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The molecular characterization of genotype P[6] rotavirus strains collected from children admitted

to hospital with acute dehydrating diarrhoea during a 6-year surveillance period in Taiwan is

described in this study. In total, three G4P[6] strains, one G5P[6] and one G12P[6] were

characterized by sequencing and phylogenetic analysis of the VP4, VP7, VP6 and NSP4 genes.

Whilst all four genes of the single Taiwanese G12P[6] strain clustered with the respective genes

of globally common human rotavirus strains, the G4 and G5 strains showed remarkable similarities

to porcine rotavirus strains and putative porcine-origin human P[19] strains reported previously

from Taiwan. The overall proportion of porcine rotavirus-like strains in Taiwan remains around 1 %

among hospitalized children; however, the circulation and sporadic transmission of these

heterotypic strains from pigs to humans could pose a public-health concern. Therefore,

continuation of strain monitoring is needed in the vaccine era to detect any possible vaccine

breakthrough events associated with the introduction of such heterologous rotavirus strains.

INTRODUCTION

Group A rotaviruses are the main cause of acute
dehydrating gastroenteritis in infants and young children
worldwide (Estes & Kapikian, 2007). Rotavirus is char-
acterized by a triple-layered, non-enveloped virion and a
dsRNA genome consisting of 11 separate segments. The
two outer-capsid proteins, VP7 and VP4, induce neutral-
izing antibodies in vivo, segregate independently and have
served as antigens of the dual-typing classification system,
the G and P serotypes, respectively (Estes & Kapikian,
2007). Additional typing schemes have been proposed for

the VP6 and NSP4 genes in line with available molecular
sequence data and, more recently, the molecular classifica-
tion system has been extended to all 11 rotavirus gene
segments, using gene-specific nucleotide similarity cut-off
values (Matthijnssens et al., 2008b, 2011).

Globally, the most common human rotavirus strains are
G1P[8], G3P[8], G4P[8] and G9P[8] on the Wa-like and G2P[4]

on the DS1-like genomic configuration (Matthijnssens et al.,
2009; Bányai et al., 2012). In general, the neutralization
antigen combinations of epidemiologically important ani-
mal strains are typically different from those identified in
humans. For example, in swine, the G3–G5 and G11 VP7
types and the P[6], P[7] and P[13] VP4 types are the most3These authors contributed equally to this work.
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common (Martella et al., 2010). However, some particular
antigen combinations, such as G3P[6] and G4P[6], are shared
between human and porcine strains (Matthijnssens et al.,
2009, 2011). In addition, other gene variants, including
some of the VP6 and NSP4 genotypes, are also shared, a
finding based on the postulation of common evolutionary
roots of porcine and Wa-like human rotavirus strains
(Matthijnssens et al., 2008a).

Genotype P[6] strains were first described in human
neonates in hospital nurseries who were shedding rotavirus
predominantly in the absence of gastroenteritis symptoms
(Flores et al., 1986; Gentsch et al., 2005). Later, genotype
P[6] strains were detected sporadically in older children
with gastroenteritis worldwide, and investigations revealed
that P[6] strains are epidemiologically important in parts of
Africa (Bányai et al., 2012). Whilst the majority of virulent
human P[6] strains clustered into a single genetic lineage
together with strains isolated from neonates, subsequent
studies from Japan and Hungary identified genetically
highly divergent P[6] strains in children with gastroenteritis
(Nakagomi et al., 1999; Bányai et al., 2004), and P[6]
genotype diversity in diarrhoeic children has been observed
over time (Ahmed et al., 2007; Mascarenhas et al., 2007;
Nguyen et al., 2007; Li et al., 2008; Martella et al., 2008;
Bányai et al., 2009a, b; Mukherjee et al., 2009, 2011; Stupka
et al., 2009; Wang et al., 2010). The P[6] VP4 gene can be
categorized into at least five lineages, some of which are
unique to either pigs or humans, whilst others are shared
between humans and swine (Bányai et al., 2004; Martella
et al., 2006).

