in the differential diagnosis

of pulmonary nodules, this technique may provide

additional information in selected cases with equivocal

results from initial scanning. Further prospective research

is required to better define the potential benefits of DTP
18F-FDG PET imaging. Nucl Med Commun 00:000–000 �c
2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.
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Introduction
Solitary pulmonary nodules (SPNs) are common inciden-

tal findings on chest radiography or computed tomogra-

phy (CT). These nodules can be benign or malignant,

and differentiating between them has important treat-

ment and prognostic implications. PET with 18F-fluoro-

deoxyglucose (18F-FDG) is widely used in the diagnosis

of indeterminate SPNs on CT imaging. Traditionally, a

standard uptake value (SUV) of 2.5 has been used as a

threshold to help differentiate malignant from benign

nodules [1,2]. Nevertheless, using 18F-FDG PET to

detect malignant pulmonary nodules has limitations. On

the one hand, although many malignancies tend to be
18F-FDG avid, exceptions include false-negative results

for certain slow-growing tumors [3]. On the other hand,

nonspecific 18F-FDG uptake in benign processes, such as

inflammation, may mimic that of malignant lesions on

initial scanning, leading to false-positive results.

Various techniques in applying 18F-FDG PET, including

dual-time-point (DTP) or delayed imaging, have been

reported to potentially improve diagnostic accuracy. Prior

research showed continuous 18F-FDG accumulation in

malignant lesions, in contrast to stable or decreasing 18F-

FDG activity over time in benign processes [4]. Such

differences in the rate of uptake on subsequent imaging

might provide additional diagnostic value. A number of

studies assessing the accuracy of DTP 18F-FDG PET in

differentiating malignant from benign pulmonary lesions

have been published. These studies have reported a wide

range of results, some of which appear conflicting.

Furthermore, conclusions regarding accuracy were limited
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because of small study populations and the mostly

retrospective and highly selective nature of patient

inclusion.

Objective
We performed a meta-analysis to assess the potential

value of DTP imaging as compared with initial single-

time-point (STP) scanning with 18F-FDG PET in

differentiating malignant from benign single pulmonary

nodules.

Materials and methods
Literature search and selection criteria

A search of the Medline database for articles published in

English, between January 2001 and April 2010, was

performed using keywords and text words to identify

studies evaluating the performance of DTP 18F-FDG

PET in differentiating lung nodules. The following search

algorithm was used: ‘lung nodule’ or ‘pulmonary nodule’;

‘PET’ or ‘PET-CT’ or ‘PET/CT’ or ‘positron emission

tomography’ or ‘fluorodeoxyglucose’ or ‘FDG’; ‘dual-time-

point’ or ‘dual phase’ or ‘double phase’ or ‘delayed phase’.

To be included, an article had to be a contribution of

prospective or retrospective original research in differ-

entiating malignant from benign lung lesions using DTP
18F-FDG PET performed with a dedicated PET or

integrated PET/CT scanner and confirmed by pathologi-

cal examination and/or clinical follow-up. Studies using

modified gamma cameras for coincidence detection were

excluded because of more limited resolution and the

consequential lower sensitivity when compared with

dedicated PETscanners [5,6]. Studies were also excluded

if patient populations consisted of fewer than 10 patients,

or data were unavailable for deriving 2� 2 tables. The

reference lists of selected studies were manually searched

for additional relevant articles. Overlapping patient

populations were avoided by including only the latest or

the largest study.

Data extraction and quality assessment

Data regarding author, year of publication, study design,

patient characteristics, DTP 18F-FDG PET imaging,

reference test, and diagnostic performance were ex-

tracted. In some articles, data were acquired using stand-

alone PETscanners, whereas in others data were obtained

using integrated PET/CT scanners. The CT component

of the PET/CT examination in the latter studies was not

used in this analysis. The description of the index test

was considered acceptable when the radiopharmaceutical,

administered dose, fasting before tracer injection, and the

initial and delayed uptake intervals were all documented.

The technical specification and quality of PET or PET/

CT procedures were evaluated using recommended

guidelines [7,8]. The quality of study methodology was

assessed using the Quality Assessment of Diagnostic

Accuracy Studies (QUADAS) tool [9].

