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tion of ERK1/2-mediated apoptosis. Food Chem
Gastric cancer is one of the most common malignancies worldwide, and the main cause of cancer-related
death in Asia. The present study assessed the anticancer effects of euphol, a triterpene alcohol with anti-
inflammatory and antiviral activities on human gastric cancer cells. Euphol showed higher cytotoxicity
activity against human gastric CS12 cancer cells than against noncancer CSN cells. In addition, it up-
regulated the pro-apoptotic protein BAX and down-regulated the prosurvival protein Bcl-2, causing
mitochondrial dysfunction, possibly by caspase-3 activation. The anti-proliferative effects of euphol were
associated with the increased p27kip1 levels and decreased cyclin B1 levels. Inhibition of ERK1/2
activation by PD98059 reversed euphol-induced pro-apoptotic protein expression and cell death. Taken
together, these findings suggest that euphol selectively induced gastric cancer cells apoptosis by
modulation of ERK signaling, and could thus be of value for cancer therapy.

� 2012 Published by Elsevier Ltd.
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1. Introduction

Gastric cancer is one of the most common malignancies world-
wide, accounting for nearly half of cancer-related mortality (Shah
and Kelsen, 2010). Chemotherapy is the treatment of choice for
gastric cancer, but the currently available therapeutic drugs for
the treatment of gastric cancer have limited efficacy (Zhang
et al., 2006). Combination chemotherapy is often associated with
toxic side effects. Therefore, new agents that selectively target
gastric cancer cells are urgently needed.

Recent studies have shown that the mitogen-activated protein
kinase (MAPK) pathway may modulate cancer cell apoptosis and
proliferation (Kim and Choi, 2010). The MAPK pathway is well-
studied molecular targets for chemotherapeutic drug development,
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and several related clinical trials have been completed in patients
with metastatic and local cancer (Dangle et al., 2009). Extra-cellular
signal-regulated kinase 1/2 (ERK1/2) belongs to one of the sub-
groups of MAPKs and important in a variety of signaling pathways
that regulate multiple cellular processes. ERK1/2 mediates gene and
protein expression changes in response to extracellular stimuli
(Tibbles and Woodgett, 1999). The involvement of ERK1/2 in the
regulation of cell proliferation has been extensively described
(Ballif and Blenis, 2001). However, in some cell models, activation
of ERK1/2 is associated with the induction of apoptosis (Lu et al.,
2009; Wang et al., 2000).

Apoptosis is a form of cell death that can be triggered by several
external or internal signals. The loss of mitochondrial membrane
potential is the hallmark of the intrinsic apoptosis pathway. Mito-
chondria modulate the caspase–apoptosis cascade by regulating
the translocation of cytochrome c from the mitochondrial inner-
membrane space to the cytosol. Pro-apoptotic proteins, such as
Bcl-2-associated X protein (BAX), can directly interact with the
mitochondrial permeability transition pore complex. BAX displaces
this complex from its inhibitory interaction with the pro-survival
protein, B-cell lymphoma 2 (Bcl-2), disrupting the mitochondrial
membrane potential and leading to the permeabilization of the
mitochondrial membrane and the activation of the cytochrome
lli selectively inhibits human gastric cancer cell growth through the induc-
rg/10.1016/j.fct.2012.05.029
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Fig. 1. Chemical structure of euphol.
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c-caspase-dependent apoptosis pathway (Fulda et al., 2010; Tait
and Green, 2010).

The latex of Euphorbia tirucalli (Euphorbiaceae), which is native
to Madagascar, was used in indigenous medicine as a purgative and
a remedy for rheumatism, neuralgia, and toothache in Africa and
Asia (Rasool et al., 1989). In South Taiwan, its branches are boiled
in water and used as one of ingredients of anticancer herbal drinks.
However, the milky latex of this plant is considered to be poisonous
(Lin et al., 2001) and possesses highly vesicant and irritant proper-
ties toward the skin and mucous membranes (Furstenberger and
Hecker, 1977b). Studies have shown that the highly unsaturated
irritant phorbol esters were the main constituents responsible for
the toxicity of the latex (Furstenberger and Hecker, 1977a,b; Khan
et al., 1988; Lin et al., 2001; Yoshida et al., 1991).

