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Abstract—An epitope activates B cells to amplify and 
induce antibodies which can neutralize the foreign 
molecules, particles and pathogens. It also plays a 
crucial role in developing synthetic peptides for 
vaccination. Identification of epitopes using biological 
screening approaches is time consuming and high cost. 
Therefore, bioinformatics approaches are developed to 
enhance the speed of identifying the epitopes and 
conserve time. Herein, a combinatorial methodology 
based on physico-chemical properties and SVM 
(Support Vector Machine) techniques was proposed to 
address the aim of this study. Datasets of epitope and 
non epitope segments with 2, 3 and 4 residues in length 
were trained and applied as statistical features of SVM. 
After training, three datasets including one curated and 
two public ones were employed to evaluate the 
performance of the proposed system which was also 
compared with four existing LE predictors, BepiPred, 
ABCpred, BCPred and FBCPred. Our proposed system 
has presented better specificity, accuracy, and positive 
prediction value (PPV) in most testing cases. High 
specificity and PPV of a linear epitope prediction can 
lead to an efficient and effective design on biological 
experiments. 
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I.  INTRODUCTION 
Antigenic epitopes on protein surface can elicit immune 

response with specific antibodies. Prediction of B-cell linear 
epitopes provides pre-analysis for biologists prior to their 
immunobiological experiments and vaccine design. Hence, 
an accurate epitope prediction provides an important role in 
prevention and control of diseases. There are two major 
types of epitopes: linear epitope (LE) and conformational 
epitope (CE) [1]. Refer to Figure 1, circles with slash lines 
in the left side of Figure 1 represent a LE composed of 
contiguous stretches of amino acid residues, while the 

circles with slash lines in the right side of Figure 1 are 
illustrated as a CE which is composed of non-contiguous 
segments constructed by folding of the polypeptide chain. 
Although it has been estimated that approximately more 
than 90% of B-cell epitopes belong to discontinuous types 
[2], most of antigen structures are not yet resolved and 
verified by structural biologists. Due to insufficient spatial 
information of CEs and strong dependency upon LEs, it is 
still important to predict LEs for fundamental immunology 
and general applications. In this study, we have emphasized 
the prediction methodology based on the combination of 
propensity scale methods with SVM techniques to improve 
the performance of LE prediction. 
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Figure 1. Examples of two types of epitope for antibody-antigen 
combination. Left side represents a Linear Epitope (LE) composed by a 
continuous segment and right side displays a Conformational Epitope (CE) 
with discontinuous stretches. 
 

Most of published epitope prediction methods were based 
on physico-chemical properties of amino acids, such as 
flexibility [3], surface accessibility [4], hydrophilicity [5], 
secondary structure [6], antigenicity [7], and etc.. However, 
in 2005, Blythe and Flower [8] employed 484 amino acid 
propensity scales to thoroughly investigate the relationship 
between LE and global peaks of propensity profiles, and the 
results showed that the performance of the best set of scales 
was only slightly better than a random model. Accordingly, 
a study based on analyzing local peaks of propensity 
profiles as LE candidates was proposed to enhance the 
prediction performance [9]. Furthermore, several studies 
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attempted to improve the accuracy of LE prediction by 
featuring the machine learning approaches. For example, 
BepiPred [10] proposed the combination of Hidden Markov 
model (HMM) with Parker hydrophilicity scale [5] to 
predict LEs, and the performance was improved within an 
obvious scale. 

According to Chen's study [11], it showed that the 
occurrence frequencies of some amino acid pairs (AAPs) in 
epitope datasets are significantly higher than in non-epitope 
datasets, or vice versa. This statistical feature is worth of 
noticing and can be applied to enhance the performance of a 
LE prediction system. Hence, both the advantages of 
featuring statistical distribution of verified epitopes and 
preserving the antigenic characteristics of candidate 
peptides are considered simultaneously in this study. Here, 
amino acid segments with 2 (AASs2), 3 (AASs3) and 4 
(AASs4) residues in length of both epitopes and non-
epitopes were initially and exclusively collected and 
considered as the statistical features for LIBSVM (A 
Library for Support Vector Machines) [12]. A system 
combining AASs, SVM and a physico-chemical based LE 
prediction system, LEPD [9], was designed to improve the 
overall performance of LE prediction. 