Statistical analysis

To facilitate comparison of accuracy estimates at the

study level, efforts were made to minimize the hetero-

geneity in the study populations and in the diagnostic

criteria used to define positive results on DTP 18F-FDG

PET imaging. Whenever possible, patients with multiple

pulmonary nodules were excluded from the final analysis,

because these patients might have complex underlying

conditions with different clinical implications, as opposed

to those with SPNs. To reduce the heterogeneity due to a

threshold effect, we used the same diagnostic criteria to

recalculate the accuracy measures for each study with

individual patient data. The constant threshold criteria

used to compare the accuracy of DTP and initial STP

imaging were an increase in maximal SUV of 10% or more

and an initial maximal SUV of 2.5 or more, respectively.

These threshold levels were chosen on the basis of prior

research [1,2,4,10]. When multiple 2� 2 tables corre-

sponding to different diagnostic criteria for either DTP or

initial imaging were listed in lieu of individual patient

data, only the set of aggregated data corresponding to the

threshold level closest to the appropriate cutoff value

mentioned above was retained in the final analysis.

The heterogeneity in the results of the studies was

assessed graphically with forest plots and statistically

using the inconsistency (I2) index, which describes the

percentage of total variation across studies that is

attributable to heterogeneity rather than to sampling

error [11–16]. Summary receiver operating characteristic

(SROC) curves were constructed to depict the relation-

ship between sensitivity and specificity of the diagnostic

tests across studies. The area under the curve (AUC) is a

summary measure of the overall diagnostic accuracy.

Whereas the full AUC and its SE were used to compare

the overall accuracy of DTP with initial scanning, only

the part of the curve corresponding to clinically relevant

values of sensitivity and specificity was shown in the

receiver operating characteristic space [17,18]. Statistical

significance was defined at the conventional level of 0.05

in a two-tailed test.

Results
The search strategy retrieved 76 articles, 62 of which

were rejected on the basis of title or abstract. Another was

excluded because of the use of coincidence imaging with

a dual-headed gamma camera [19]. After review of the

full text, two more articles were excluded because of

unavailability of data for deriving the 2� 2 tables [4,20].

The results of the literature search and study selection

are summarized in Fig. 1.

Eleven studies comprising a total of 788 patients who

underwent initial scanning, 778 of whom also underwent

DTP imaging, were included in the final analy-

sis [10,21–30]. The characteristics of these studies are

summarized in Table 1. Only two of these studies were
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prospective in design; most were retrospective with small

patient populations. Four of the 11 studies included only

patients with pulmonary lesions of low 18F-FDG avidity

with initial SUV below 2.5. One study limited patient

inclusion to only those with lung lesions with an initial

SUV of 2.5 or more; another included only patients with
18F-FDG-avid lung lesions – that is, those with persis-

tently higher uptake than that of the contralateral normal

Fig. 1

Records retrieved by Medline search (n=76)

Records rejected based on title/abstract (n=62)

Excluded due to coincidence imaging with dual-headed
gamma camera instead of dedicated PET scanner (n=1)

Excluded from analysis due to data not available for
deriving 2x2 tables (n=2)

Full text of potentially relevant studies retrieved for
inclusion criteria (n=14)

Potentially appropriate studies to be included in analysis
(n=13)

Studies included in analysis (n=11)

Results of the literature search and study selection.

Table 1 Characteristics of the included studies on DTP 18F-FDG PET imaging in evaluating pulmonary lesions

References Patients

18F-FDG avidity criteria
for inclusion

Uptake interval (min) after
injection, mean (range)