In this study, we describe the molecular characterization of
five genotype P[6] strains detected during a 6-year hospital-
based surveillance conducted from 2005 to 2010 in Taiwan
(Table 1).

METHODS

Case definition and data collection. Stool specimens positive for

rotavirus were collected from January 2005 to December 2010, mainly

from children ,5 years of age who were hospitalized for treatment of

acute gastroenteritis in three sentinel hospitals located in northern, central

and southern Taiwan. Acute gastroenteritis was defined as three or more

episodes of watery diarrhoea or looser-than-normal stools in the 24 h

before presentation. Information on basic epidemiological data (patient

gender, age, contact persons and family members) and clinical data (fever,

duration of vomiting and diarrhoea, underlying diseases, vaccination

history and extra-intestinal symptoms) were gathered where available.

Laboratory testing. Stool specimens were screened by antigen test

(RIDASCREEN Rotavirus; R-Biopharm AG) at the participating hos-

pitals. Rotavirus-positive specimens were transported to the Rotavirus

Reference Laboratory at Taiwan Centers for Disease Control for G and P

genotyping.

Viral RNA was extracted from 10 % (w/v) faecal supernatants using a

MagNA Pure LC DNA isolation kit (Roche Diagnostics) according to

the manufacturer’s instructions. The extracted RNAs were used as

template for RT-PCR with random primers (Wu et al., 2009). The

viral VP4, VP6, VP7 and NSP4 genes were amplified with primer sets

Con3/Con2, JRG7/JRG8 or GEN-VP6F/GEN-VP6R, Beg9-End9 and

JRG30/JRG31, respectively (Gouvea et al., 1990; Gentsch et al., 1992;

Matthijnssens et al., 2006; Esona et al.; 2009; Mijatovic-Rustempasic

et al., 2011), and subjected to direct sequencing using the same PCR

primers. Dye-labelled products were run on an ABI 3130 sequence

analyser (Applied Biosystems).

Sequencing and phylogenetic analysis. Rotavirus genotypes were

determined using RotaC software (Maes et al., 2009). Multiple

nucleotide sequences were aligned manually with GeneDoc software

(Nicholas et al., 1997), whilst phylogenetic analysis was performed

using MEGA 5.0 software using maximum-likelihood and neighbour-

joining algorithms (Tamura et al., 2011).

Strain designation. Between 2005 and 2010, a total of 1831 rotavirus

strains were genotyped. Of these, five strains with genotype P[6] VP4

genes were identified (0.27 %). The three G4P[6] strains were detected

in 2005, 2006 and 2009, whilst the single G5P[6] and G12P[6] strains

were identified in 2009 and 2006, respectively. For the nomenclature

designations of these strains, we used the recently proposed scheme:

RVA/human-wt/TWN/04-94s74/2005/G4P[6], RVA/human-wt/TWN/

03-95s3492/2006/G4P[6], RVA/human-wt/TWN/03-98s140/2009/G4P[6],

RVA/human-wt/TWN/03-98sP50/2009/G5P[6] and RVA/human-wt/

TWN/03-95s1461/2006/G12P[6].

RESULTS

The finding of several highly unusual P[6] variants in recent
years suggests that genetic diversity in this genotype may
be underestimated and prompted us to investigate the
molecular characteristics of the five P[6] strains identified
among 1831 strains genotyped during a 6-year surveillance
conducted in Taiwan (Table 1). Hence, we characterized
their VP4, VP7, VP6 and NSP4 genes by sequencing and
phylogenetic analysis.

Molecular characterization of the VP4 gene

An 831 bp fragment of the VP4 genes of all five Taiwanese
P[6] strains was amplified and sequenced. We used a shorter

Table 1. Prevalence of rotavirus strains detected between
2005 and 2010 in Taiwan ROC

Because genotyping was carried out by direct sequencing of the PCR

products, the category non-typable (NT) should include strains

whose corresponding gene sequence chromatograms were of low

quality. Theoretically, this category also includes potential samples

with mixed genotypes.