Euphol is a euphane-type triterpene alcohol (Fig. 1). It is iso-
lated from the dichloromethane extract of E. tirucalli, and exhibits
a variety of biological activities, such as anti-viral (Akihisa et al.,
2002) and anti-inflammatory activities (Akihisa et al., 1997). In a
recent study, a topical application of euphol was shown to mark-
edly suppress the tumor-promoting effect in 2-stage carcinogene-
sis in mouse skin (Yasukawa et al., 2000). However, the
mechanisms underlying this effect and the potential antitumor
properties of euphol remain to be evaluated.

The results of the present study indicate that euphol has anti-
proliferative effects and selectively induces gastric cancer cell
death in an ERK1/2-dependent manner. Moreover, euphol modu-
lates the expression of cell cycle regulator proteins and promotes
apoptosis by means of the mitochondrial apoptotic pathway.
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2. Materials and methods

2.1. Isolation of euphol

The fresh aerial parts of E. tirucalli (Gildenhuys, 2006; Rasool et al., 1989) were
collected in the Tainan County, Taiwan, in August 2002 and identified by botanist
Dr. Ming-Hong Yen, Kaohsiung Medical University, Kaohsiung, Taiwan. The latex
of the fresh plant was collected drop by drop, and the remaining aerial parts of
the plant (15.0 kg) were extracted with MeOH. The evaporated latex MeOH extract
(5.9 g) was separated by column chromatography on a silica gel (300 g) with a gra-
dient system of n-hexane/CHCl3 (3:1, 2:1, and 1:1, at 800 mL each) and CHCl3

(1000 mL), yielding 20 fractions. Fractions of 7–9 (4.6 g) were combined and further
purified by a silica gel column (200 g) with n-hexane/CHCl3 (3:1, 1500 mL), yielding
euphol (4.2 g) as the major constituent and triterpene.
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2.2. Cell culture

The novel human gastric cancer cell line, KMU-CS12 (CS12) and human gastric
cell line, KMU-CSN (CSN) were established in our previous studies (Yang et al.,
2007, 2009). CSN and CS12 cells were cultured in kerotinocyte-Serum-free medium
(Invitrogen, San Diego, CA, USA) supplemented with 10% fetal bovine serum,
N-acetyl-L-cysteine (360 lg/mL), and L-ascorbic acid 2-phosphate (51.2 lg/mL).
Human gastric adenocarcinoma AGS cells were obtained from the American Type
Culture Collection (ATCC, Rockville, MD, USA), and MKN45 (a poorly differentiated
human gastric adenocarcinoma) cells were obtained from the Health Science
Research Resources Bank (HSRRB, Osaka, Japan). The AGS and MKN45 cells were
grown in RPMI-1640 medium (Invitrogen) containing 10% fetal bovine serum.
Please cite this article in press as: Lin, M.-W., et al. Euphol from Euphorbia tiruca
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2.3. WST-1 cell cytotoxicity assay

The cytotoxicity of euphol was assessed using a WST-1 cell proliferation kit
(Roche. Applied Science, Basel, Switzerland). The cells were seeded for 72 h at a con-
centration of 5 � 104 cells/well in culture medium containing various amounts of
euphol (2, 5, 10, 20, 40, and 60 lg/mL) in 96-well microplates. The reduction of
the tetrazolium salt of the reagent to a formazan product by cellular dehydrogen-
ases was detect by the generation of a yellow-color, which was measured at
440 nm with a microplate ELISA reader.

2.4. Detection of Annexin V-positive apoptotic cells

Apoptotic cells were detected by Annexin V staining (BioVision, Mountain View,
CA, USA) according to the manufacture’s instructions. Briefly, the cells were washed
with phosphate buffered saline (PBS) and resuspended with Annexin binding buffer
(Invitrogen). After treatment with annexin V-FITC (1:500) and propidium iodide
(PI), the cells were incubated for 15 min in the dark. Annexin V-positive apoptotic
cells (compared to unlabeled cells) were then analyzed by a FACScan flow cytome-
ter (Becton Dickinson, Mountain View, CA, USA).