Criteria for malignancy on
DTP imaging Reference standard

Matthies et al. [10] 36 – 69 (55–110) 122 (100–163) Increase SUVmean > 10% HP; CFU 18–26 months
Demura et al. [21]a 80 – 60 180 Increase SUVmean > 0% HP; CFU
Xiu et al. [22] 46 Initial SUV < 2.5 58 (50–110) 114 (99–163) Increase SUVmax > 10% HP; CFU > 24 months
Alkhawaldeh et al. [23]b 265 – 60 100 (90–110) Increase SUVZ0% HP; CFU
Lan et al. [24] 45 – 45–55 160 (150–180) Increase SUVmaxZ 10% HP; CFU 6 months
Chen et al. [28] 27 Initial SUVmean < 2.5 60 120 Increase SUVmax > 10% HP only
Kim et al. [25] 30 SUV < 2.5 60 120 Change in SUVmax > – 2.3% HP; CFU > 12 months
Laffon et al. [29] 38 Initial SUVmax > 2.5 78 (54–125) 159 (116–214) Direction of change in SUV HP; CFU
Suga et al. [26] 137 18F-FDG-avidc 60 (56–65) 120 (110–131) Increase SUVmax > 20% HP; CFU 5–20 months
Cloran et al. [30] 113 Initial SUVmax < 2.5 64 121 Increase SUVmax > 10% HP; CFUZ24 months
Schillaci et al. [27]a,b 30 – 50 90 Increase SUVmaxZ 10% HP; CFU > 10 months

CFU, clinical follow-up; DTP, dual-time-point; 18F-FDG, 18F-fluorodeoxyglucose; HP, histopathology; SUV, standard uptake value.
aProspective studies.
bAlkhawaldeh et al. [23] and Schillaci et al. [27] included only patients with single pulmonary nodules.
cSuga et al. [26] included only patients with solitary 18F-FDG-avid lesions (those with persistently higher uptake than that of the contralateral normal lung).

DTP 18F-FDG PET in assessing lung nodules Lin et al. 3
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lung on both initial and delayed scans. Although delayed

scanning occurred as early as 1.5 h after tracer injection in

one study, and as late as 3 h after injection in another, it

began at about 2 h after injection in six of the 11 studies.

A 10% increase in mean or maximum SUV was chosen to

be the threshold for positive results on DTP imaging in

six of the 11 studies, whereas the others used values

ranging from a decrease of 2.3% to an increase of 20% in

SUV. Six of the 11 studies listed individual patient data,

from which we recalculated accuracy measures using the

constant threshold criteria mentioned above. With the

exception of one retrospective study that included only

patients with a final diagnosis based solely on the

pathological results of surgical samples, most of the

studies used a combination of histopathological examina-

tion and imaging or clinical follow-up of varying duration

as the reference standard.

Overall, the quality of study methodology was judged to

be moderate (Fig. 2). Inadequate reporting was found in

multiple areas of the quality assessment. Despite the

steps taken to reduce heterogeneity in the study

populations and the diagnostic criteria on DTP imaging,

there was substantial heterogeneity in the results of

the studies, with inconsistency index values of 85 and

86% for sensitivity and specificity, respectively. The wide

range of estimated accuracy with DTP imaging across

studies (sensitivity 54–100% and specificity 14–93%) has

been illustrated in forest plots (Fig. 3).

The SROC curve analysis revealed a statistically non-

significant trend toward better overall diagnostic accuracy

with DTP compared with initial STP imaging (Fig. 4).

The AUC (SE) values for DTP and initial STP imaging

were 0.839 (0.079) and 0.757 (0.074), respectively.

Sensitivity was higher with DTP imaging at moderate

levels of specificity. This potential advantage of DTP over

initial STP scanning was diminished at higher levels of

specificity.

Discussion
In a recently published meta-analysis on DTP 18F-FDG

PET in the diagnosis of lung nodules, Barger et al. [31]

concluded that the additive value of DTP imaging was

questionable. Our analysis was conducted without the

knowledge of Barger’s article and with a more focused

aim of assessing the potential value of DTP versus initial

STP 18F-FDG imaging with dedicated PET scanners in

evaluating patients with SPNs. Consequently, in contrast

to Barger and colleagues, we excluded a study because of

the use of modified gamma cameras for coincidence

detection. Nevertheless, our final analysis included more

Fig. 2

Representative spectrum

Acceptable reference
standard

Acceptable delay between
index and reference tests

Avoided verification bias

Independent interpretation
of index and reference tests

Relevant clinical information

Uninterpretable results and
withdrawals explained

0% 20% 40% 60% 80% 100%

NoUnclearYes

Quality assessment of study methodology.
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articles, albeit a smaller total number of patients, because

we also excluded patients with multiple pulmonary

nodules.