II. IMPLEMENTATION 

A. System architecture 
Step 1: Statistical analysis of amino acid segments
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Figure 2. System flow chart of the proposed method. 
 

The proposed system is divided into three main steps and 
shown in Figure 2. The first step evaluates the statistical 
characteristics of occurrence frequencies of AASs with 
various lengths from the independently collected epitope 
and non-epitope datasets respectively. The second step 
performs the self-training of an SVM classifier on the 1744 
(872+872) verified segments to establish a determination 

model for epitope candidates. For the third step, the 
proposed SVM classifier filters epitope candidates directly 
from the predicted results of LEPD system. The following 
sections describe the details of each step. 

B. Datasets 
The trained B-cell epitopes were taken from Bcipep 

database [13] which comprises experimentally verified B-
cell epitopes. The Bcipep database contains 1230 non- 
redundant LEs whose lengths ranging from 3 to 56 residues 
within more than 1000 antigen proteins. This dataset was 
applied for analyzing statistical properties of epitopes with 
respect to the occurrence frequencies of AASs with lengths 
from 2 to 4 amino acids. 

More specifically, 872 epitopes and 872 non-epitopes 
from Chen et al. [11] were employed as the training data in 
this study. Lengths of all selected segments within the 
dataset were restricted to a uniform length of 20 amino 
acids. Here, the original source of the 872 epitopes were 
also adopted from the Bcipep database. Due to the training 
processes from any learning machine require fixed length 
training data, and the facts of B-cell epitopes from Bcipep 
database are various in lengths. Therefore, Chen et al. 
applied ‘‘truncation-extension treatment’’, that is, if the 
length of a B-cell epitope is longer than 20 residues, then 
truncates superfluous residues from both N- and C- 
terminals equally to retain the central 20 amino acids only; 
if the length of a B-cell epitope is shorter than 20, then 
extends adjacent residues to both N- and C- terminals 
equally until it reaches 20 residues long. After truncation-
extension treatment and removing duplicated segments, 
Chen et al. acquired 872 unique B-cell epitopes with an 
identical length of 20 residues. On the other hand, the 872 
non-epitopes were created by random selection from the 
Swiss-Prot database [14]. The set of generated non-epitope 
segments were all with 20 residues in length and contained 
different segments comparing to verified epitopes. These 
872 non-epitopes are used for analyzing AASs statistics of 
non-epitopes. 

C. Statistical analysis of amino acid segments 
The proposed filtering mechanism is adopted from 

Chen’s idea, AASs with 2 residues (AASs2), as statistical 
features for LE verification. Furthermore, the proposed 
method also extended the 2-residue segments to 3 and 4 
residues. In the following sections, we describe the 
statistical analysis of three proposed features. Table 1 
defines the required 7 variables in statistical analysis for 
query AASs. 

Since there are 20 different amino acids, a total of 400 
possible combinations of residue pairs are analyzed for their 
occurence frequencies within the epitope and non-epitope 
datasets. A proportion distribution diagram of AASs2 is 
shown in Figure 3. Each point in Figure 3 represents an 
AAS2, and the X-axis represents the occurrence frequencies 
of AAS2 from the training dataset ( 2AASX ), and the Y-axis 

542



represents the occurrence times from epitope dataset of the 
query AAS2 divided by the total occurrence times of the 
AAS2 from epitope and non-epitope datasets ( 2AASY ). The 

calculations of feature values for 2AASX  and 2AASY  are 
shown in Equation (1) and (2). 
 
Table 1. Required variables in statistical analysis for amino acid segments. 

