A Novel Therapy of Chinese Herbs: Danshen (*Savia miltiorrhiza*) Extracts Against Apicidin-resistant HA22T Hepatocellular Carcinoma Cells

<u>Yen-Hong Chou¹, Wei-Wen Kuo², Tian-Shung Wu⁴ and Chih-Yang Huang^{1, 3}</u> ¹Graduate Institute of Basic Medical Science, China Medical University, Taichung ²Department of Biological Science and Technology, China Medical University, Taichung ³Graduate Institute of Chinese Medical Science, China Medical University, Taichung ⁴ College of Pharmacy, China Medical University, Taichung

Abstract

Worldwide, Human hepatocellular carcinoma (HCC) is the now fifth most common cancer and third leading cause of cancer death. HCC can be treat by surgical resection, chemotherapy or radiotherapy, but in HCC, the 5-year survival rate of less than 5% due to high recurrence after surgical resection and resistance to chemotherapy, therefore, chemoresistance is a major obstacle in the treatment of HCC. The Apicidin is a novel HDAC inhibitor derived from a fungal metabolite, and it's a treatment resistant in HCC remains to be elucidated. In Our previous study, we successfully established the stable HA22T cancer cell lines which chronically resisted to the histone deacetylase (HDAC) inhibitor, apicidin. Moreover, we found Apicidin-R HA22T cells could enhance pro-survival capability and cell metastasis via activating the IGF-IR/PI3K/Akt signaling pathway, and also could activate the IKK $lpha\,\,eta$ /NF- κ B pathway to promote the EMT effect. In this study, we intend to use this model to identify 30 compounds of Danshen (Savia miltiorrhiza) extracts could inhibit chemoresistant effects induced by Apicidin in HA22T cells. Our preliminary result showed 12 compounds of Danshen extracts could suppress the cell viability of Apicidin-R HA22T cells in a dose-dependent manner. The possible mechanism of Danshen extracts to overcome behavior of EMT and metastasis in Apicidin-R HA22T cell will be further identified in the near future.

Result

Table 1. Effect of 30 compounds of Danshen (*Savia miltiorrhiza*) extracts to inhibit cell viability in Apicidin-resistant HA22T Hepatocellular Carcinoma Cells

	Number of Danshen Extract	Molecular Weight	Chemical Formul
Inhibit Cell viability (dose-dependent manner)		
	Dsh-003	269.14	C19H20O3
	Dsh-431	411.18	C27H25NO3
	Dsh-451	316.16	C21H22N20
	Dsh-311	307.17	C20H21NO2
	Dsh-411	388.17	C26H23NO2
	Dsh-452	320.15	C20H20N2O2
	Dsh-412	385.17	C25H23NO3
	Dsh-432	415.18	C26H25NO4
	Dsh-261	377.16	C23H23NO4
	Dsh-271	391.18	C24H25NO4
	Dsh-211	305.14	C20H19NO2
	Dsh-221	319.16	C21H21NO2
Inhibit Cell viability (In High dose)			
	Dsh-111	287.09	C19H12NO2
	Dsh-242	351.18	C22H25NO3
	Dsh-121	301.11	C20H15NO3
	Dsh-421	395.19	C27H25NO2
	Dsh-222	323.15	C20H21NO3
	Dsh-441	434.20	C29H26N2O2
	Dsh-132	359.12	C22H17NO4
	Dsh-124	305.11	C19H15NO3
	Dsh-002	294.13	C19H18O3
	Dsh-112	287.09	C19H12NO2
	Dsh-114	291.09	C18H13NO3
	Dsh-001	276.08	C18H12O3
	Dsh-122	301.11	C20H15N03
No Effect			
	Dsh-232	337.17	C21H23NO3
	Dsh-281	335.15	C21H21NO3
	Dsh-231	333.17	C22H23NO2
	Dsh-321	321.17	C21H23NO2
	Dsh-272	395.17	C22H25NO3

O/CAL UN

Figure 1. The 12 compounds (Dsh-003, Dsh-431, Dsh-451, Dsh-311, Dsh-411, Dsh-452, Dsh-412, Dsh-432, Dsh-261, Dsh-271, Dsh-211, Dsh-221) of Danshen (*Savia miltiorrhiza*) extracts could inhibit chemoresistant effects induced by Apicidin in HA22T Hepatocellular Carcinoma Cells