Although not statistically significant on the basis of full

AUC comparison, our SROC curve analysis revealed a

trend toward higher sensitivity with DTP imaging,

particularly at moderate levels of specificity, suggesting

a potential benefit in patients with suspicious SPNs and

equivocal results on initial scanning. A single SUV,

especially on initial imaging, may be inadequate for

differential diagnosis because of potential ‘confounding’

factors such as lesion size, body habitus, plasma glucose

level, uptake time interval, image reconstruction para-

meters, attenuation correction methods, and correction

for partial volume effects [32–35]. DTP imaging provides

an opportunity to determine a measure of the rate of

uptake that may be less affected by factors other than the

metabolic characteristics of suspected lesions. Prior

research has demonstrated increasing uptake by malig-

nant tumors over several hours after 18F-FDG injection,

as opposed to declining or stable uptake by surrounding

normal tissue over time [36,37]. Our finding of poten-

tially higher sensitivity with DTP imaging is consistent

with the notion that increasing contrast between tumor

and background activity improves the sensitivity of lesion

detection.

Our review revealed substantial heterogeneity and

apparently conflicting results in the original primary

studies. Initial research showed that DTP imaging

appeared to be useful in differential diagnosis [4]. The

results of several subsequent clinical studies also

indicated improved accuracy with DTP imaging in

evaluating lung nodules [10,21–27]. Nevertheless, see-

mingly opposite conclusions were reached in a few

studies [28–30]. The inconsistent results across the

studies might reflect the fact that they could be

measuring somewhat different aspects. Although small

sample size could contribute to the variability due to

chance, the major sources of heterogeneity could be

attributed to the differences in study methods and

populations, such as varying lesion size, malignancy risk,
18F-FDG avidity, and uptake intervals. Some investigators

attempted to alleviate reduced patient throughput by

shortening the waiting time [20], whereas others opted

for a longer uptake interval with the expectation of

obtaining larger differences in uptake values [21].

Fig. 3
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STP
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Forest plots, DTP (dual-time-point SUV increase Z10%) vs. STP (single-time-point initial SUVZ2.5). FN, false negative; FP, false positive; SUV,
standard uptake value; TN, true negative; TP, true positive.
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Different methods of image analysis and threshold

measures, as well as the choice of reference standards,

could also contribute to the heterogeneity.

A review of the individual studies may help illustrate how

these differences might have impacted the accuracy

estimates. Matthies et al. [10] found the sensitivity and

specificity for initial and DTP imaging to be 80% (16/20,

95% confidence interval 0.56–0.94) and 94% (17/18,

0.73–1.00) and 100% (20/20, 0.83–1.00) and 89% (16/18,

0.65–0.99), respectively. Similarly, in a prospective study,

Demura et al. [21] estimated the sensitivity and

specificity for initial, delayed, and DTP imaging to be

74% (37/50, 0.60–0.85) and 50% (15/30, 0.31–0.69), 76%

(38/50, 0.62–0.87) and 57% (17/30, 0.37–0.75), and 98%

(49/50, 0.89–1.00) and 67% (20/30, 0.47–0.83), respec-

tively, and concluded that DTP imaging was more

accurate than STP scanning, except in patients with

active granulomatous diseases.

Subsequently, four retrospective studies were published

on the accuracy of DTP imaging for assessing lung lesions

with initial SUV below 2.5. Xiu et al. [22] estimated the

sensitivity and specificity to be 81% (13/16, 0.54–0.96)

and 87% (26/30, 0.69–0.96), respectively. In comparison,

Kim et al. [25] found a higher sensitivity of 92% (12/13,

0.64–1.00) and a lower specificity of 71% (12/17,

0.44–0.90). This trade-off could be attributed to both a

threshold effect and the differences between patient

populations, as Kim and colleagues used a lower threshold

(a change in SUVmax of – 2.3 vs. + 10%) in a population

with larger lesion size (2.0±0.8 vs. 1.1±0.3 cm). In

contrast, Chen et al. [28] found lesion-based sensitivity

and specificity to be 63% (10/16, 0.35–0.85) and 40%

(6/15, 0.16–0.68), respectively, and concluded that DTP

imaging was not useful in populations with a high

prevalence of granulomatous disease, such as tuberculo-

sis. Chen and colleagues admitted to the possibility of

selection bias, which could have contributed to the

significantly lower specificity. Later, Cloran et al. [30]

demonstrated lesion-based sensitivity of 63% (24/38,

0.46–0.78) and specificity of 59% (17/29, 0.39–0.76) and

concluded that their results were consistent with and

Fig. 4

Sensitivity

STP

DTP

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
1 0.9

STP (single-time-point initial SUV  ≥  2.5)