2.5. Detection of mitochondrial transmembrane potential

The CS12 cells were pretreated with PD98059 (13.4 lg/mL) or vehicle (DMSO)
for 30 min and incubated with euphol (20 lg/mL) for 72 h. The cells were washed
with warm PBS and incubated with MitoTraker (Invitrogen) for 30 min at 37 �C in
the dark. The cells were washed with warm PBS again, and the fluorescence inten-
sity was determined by means of a FACScan flow cytometer (Becton Dickinson).

2.6. Caspase-3 activation assay

FITC-DEVD-FMK is cell permeable, nontoxic, and irreversibly binds to activated
caspase-3 in apoptotic cells. Therefore, an anti-fluorescein isothiocyanate (FITC)-
DEVD-FMK antibody was used to further confirm the role of the ERK1/2 MAPK path-
way in the euphol-induced caspase-3 activation by flow cytometry. The CS12 cells
were pretreated with PD98059 (13.4 lg/mL) or vehicle (DMSO) for 30 min and then
incubated with euphol (20 lg/mL) for 72 h. The cells were washed with PBS and
incubated with FITC-DEVD-FMK (BioVision) for 30 min at 37 �C in the dark. The
cells were washed with warm PBS, and the fluorescence intensity was determined
by means of a FACScan flow cytometer (Becton Dickinson) as described before
(Carvalho et al., 2008).

2.7. Western blotting

For ERK1/2 phosphorylation assays, CSN, CS12, AGS and MKN45 cells were trea-
ted with euphol (20 lg/mL) for 4, 24, 48, and 72 h. For apoptotic protein expression
level assays, the CS12 cells were pretreated with PD98059 (13.4 lg/mL) or vehicle
(DMSO) for 30 min and then incubated with euphol (10 or 20 lg/mL) for 72 h. The
cells were lysed using a commercially available lysis buffer, M-PER mammalian pro-
tein extraction reagent (Thermo Scientific, Rockford, IL, USA). Equal protein amounts
were loaded onto 10% SDS–PAGE gels, and the separated proteins were transferred
to PVDF membranes, blocked with 5% nonfat dried milk in PBST buffer, and incu-
bated with anti-phospho-ERK1/2 (Cell Signaling, Beverly, MA, USA), anti-ERK1/2
(Cell Signaling), anti-BAX (StressGen, Victoria, BC, Canada), anti-Bcl-2 (Stressgen),
anti-b-actin (Sigma–Aldrich, St. Louis, MO, USA), anti-p27 (Cell Signaling), or anti-
cyclin B1 (Enzo Life Sciences, Farmingdale, NY, USA) primary antibody overnight.
After probing with a horseradish peroxidase-conjugated secondary-antibody (GE
Healthcare, Piscataway, NJ, USA) and thoroughly washing the membranes, the
immunolabeled proteins were detected using an enhanced chemiluminescence kit
(GE Healthcare), followed by exposure to an X-ray film.

2.8. Statistical analyses

The results were expressed as means ± SD. Statistical comparisons were per-
formed with the Student t-test. The statistical significance was set at P < 0.05.