Variables Description 

lAASN +  The occurrence times of an l-residue amino acid 
segment in the epitope dataset. 

lAASN −
 

The occurrence times of an l-residue amino acid 
segment in the non-epitope dataset. 

lAASf +  The occurrence frequencies of an l-residue amino acid 
segment in the epitope dataset. 

lAASf −  The occurrence frequencies of an l-residue amino acid 
segment in the non-epitope dataset. 

lAASsTotal+  The total occurrence times of all l-residue amino acid 
segments in the epitope dataset. 

lAASsTotal−  The total occurrence times of all l-residue amino acid 
segments in the non-epitope dataset. 

lAAS
EI  Epitope Index of an l-residue amino acid segment. 
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In Figure 3, important information of statistical 
characteristics of AASs2 associated with epitopes is 
provided. First, if 2AASX of a specified AAS2 is large, it 
represents that AAS2 occurred with relatively high 
frequencies in the training dataset. Secondly, if 2AASY  is 
close to 0.5, it reflects that the AAS2 possesses low 
identifiable ability during predicting epitopes. According to 
the statistics, we found that there are about 38.25% of 
AASs2 possessing values of 2AASY  more than or equal to 0.6 
or less than or equal to 0.4. Generally speaking, if a 
particular AAS2 is frequently appeared in protein sequences 
(large 2AASX ) and possesses a high proportional rate within 

the epitope dataset (large 2AASY ) which means the AAS2 
possessing high probability to be an epitope candidate. 
Similarly, if an AAS2 is with relatively low appearance rate 
in protein sequences (small 2AASX ) and the AAS2 is mostly 

found in the epitope dataset (large 2AASY ), this AAS2 can 
also be considered as a good candidate for LE prediction. In 
order to explore these characteristics, the possibility of an 
AAS2 being considered as a partial epitope segment is 
represented by its Epitope Index through the following 
calculation. 

The Epitope Index ( 2AASEI ) of an AAS2 is first obtained 
by Equation (3)-(5), which calculates the frequency of 
occurrence of a particular AAS2 in the epitope dataset 
divided by the frequency of occurrence of the same AAS2 in 

the non-epitope dataset, and then takes log values. The next 
step normalizes the 2AASEI  as in the Equation (6). The 
value determined from the previous step is normalized into 
the range of [0, 1].  
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Figure 3. The frequency of occurrence and the proportion of AASs2 in the 
epitope dataset to AASs2 in the epitope and non-epitope datasets. The noted 
AASs2 of CW, MW, WC, GP, IW, NC, CT, WR locating in upper part 
possessing higher possibility to be considered as epitope pairs, while 
AASs2 of  IM, VM, KM, MP, CD, FI, HF, MN in lower part for potential 
non-epitope pairs. 
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The functions 2max( )AASsEI  and 2min( )AASsEI  represent 
the maximum and minimum values of AASs2 before 
normalization. The normalization is designed to avoid the 
dominance of an individual feature in the classifier learning 
processes. Since the length of all training epitopes and non-
epitopes are all 20-mer peptides, each peptide is 
decomposed into 19 AASs2. The individual Epitope Index 
of each AAS2 were summed up and divided by 19 to obtain 
a corresponding Epitope Index of a 20-mer peptide. 
According to the calculation, we could obtain the Epitope 
Index of each peptide and employ it as the first feature of 
SVM. Similarly, we apply the same analysis on AASs3 and 
AASs4. However, there are totally 8,000 possible 
combinations for 3-residue segments and 160,000 
combinations for 4-residue segments. Since a large portion 
of AASs3 or AASs4 might not appear within the non-epitope 
dataset, it will cause the problems of dividing by zero. 
Hence, the calculation of Epitope Indices of AASs3 and 
AASs4 are different from AASs2. The calculations of 
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Epitope Indices of AASs3 ( 3AASEI ) and AASs4 ( 4AASEI ) 
are shown in Equation (7) and (8). It can be obtained by 
taking the occurrence times of 3- and 4-residue segments 
( lAASN + ) divided by the total occurrence times of all 

segments with 3 and 4 residues ( lAASsTotal+ ) from the 
epitope dataset respectively, and followed by normalizing 
the results into the range of [0, 1]. 

 l lAAS AASEI f +=  (7) 
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l l

l
l l
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where l=3 and 4. 

D. SVM training and filtering non-epitope candidates 
After determining these three statistical features 

associated with occurrence frequencies, the proposed system 
applied all corresponding features for SVM training, and the 
best model was constructed for the following filtering 
processes and epitope identification. In this study, a query 
protein sequence was firstly submitted to the LEPD system, 
and followed by filtering the LEPD predicted epitope 
candidates through the designed SVM verification model. 
Accordingly, the proposed system removed non-epitope 
candidates through SVM classification and improved the 
deficiencies of too many false positive predicted epitopes 
generated by the LEPD system, i.e., reduced the number of 
false alarm rates. 