P type G type

G1 G2 G3 G4 G5 G8 G9 G12 GNT Total

P[4] 111 1 27 139

P[6] 3 1 1 5

P[8] 891 3 347 214 92 1547

P[9] 1 1 2

P[14] 1 1

P[19] 3 1 1 5

P[25] 1 1

PNT 32 19 22 5 53 131

Total 924 133 375 3 2 1 220 1 172 1831

Taiwanese P[6] rotaviruses
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stretch (500 bp) in subsequent sequence alignments to
correspond to the length of partial VP4 gene sequences
available for some reference strains. The three Taiwanese
G4P[6] strains shared 93.3–94.8 % nucleotide similarity
among each other and 78.8–98.4 % nucleotide similarity
with 53 representative P[6] strains detected in humans and
pigs worldwide. Comparable patterns of similarity were found
when the G5P[6] strain was compared with the Taiwanese
G4P[6] strains (95.0–95.8 %) and international strains of the
same genotype (80.0–95.8 %). In contrast, the VP4 gene
fragment of the G12P[6] strain had a lower nucleotide
similarity to Taiwanese G4 and G5 strains of genotype P[6]

(86.9–88.3 %) and shared up to 98.4 % nucleotide similarity
with representative P[6] strains detected worldwide. In our
phylogenetic analysis, the nucleotide sequence-based trees
demonstrated that the Taiwanese P[6] strains fell into two
discrete genetic sublineages, four strains clustering with both
porcine and porcine-derived human strains and one strain
clustering with the globally spread and medically important
variant of human P[6] strains (Fig. 1).

Molecular characterization of the VP7 gene

As determined by nucleotide sequence-based genotyping
(Wu et al., 2009), the five Taiwanese P[6] strains exhibited
three different VP7 specificities: G4, G5 and G12 (see
Methods).

The (nearly) full-length coding region was determined for
the VP7 gene of the G4P[6] strains. These three strains
shared 81.3–96.2 % nucleotide similarity with each other
along a 753 bp fragment. One strain had a lower VP7 gene
similarity to G4 sequences (,83.2 %) available in GenBank,
whilst the two other G4 strains shared up to 97.5 and 98.3 %
nucleotide similarities, respectively, with sequences in
GenBank. Phylogenetic analysis (Fig. 2a) demonstrated that
two strains clustered on a major branch shared by human
strains from China (E931) and Vietnam (e.g. VN592/2003),
and porcine (including wild boar) strains from Japan (e.g.
FGP65 and GUB88). A third Taiwanese human G4 strain,
03-95s3492, formed a new branch in the G4 VP7 gene tree,
suggesting that it represents a new lineage of the G4 VP7
gene (Fig. 2a). This putative new lineage was most closely
related to a Slovenian porcine strain (O-1) and an un-
common Australian human strain (M3014) (Fig. 2a).

Sequence analysis of an 826 bp stretch of the VP7 gene of
the Taiwanese G5P[6] strain revealed moderate nucleotide
sequence similarity to a variety of reference G5 strains of
both animal and human origin (range 82.6–86.4 %) from
several countries. The most closely related G5 strain was
another Taiwanese G5 strain, which carried the P[19] VP4
gene (nucleotide similarity 94.4 %). This result reaffirmed
that the VP7 genes of Taiwanese human G5 rotaviruses
form an individual lineage within this specificity (Wu et al.,
2011) (Fig. 2b).