3. Results

3.1. Inhibition of gastric cancer CS12 cell proliferation by euphol

The antiproliferative effects of various concentrations of euphol
(2, 5, 10, 20, 40 and 60 lg/mL) on CSN, CS12, AGS and MKN45 cells
are shown in Fig. 2. The results of the WST-1 assay demonstrated
that euphol inhibited the growth of CS12 cells and that of the com-
mercially available AGS and MKN45 cell lines in a dose-dependent
manner. To examine whether the growth inhibitory effect of euphol
was mediated by apoptosis induction, the gastric cancer and
lli selectively inhibits human gastric cancer cell growth through the induc-
rg/10.1016/j.fct.2012.05.029
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Fig. 2. Inhibitory effect of euphol on gastric cancer cell growth. The results of the WST-1 assays showing that euphol inhibited (A) CSN, (B) CS12, (C) AGS, and (D) MKN45
proliferation in a dose-dependent manner after 72 h of exposure to the drug. (E) The CSN, CS12, AGS, and MKN45 cells were treated with euphol (20 lg/mL) for 48 h. Euphol
selectively induced apoptosis in 3 gastric cancer cells (CS12, AGS, and MKN45). The bars represent the mean ± SD of the 3 independent experiments (⁄P < 0.01, compared with
the CSN cells).
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normal cells were treated with euphol (20 lg/mL) and exposed to
annexin V/PI staining.. As shown in Fig. 2E, the rate of apoptosis
was greater in the euphol-treated gastric cancer cells than in the
normal cells (P < 0.01). The euphol treatment significantly induced
cell death in the gastric cancer CS12, AGS, and MKN45 cell lines
but not in the CSN cells. The IC50 values for euphol in CSN, CS12,
AGS and MKN45 cells were 49.6, 12.8, 14.7 and 14.4 (lg/mL),
respectively.

3.2. Euphol induction of ERK1/2 phosphorylation in CS12 cells

The ERK1/2 MAPK pathway regulates many cellular activities,
especially cell proliferation and apoptosis (Ballif and Blenis,
2001; Wang et al., 2000). To examine the role of ERK1/2 MAPK sig-
naling in the apoptosis of gastric cancer cells induced by euphol,
the CS12, AGS, MKN45 and CSN cells were treated with 20 lg/mL
of euphol at various time points. As shown in Fig. 3B, the euphol
treatment induced ERK1/2 activation in a time-dependent manner
in the CS12 cells. Similar results were obtained in the AGS and
MKN45 gastric cancer cell lines (Fig. 3C and D). In addition, the
accumulation of phosphorylated ERK1/2 was significantly in-
creased after 72 h in the euphol-treated gastric cancer cell lines,
whereas no significant activation of ERK1/2 was observed in the
CSN cells (Fig. 3A) under the same treatment conditions. To con-
firm the involvement of ERK1/2 in the euphol-induced growth
inhibition, the CS12 cells were treated with the ERK1/2 inhibitor
PD98059. As shown in Fig. 3E and F, PD98059 had a mild inhibitory
effect on the euphol-induced apoptosis in this cell line, suggesting
that the ERK1/2 MAPK pathway may participate play a role in eup-
hol-induced CS12 apoptotic cell death.

3.3. Role of ERK1/2 in the euphol-induced mitochondrial-dependent
apoptosis pathway

The role of ERK1/2 in the euphol-induced apoptosis pathway
and the expression profiles of pro-apoptotic and prosurvival pro-
teins in the euphol-treated CS12 cells were examined by Western
Please cite this article in press as: Lin, M.-W., et al. Euphol from Euphorbia tiruca
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blotting to measure the BAX and Bcl-2 protein expression levels.
The treatment of the cells with euphol for 72 h markedly upregu-
lated the BAX expression and downregulated Bcl-2 protein expres-
sion in a dose-dependent manner, and PD98059 reversed the
effects of euphol on the expression of the apoptosis-related protein
(Fig. 4A and B). The translocation of the pro-apoptotic protein BAX
to mitochondria may result in the loss of mitochondrial membrane
potential, and the induction of the caspase-mediated apoptosis
pathway (Fulda et al., 2010). As shown in Fig. 4C, a shift in the eup-
hol-treated cells toward the left compared with the vehicle-treated
controls indicated that euphol (20 lg/mL) disrupted the mitochon-
drial membrane potential, as assessed by flow cytometry. In con-
trast, the pretreatment with PD98059 (13.4 lg/mL) resulted in a
right shift of the MitoTracker fluorescent curves for the euphol-
treated CS12 cells, indicating that the euphol-induced mitochon-
drial dysfunction was ERK1/2-dependent. Fig. 4D shows a shift of
the euphol-induced FITC fluorescence to the right, which was
inhibited by PD98059, suggesting that euphol-induced apoptosis
in gastric cancer CS12 cells may be mediated by ERK1/2 regulation
of the mitochondrial apoptotic pathway.