E. Performance measurement 
The sensitivity, specificity, accuracy, positive predictive 

value (PPV) and Matthews correlation coefficient (MCC) 
are five criteria for evaluating the performance of the 
proposed methods. Refer to Equations from (9) to (13), 
sensitivity represents the percentage of actual epitopes 
which are correctly identified as epitopes; specificity 
represents the percentage of non-epitopes which are 
correctly identified as non-epitopes; accuracy represents the 
percentage of epitopes and non-epitopes which are correctly 
identified simultaneously; PPV also called as precision rate, 
represents the percentage of amino acids predicted as 
epitopes and which are correctly identified as epitopes; 
MCC is a measure of predictive performance that 
incorporates both sensitivity and specificity into a single 
value between -1 and +1. 
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where TP is the number of true positive, FP is the number 
of false positive, TN is the number of true negative, and FN 
is the number of false negative. 

III. RESULTS 
The performances of the proposed methodology on three 

datasets including HIV (Human Immunodeficiency Virus) 
[15],  AntiJen [16] and PC [9] were analyzed, and which are 
consisted of  10, 171, and 12 proteins respectively. For 
comparison, the performances of the previously developed 
system which adopted antigenicity features only (LEPD 
system [9]) and the novel proposed system of combining 
additional machine learning techniques (LEPD+SVM) were 
evaluated. The LEPD+SVM approach was achieved by 
selecting the same default window sizes and SVM 
parameters for all predicting processes on the three testing 
datasets. The default window sizes in LEPD were set as 7 
for calculating antigenicity scale and 11 for local peaks 
extraction, and the prediction results were improved 
unanimously in all aspects except sensitivity measurement. 
The averagely increasing results were 0.3567 in specificity, 
0.1589 in accuracy, 0.1039 in PPV, and 0.0744 in MMC, 
while the sensitivity was decreased by 0.2988 in average, 
and the details of superior performance of adding SVM 
techniques are shown in Table 2. In this table, the 
quantitative data with gray background represent the best 
results between two approaches regarding to different 
datasets. It is clear that the combination of propensity scale 
methods with SVM techniques could improve the 
performance of LE prediction.  
 
Table 2. Improved performance on 3 datasets 
Dataset

(#) Method Sensitivity Specificity Accuracy PPV MCC 

HIV 
(10) 

LEPD 0.6074 0.5468 0.5549 0.6111 0.1308 
LEPD+SVM 0.4395 0.7865 0.6162 0.7388 0.2330 

AntiJen
(171) 

LEPD 0.5667 0.4519 0.4803 0.2072 0.0216 
LEPD+SVM 0.2416 0.8594 0.7409 0.2907 0.1019 

PC 
(12) 

LEPD 0.5503 0.4549 0.4822 0.3392 0.0046 
LEPD+SVM 0.1469 0.8778 0.6371 0.4398 0.0453 

Average Increase -0.2988  0.3567  0.1589  0.1039 0.0744 
The symbol ‘#’ denotes the protein number of the datasets. 

 
From Table 3 to Table 5, in comparison with four well-

known LE prediction systems including BepiPred [10], 
ABCpred [17], BCPred [18], and FBCPred [19], our 
experimental results have shown that the proposed method 
enhanced the specificity, accuracy, PPV, and MCC for 
different datasets, but not the sensitivity. The indicators 
representing the best performance in all five different 
aspects are also shown with gray background. From these 
tables, we can observe that ABCpred0.5 obtained the best 
performance in sensitivity among all systems for all three 
datasets, but the specificity of ABCpred0.5 is immensely 
lower than other systems. It reflects that ABCpred predicts 
too many epitopes at a time so that high sensitivities could 
be achieved but with relatively low specificities. As a matter 

544



of fact, the default threshold for ABCpred is defined as 0.5. 
The higher threshold settings the better specificities can be 
obtained, but with worse sensitivities correspondingly. It 
can be observed that our proposed system obtained the best 
performance in specificity, accuracy and PPV for all 
datasets except the accuracy for the HIV dataset. To 
maintain the performance of the proposed SVM mechanism, 
experimentally verified LEs should be considered as time 
goes by. Therefore, the proposed system will be designed 
with an extendible mechanism for updating the contents of 
experimental epitopes within the trained database, and 
guarantee that the trained dataset provide the best SVM 
classifier with respect to the up-to-date LE information. 
 
