

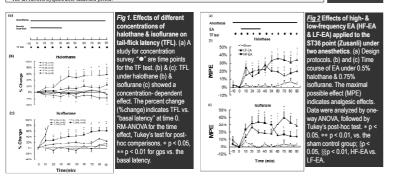
1日日本 中国祭英大學

Electroacupuncture analgesia, stress responses, and variations in sensitivity in rats anesthetized with different sub-MAC anesthetics

Yeong-Ray Wen MD, PhD; ^{1,2*} Hsiang-Hsun Kung MD,³ Sheng-Feng Hsu MD, PhD;⁴ Yu-Chun Hung MD⁵ ¹ Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan; ² Department of Anesthesiology, School of Medicine, China Medical Uiversity Hospital, Taichung, Taiwan; ³ Department of Anesthesiology, Taoyuan Armed Forces General Hospital, Taoyuan County, Taiwan; ⁴ Department of Acupuncture, China Medical University Hospital, Taichung, Taiwan; ⁵ Department of Anesthesiology, Mackay Memorial Hospital, Mackay Medicine, Nursing and Management College, Taipei, Taiwan

Background

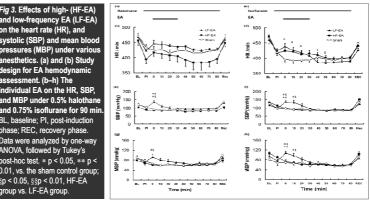
China Medical University


- The use of anesthetics to stabilize animals for the purpose of electroacupuncture (EA) analgesic studies can be problematic because of the interference of differential physiological responses to EA and pain.
- In this study, EA-induced physiological profiles were surveyed under a sub-minimal alveolar concentration (sub-MAC) of halothane and isoflurane anesthetics in a our proposed minimalstress model.

Methods

- First, to select an adequate concentration, compliance with EA and tail-flick stimulation was evaluated under various concentrations of halothane and isoflurane.
- Second, under selected concentrations, electrical stimulation of 0.5 ms, 3-4 mA pulse waves for 30 min was delivered at the right hind limb (Zusanli, ST36). Two groups of low- and high-frequency EA (4Hz, 100-Hz) were compared.
- Finally, EA effects were compared by tail-flick latency (TFL), hemodynamic variables, and individual variations in analgesic sensitivity.

	Halothane concentration				Isoflurane concentration						
	0.1%	0.3%	0.5%	0.7%	1.1%	0.5%	0.75%	1.0%	1.25%	1.5%	
Induction period (0-	30 min)										
Agitation	5/6	3/5	0/9	0/8	0/8	4/6	0/9	0/8	0/8	0/5	
Nervous posture ^a	4/6	2/5	0/9	0/8	0/8	3/6	2/9	0/8	0/8	0/5	
Leg withdrawal	6/6	3/5	1/9	0/8	0/8	5/6	1/9	0/8	0/8	0/5	
Difficult needling	6/6	3/5	1/9	0/8	0/8	6/6	1/9	0/8	0/8	0/5	Table 1
Maintenance period	(30-90 min)										
Eye open	6/6	5/5	6/9	5/8	2/8	6/6	5/9	4/8	2/8	0/5	Behavioral
Cornea reflex	6/6	5/5	6/9	6/8	1/8	6/6	7/9	3/8	2/8	1/5	indexes
Ear pinna re flex	6/6	5/5	9/9	8/8	2/8	6/6	9/9	8/8	3/8	2/5	observed dur
Recovery (min)	< 1	< 3	3-5	3-5	3-10	< 0.5	<1	1-3	2-5	3-8	
Over-sedation	0/6	0/5	0/9	4/8	8/8	0/6	0/9	0/8	6/8	5/5	90 min
Death	0	0	0	0	1 ^b	0	0	0	0	0	halothane an


^b Defined as "body or back curling"

Results

The 6th World Congress, World Institute of Pain, Miami, FL, US (Feb 4-6, 2012)

- The optimal concentrations for halothane and isoflurane were 0.5% and 0.75%, respectively, and TFLs were stable under these anesthetic levels (Table 1). However, rats under 0.75% isoflurane had better compliance than those under 0.5% halothane.
- EA showed distinct analgesic patterns between 100 and 4Hz EA, but there was no difference between the two gases (Fig 1 & 2)
- Temporal and distinct changes in the HR and BP were shown after different frequent EAs; however, there was no hemodynamic difference between groups treated with the two anesthetics (Fig 3).
- Ratios of EA non-responders were 38% and 33% for the isoflurane and halothane groups, respectively, showing no difference in EA sensitivity between the two gases (Fig. 4).

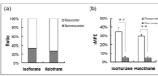


Fig 4. Comparison of EA "responders" & "nonresponders". (a) No significant difference was shown in responder/non-responder ratios between 0.75% isoflurane and 0.5% halothane. (b) Graph illustrates EA's effects produced by responders and nonresponders under various anesthetics. Significantly higher responsive maximal possible effects (rMPEs) were shown in responder rats compared to nonresponder rats. * p < 0.01, responder vs. non-responder hy unnaired Last

Conclusion

- We concluded that sub-MAC halothane and isoflurane provide optimal conditions for the study of EA-induced analgesia in rats.
- □ In this model, 0.75% isoflurane appears to be a better choice than 0.5% halothane in terms of EA compliance.