3.4. ERK1/2 contributes to the antiproliferative effect of euphol

To examine the mechanisms underlying the antiproliferative ef-
fects of euphol in gastric cancer CS12 cells, the expressions of
p27kip1 and cyclin B1 were assessed by Western blotting. As shown
in Fig. 5, euphol altered the expression of these cell cycle regula-
tory proteins by inducing p27kip1 expression and inhibiting cyclin
B1 expression. Furthermore, pretreatment with PD98059 markedly
abolished the upregulation of p27kip1 and downregulation of cyclin
B1 in response to the euphol treatment.

4. Discussion

The present results demonstrate that euphol has antiprolifera-
tive activity against CS12 gastric cancer cells and its mechanism
of action involves the alteration of the expression of cell cycle
lli selectively inhibits human gastric cancer cell growth through the induc-
rg/10.1016/j.fct.2012.05.029
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Fig. 3. Euphol-induced sustained ERK1/2 phosphorylation in gastric cancer cells. (A–D) The Western blot analyses of ERK1/2 phosphorylation. ERK1/2 level was used as
internal control for phospho-ERK1/2. The euphol-induced ERK1/2 phosphorylation in the CS12, AGS, and MKN45 gastric cancer cells in a time-dependent manner. The
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regulatory proteins and the induction of apoptosis. The pretreat-
ment with the ERK1/2 inhibitor PD98059 suppressed euphol-
induced apoptosis, suggesting that the effect of euphol is participat-
ing mediated by an ERK1/2-associated pathway. Although ERK1/2
activation is generally related to cell proliferation and survival (Bal-
lif and Blenis, 2001), increasing evidence indicates that ERK1/2 also
transmits death signals. Its role in the promotion of apoptosis
induced by anticancer drugs has been reported. The sustained
activation of ERK1/2 for a period of 1–72 h has been reported to pro-
mote cell death in different cell types (Cagnol and Chambard, 2010).
Long-term activation of the ERK1/2 pathway has been detected in
association with cisplatin-, apiginin-, gemcitabine-, and adriamy-
cin-induced apoptosis in HeLa, prostate, and pancreatic cancer cells
(Wang et al., 2000; Zhao et al., 2006). Prolonged ERK1/2 activation
has been associated with cell growth arrest and cell death (Martin
et al., 2006; Martin and Pognonec, 2010; Tong et al., 2011). Previous
studies have shown that the activities of platinum-based chemo-
therapeutic drugs are ERK1/2 dependent (Sheridan et al., 2010;
Wang et al., 2000). However, the sustained ERK1/2 activation
resulting in cell death remains poorly understood. Lu et al. (2009)
demonstrated that ERK1/2 mediated the ubiquitination of the
proto-oncogene MDM2, induced by the medical plant hispolon,
indicating that it could be useful for the treatment of tumors with
constitutive ERK1/2 activation. In the present study, enhanced
ERK1/2 activation was observed in gastric CS12, AGS, and MKN45
Please cite this article in press as: Lin, M.-W., et al. Euphol from Euphorbia tiruca
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cancer cells, but not in gastric CSN nontumorigenic cells, 72 h after
the addition of 20-lg/mL euphol. The sustained activation of the
ERK1/2 pathway in gastric cancer cells may play a significant role
in the induction of apoptosis and growth arrest by euphol. ERK1/2
activation is tightly regulated in normal cells by ERK-specific phos-
phatases that ensure cellular homeostasis (Murphy and Blenis,
2006). However, the sustained activation of ERK1/2 triggers the
production of ROS, which further inhibit ERK-specific phosphatases
(Levinthal and Defranco, 2005). The dysregulation of ERK1/2 activa-
tion thus induces the progressive accumulation of death-promoting
factors and cell death by apoptosis or necrosis.