Table 3. Comparative performance with four other existing systems on HIV 
dataset. 

Method Sensitivity Specificity Accuracy PPV MCC 
LEPD+SVM 0.4395 0.7865 0.6162 0.7388 0.2330 

BepiPred 0.5016 0.6085 0.5672 0.6122 0.0972 
ABCpred0.5 0.9609 0.0589 0.5584 0.5581 0.0536 
ABCpred0.6 0.9295 0.0725 0.5600 0.5557 0.0402 
ABCpred0.7 0.8797 0.1465 0.5659 0.5633 0.0564 
ABCpred0.8 0.6389 0.4413 0.5577 0.5769 0.0766 

BCPred 0.8302 0.5164 0.6699 0.6496 0.3030 
FBCPred 0.7696 0.5548 0.6810 0.6504 0.2967 

The subscripts of ABCpred denote threshold values. 
 
Table 4. Comparative performance with four other existing systems on 
AntiJen dataset. 

Method Sensitivity Specificity Accuracy PPV MCC 
LEPD+SVM 0.2416 0.8594 0.7409 0.2907 0.1019 

BepiPred 0.5179 0.5761 0.5552 0.2202 0.0604 
ABCpred0.5 0.9690 0.0473 0.2263 0.2021 0.0318 
ABCpred0.6 0.9530 0.0725 0.2409 0.2041 0.0398 
ABCpred0.7 0.8918 0.1450 0.2879 0.2054 0.0416 
ABCpred0.8 0.6733 0.4040 0.4470 0.2183 0.0546 

BCPred 0.6132 0.5264 0.5255 0.2341 0.0917 
FBCPred 0.6421 0.4777 0.4937 0.2227 0.0703 

 
Table 5. Comparative performance with four other existing systems on PC 
dataset. 

Method Sensitivity Specificity Accuracy PPV MCC 
LEPD+SVM 0.1469 0.8778 0.6371 0.4398 0.0453 

BepiPred 0.4823 0.5972 0.5533 0.3819 0.0749 
ABCpred0.5 0.9796 0.0535 0.3660 0.3458 0.0731 
ABCpred0.6 0.9688 0.0860 0.3833 0.3510 0.0938 
ABCpred0.7 0.8974 0.1582 0.4075 0.3521 0.0711 
ABCpred0.8 0.6546 0.4026 0.4889 0.3621 0.0513 

BCPred 0.5291 0.5143 0.5183 0.3568 0.0389 
FBCPred 0.5431 0.4903 0.5100 0.3508 0.0294 

 

IV. CONCLUSION 
The proposed method applied verified epitope and non-

epitope segments ranging from 2 to 4 amino acids as the 
features for SVM classifier and combined with the 
previously developed propensity scale based LEPD system 
to predict linear epitopes. With the combination of physico-
chemical characteristics and an SVM classifier, the 
specificity, accuracy and PPV could be effectively improved. 
In comparison with four well-known prediction systems, 

experimental results have shown that our proposed method 
mostly outperforms the existing systems in terms of 
specificity, accuracy and PPV for different benchmark 
datasets including HIV, AntiJen and PC. 

LE prediction is an important research topic for 
biological and medical researches such as vaccines design 
and disease diagnosis. To further improve the prediction 
performance of the proposed system, properly selecting 
crucial features is an important issue to overcome. Besides, 
with the design of extendable training mechanism, our 
proposed prediction system can include more 
experimentally verified epitopes to improve classification 
on epitope and non-epitope peptides. Under these filtration 
and enhancement, the accuracy of LE prediction can be 
guaranteed. 

ACKNOWLEDGMENT 
This work is supported by the National Science Council 

(NSC 96-2221-E-019-043 to T.-W. Pai), China Medical 
University (CMU97–289 to H.-T. Chang), and the Center of 
Excellence for Marine Bioenvironment and Biotechnology 
in National Taiwan Ocean University in Taiwan, R.O.C. 