DTP (dual-time-point SUV increase ≥  10%) vs.

0.8 0.7 0.6 0.5 0.4 0.2 0.1
Specificity

00.3

SROC curves, DTP (dual-time-point SUV increase Z10%) vs. STP (single-time-point initial SUVZ2.5). SROC, summary receiver operating
characteristic; SUV, standard uptake value.
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might extend the applicability of Chen’s findings,

because the benign nodules in their study were mostly

nongranulomatous infections.

In the largest of these studies, Alkhawaldeh et al. [23]

retrospectively evaluated the impact of partial volume

correction and DTP imaging. On initial scanning without

partial volume correction, they found a high specificity of

92% (178/193, 0.88–0.96) and a low sensitivity of 65%

(47/72, 0.53–0.76), which was attributed to the signifi-

cant proportion (34%) of lesions smaller than 1.5 cm.

With partial volume correction, sensitivity increased

significantly to 90% (65/72, 0.81–0.96) with a consequen-

tial drop in specificity to 80% (154/193, 0.73–0.85),

whereas on DTP imaging a similar gain in sensitivity to

92% (57/62, 0.82–0.97) was not accompanied by a loss in

specificity, which remained high at 93% (179/193,

0.88–0.96). Last but not the least, in a small prospective

study comparing DTP PET imaging with contrast-

enhanced CT within a PET-CT examination, Schillaci

et al. [27] estimated the sensitivity and specificity for

initial, delayed, and DTP PET imaging to be 78% (14/18,

0.52–0.94) and 92% (11/12, 0.62–1.00), 78% (14/18,

0.52–0.94) and 67% (8/12, 0.35–0.90), and 83% (15/18,

0.59–0.96) and 67% (8/12, 0.35–0.90), respectively.

Contrast-enhanced CT demonstrated the lowest accu-

racy. They concluded that DTP PET imaging was

the most sensitive, whereas initial PET imaging was the

most specific.

In summary, most of the studies were retrospective and

prone to bias. Quality assessment of study methodology

was problematic because of poor reporting. A major

limitation of our analysis was the varying time interval

between initial and delayed scans across studies, which

raised the question of appropriateness of our attempt to

apply the same diagnostic criteria across the studies. The

substantial heterogeneity in the results of the studies

reflected important differences in study methods and

populations. Although the heterogeneity made it im-

practical to obtain precise overall estimates of diagnostic

accuracy, it did provide an opportunity to improve the

understanding of how these estimates might vary in

different settings. Our analysis revealed the potential for

overall improved accuracy with DTP versus initial STP

imaging, which might translate into higher sensitivity

while maintaining a moderate level of specificity.

Potentially higher sensitivity with DTP imaging may be

beneficial to patients with malignant but curable SPNs

without significant initial 18F-FDG uptake, provided the

consequences of false-positive results are acceptable.

Clinicians contemplating the use of DTP imaging in

specific scenarios should carefully weigh the additional

costs and potential benefits. These decisions should be

individualized on the basis of available information, such

as morphological data from CT imaging, as most

malignant ground-glass opacities may not exhibit high

18F-FDG uptake, whereas the degree of 8F-FDG avidity

of benign inflammatory lesions depends on disease

activity.

Conclusion
Although the results of our analysis do not support the

routine use of DTP imaging with 18F-FDG PET in the

differential diagnosis of pulmonary nodules, this techni-

que may provide additional information in selected cases

with equivocal results from initial scanning. Further

prospective research is required to better define the

potential benefits of DTP 18F-FDG PET imaging.
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