The fifth Taiwanese P[6] strain belonged to genotype G12.
Sequencing and phylogenetic analysis of its VP7 gene
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Fig. 1. Nucleotide sequence-based neighbour-joining phylogenetic
tree of the P[6] VP4 gene. Arrows indicate the Taiwanese G4P[6],
G5P[6] and G12P[6] strains. Bootstrap values (500 replicates)
.60 % are indicated. Bar, 0.05 nucleotide substitutions per site.
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classified this strain into a geographically widespread
lineage that emerged during the late 1990s (Fig. 2c). This
strain shared a nucleotide similarity of ¢99 % with strains
belonging to the globally common lineage and ,91 %
nucleotide similarity with an early human G12 isolate
(L26) and a porcine G12 rotavirus (RU172), representing a
unique lineage of the G12 VP7 gene.

Molecular characterization of the VP6 and NSP4
genes

The full or partial coding regions of the VP6 and NSP4
genes were determined to further characterize the five
Taiwanese P[6] strains.

For the VP6 gene, a 1000 bp fragment was used in the
analysis. The rotavirus genotyping tool, RotaC (Maes et al.,
2009), identified two VP6 genotypes among the Taiwanese
P[6] strains (Fig. 3a). Two G4P[6] strains and the G12P[6]

strain belonged to the I1 VP6 genotype, whilst a third G4P[6]

strain and the G5P[6] strain had the I5 VP6 genotype.
Phylogenetic analysis clustered the two G4 strains with I1
VP6 specificity into a common lineage with Wa and two
human–porcine reassortant strains, identified in Ecuador
and India, respectively. The G12 strain shared high

nucleotide similarity (up to 100 %) with modern I1 strains
from a global collection. Of interest, the G4 and G5 strains
that shared the I5 genotype clustered on the same branch of
the phylogenetic tree and were more closely related to
Taiwanese P[19] strains (Wu et al., 2011).

RotaC classified all five Taiwanese P[6] strains into a single
NSP4 genotype, E1, with .85 % nucleotide similarity to
the reference strains. The Taiwanese P[6] strains clustered
into four distantly related phylogenetic lineages. The single
G12P[6] strain formed a common branch with recent
Indian, South Korean and US G12 strains. One G4 strain,
04-94s74, clustered with a rare human G5P[6] strain
identified in Vietnam and with porcine strains from
Thailand. Another G4 strain, 03-98s140, clustered with
an unusual Chinese human G9 strain, and was also related
to European porcine strains. The third Taiwanese G4P[6]

strain together with the Taiwanese G5P[6] strain clustered
with previously characterized uncommon P[19] strains
identified in Taiwanese children with diarrhoea (Fig. 3b).

DISCUSSION

It was once thought that genotype P[6] rotaviruses were
restricted to asymptomatic nosocomial infections of neonates
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born in hospital nurseries (Gentsch et al., 2005). Sub-
sequently, this genotype has been implicated in acute
dehydrating diarrhoea and has been found as the third
most common VP4 genotype in human rotaviruses world-
wide (Bányai et al., 2012). However, the various lineages of
P[6] strains associated with human infections show marked
geographical differences. For example, epidemiologically
major P[6] strains, including the abundant African P[6]

strains carrying various G types as well as the globally spread
G9 and G12 strains, mainly carry a single common P[6]

lineage, Ia (Freeman et al., 2009; László et al., 2009; Pietsch &
Liebert, 2009; Jere et al., 2011; Le et al., 2011). Based on
epidemiological evidence, it is thought that these P[6] strains
represent a true human rotavirus VP4 lineage. However, a
recent report of a bat G25 rotavirus carrying the same P[6]

lineage has indicated that animals may also play a role in the
circulation of this gene. Whether such potential animal
reservoirs of P[6]-Ia could transmit the virus to humans
remains to be elucidated (Esona et al., 2010).