REFERENCES 

[1] D.J. Barlow, et al., “Continuous and discontinuous protein antigenic 
determinants,” Nature, vol. 322, no. 6081, 1986, pp. 747-748; DOI 
10.1038/322747a0. 

[2] G. Walter, “Production and use of antibodies against synthetic 
peptides,” J Immunol Methods, vol. 88, no. 2, 1986, pp. 149-161. 

[3] M. Vihinen, et al., “Accuracy of protein flexibility predictions,” 
Proteins, vol. 19, no. 2, 1994, pp. 141-149; DOI 
10.1002/prot.340190207. 

[4] E.A. Emini, et al., “Induction of hepatitis A virus-neutralizing 
antibody by a virus-specific synthetic peptide,” J Virol, vol. 55, no. 3, 
1985, pp. 836-839. 

[5] J.M. Parker, et al., “New hydrophilicity scale derived from high-
performance liquid chromatography peptide retention data: 
correlation of predicted surface residues with antigenicity and X-ray-
derived accessible sites,” Biochemistry, vol. 25, no. 19, 1986, pp. 
5425-5432. 

[6] L. Debelle, et al., “Predictions of the secondary structure and 
antigenicity of human and bovine tropoelastins,” Eur Biophys J, vol. 
21, no. 5, 1992, pp. 321-329. 

[7] A.S. Kolaskar and P.C. Tongaonkar, “A semi-empirical method for 
prediction of antigenic determinants on protein antigens,” FEBS Lett, 
vol. 276, no. 1-2, 1990, pp. 172-174; DOI 10.1016/0014-
5793(90)80535-Q. 

[8] M.J. Blythe and D.R. Flower, “Benchmarking B cell epitope 
prediction: underperformance of existing methods,” Protein Sci, vol. 
14, no. 1, 2005, pp. 246-248; DOI 10.1110/ps.041059505. 

[9] H.T. Chang, et al., “Estimation and extraction of B-cell linear 
epitopes predicted by mathematical morphology approaches,” J Mol 
Recognit, vol. 21, no. 6, 2008, pp. 431-441; DOI 10.1002/jmr.910. 

545



[10] J.E. Larsen, et al., “Improved method for predicting linear B-cell 
epitopes,” Immunome Res, vol. 2, 2006, pp. 2; DOI 10.1186/1745-
7580-2-2. 

[11] J. Chen, et al., “Prediction of linear B-cell epitopes using amino acid 
pair antigenicity scale,” Amino Acids, vol. 33, no. 3, 2007, pp. 423-
428; DOI 10.1007/s00726-006-0485-9. 

[12] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector 
machines,” 2001. 

[13] S. Saha, et al., “Bcipep: a database of B-cell epitopes,” BMC 
Genomics, vol. 6, no. 1, 2005, pp. 79; DOI 10.1186/1471-2164-6-79. 

[14] A. Bairoch and R. Apweiler, “The SWISS-PROT protein sequence 
database and its supplement TrEMBL in 2000,” Nucleic Acids Res, 
vol. 28, no. 1, 2000, pp. 45-48; DOI 10.1093/nar/28.1.45. 

[15] B.T.M. Kober, et al., “HIV Immunology and HIV/SIV Vaccine 
Databases 2003,” 2003. 

[16] H. McSparron, et al., “JenPep: a novel computational information 
resource for immunobiology and vaccinology,” J Chem Inf Comput 
Sci, vol. 43, no. 4, 2003, pp. 1276-1287; DOI 10.1021/ci030461e. 

[17] S. Saha and G.P. Raghava, “Prediction of continuous B-cell epitopes 
in an antigen using recurrent neural network,” Proteins, vol. 65, no. 1, 
2006, pp. 40-48; DOI 10.1002/prot.21078. 

[18] Y. El-Manzalawy, et al., “Predicting linear B-cell epitopes using 
string kernels,” J Mol Recognit, vol. 21, no. 4, 2008, pp. 243-255; 
DOI 10.1002/jmr.893. 

[19] Y. El-Manzalawy, et al., “Predicting flexible length linear B-cell 
epitopes,” Comput Syst Bioinformatics Conf, vol. 7, 2008, pp. 121-
132. 

 

546