In many regions where genotype P[6] strains are uncom-
mon causes of gastroenteritis in humans, evolutionary
analysis of the P[6] VP4 gene has usually identified lineages
that are highly divergent from the original P[6] gene found
in neonates. Examples include the G4P[6] strains from
Hungary, a G3P[6] strain from Italy, G5P[6] strains from
China and Vietnam, G4P[6] strains from Brazil and
Argentina, a G9P[6] strain from India and a G11P[6] strain
from Ecuador. These uncommon lineages are often shared
among human and animal rotaviruses, and it is thought
that their occurrence in humans might be the result of
interspecies transmission and reassortment between human
and porcine strains. Both partial and whole genome-based
characterization studies provide convincing evidence for this
hypothesis (Ahmed et al., 2007; Nguyen et al., 2007;
Mascarenhas et al., 2007; Li et al., 2008; Martella et al.,
2008; Bányai et al., 2009a, b; Mukherjee et al., 2009, 2011;
Stupka et al., 2009; Wang et al., 2010).

This report has described the molecular characterization of
P[6] strains from sporadic cases of rotavirus gastroenteritis
in Taiwanese children admitted to hospital. In total, five
out of 1831 strains carrying P[6] specificity were identified
that belonged to VP7 genotypes G4 (n53), G5 (n51) and
G12 (n51). These findings demonstrated that the P[6]

genotype had little epidemiological importance in Taiwan
during 2005–2010. Molecular characterization of these five
P[6] strains revealed that the VP4 gene of the G12P[6] strain
clustered in the globally common human lineage (Ia),
whilst the other four Taiwanese P[6] strains clustered with
strains in a lineage shared between porcine and human
strains.

The VP7, VP6 and NSP4 genes of the unusual P[6] strains
were related more closely to the respective genes of porcine
rotaviruses or to a distantly related strain whose origin is
unclear, but is clearly different from human strains, further
strengthening a possible common origin with porcine
strains. In contrast, the G12P[6] strain carried corresponding

genes related to common human rotaviruses. Whilst the
G12P[6] strain did not seem to have the potential to cause
large outbreaks in Taiwan during 2006 or later, this study is
the first to report the occurrence of this strain in Taiwan,
implying that G12 rotaviruses may have been introduced
only recently. In some countries, G12P[6] strains have been
found to be able to spread and cause local epidemics (Bányai
et al., 2012). Thus, surveillance is needed to determine
whether this particular genotype will emerge over time and
become medically important in Taiwan.

Another conclusion from the molecular characterization of
porcine rotavirus-like Taiwanese P[6] strains was that they
are related more closely to local non-P[6] strains than to
unusual P[6] strains detected worldwide, suggesting that
they could have emerged locally. For example, these P[6]

strains shared more sequence similarity with some
Taiwanese P[19] strains than with other known strains
from global collections (Wu et al., 2011). This finding
reaffirms that locally circulating animal rotaviruses –
porcine strains, in this case – may serve as a source for
infection in infants and young children through inter-
species transmission coupled with gene reassortment. That
such putative interspecies transmission and reassortment
events are independent events is quite likely, based on
the finding that a porcine rotavirus-like G5 VP7 gene
combined with either a P[19] or an uncommon P[6] VP4
gene, or the shared P[6] VP4 gene combined with porcine
rotavirus-like G4 and G5 VP7 genes, were identified in
various Taiwanese surveillance areas from different detec-
tion periods. Thus, the probability that these reassortment
events occurred in the human host with the involvement of
two different porcine strains seems negligible. Whilst the
proportion of porcine rotavirus-like strains in Taiwan is
low, the circulation and sporadic transmission of these
heterotypic strains from pigs to humans could pose a
public-health concern even in the vaccine era. Continuous
surveillance is needed to detect such possible vaccine
breakthrough events associated with the introduction of
heterologous strains.
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Rahman, M., Zeller, M., Beutels, P., Van Damme, P. & Van Ranst, M.
(2009). Rotavirus disease and vaccination: impact on genotype
diversity. Future Microbiol 4, 1303–1316.

Matthijnssens, J., Ciarlet, M., McDonald, S. M., Attoui, H., Bányai, K.,
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