Euphol is a cholesterol-like compound and therefore may pos-
sess toxic properties through its interaction with the plasma mem-
brane and replacement of cholesterol. These effects should be
investigated in future studies. Cholesterol is a key molecule in
the cell membrane and is the main component of specialized lipid
microdomains called lipid rafts, which are involved in the regula-
tion of phosphorylation cascades (George and Wu, 2012). Deple-
tion of cholesterol from the cell membrane alters signal
transduction cascades and induces cancer cell death (Bionda
et al., 2008). Cholesterol was reported to accumulate in a variety
of tumor types (Freeman and Solomon, 2004), and high cholesterol
levels in the cell membrane induced tumor cell proliferation
through the lipid raft-AKT pathway (Zhuang et al., 2005). In addi-
tion, elevated levels of membrane cholesterol in cancer cells were
lli selectively inhibits human gastric cancer cell growth through the induc-
rg/10.1016/j.fct.2012.05.029
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correlated with apoptosis sensitivity induced by methyl-b-cyclo-
dextrin, a cholesterol-depleting agent (Li et al., 2006). These find-
ings suggest that differences in the potency of euphol between
cancer and noncancer cells may be related to the membrane cho-
lesterol content, lipid raft-related signal transduction and phos-
phatase regulation.

Euphol induced apoptosis in CS12 cells, as evidenced by annex-
in V-binding assays, flow cytometric detection, and Western blot-
ting. Because gastric cancer cells show higher phosphatidylserine
levels in the outer leaflet of the plasma membrane (Woehlecke
et al., 2003), inhibition of ERK1/2 only slightly reduced annexing
V binding in our results. However, the pretreatment with
PD98059 markedly inhibited the downregulation of Bcl-2 in re-
sponse to the euphol treatment, indicating that the ERK1/2 path-
way may be involved in the antiproliferative effect of euphol.
Moreover, euphol-induced apoptosis was associated with the
upregulation of BAX, loss of mitochondrial membrane potential,
and increased caspase-3 activity. BAX plays a critical role in the
breakdown of the mitochondrial potential by translocating to the
mitochondria in response to death stimuli (Tait and Green,
2010). The loss of mitochondrial membrane potential is associated
with mitochondrial dysfunction, which is linked to apoptosis
(Green and Reed, 1998). Therefore, euphol may play a critical role
in the induction of apoptosis by altering the BAX/Bcl-2 ratio and
activating caspase signaling, resulting in apoptotic cell death. Tong
et al. (2011) demonstrated that the sustained activity of the ERK1/2
pathway modulates apoptosis by regulating the BAX/Bcl-2 ratio
and caspase activation. Euphol-induced gastric cancer cell apopto-
sis may be mediated by a similar pathway leading to the activation
of the caspase cascade.

In the present study, the inhibition of gastric cancer cell prolif-
eration by euphol was found to be mediated by ERK1/2-dependent
p27kip1 upregulation and cyclin B1 inhibition. These results were in
agreement with those of previous studies on gastric, breast, and
colon cancers (Guo et al., 2011; Lin et al., 2010; Ollinger et al.,
2007; Park et al., 2011). Icaritin, a prenyl-flavonoid derivative from
the genus Epimedium, induced sustained ERK1/2 phosphorylation
Please cite this article in press as: Lin, M.-W., et al. Euphol from Euphorbia tiruca
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and the subsequent downregulation of Bcl-2 and cyclin B1 protein
expressions in MDA-MB-453 and MCF7 breast cancer cells. It is
interesting that an inhibitor of ERK1/2 activity abrogated icaritin-
induced G2/M cell cycle arrest and cell apoptosis (Guo et al.,
2011). Cannabinoids were reported to reduce cancer cell prolifera-
tion by activating ERK1/2 signaling, inhibiting the survival AKT
pathway and inducing p27kip1 expression, leading to gastric cancer
cell cycle arrest (Park et al., 2011). P27kip1, an important cell cycle
regulatory protein and tumor suppressor, has been implicated in a
variety of cellular processes, including the induction of cell cycle
arrest and apoptosis (Said et al., 2001). Most important is that
p27kip1 has been reported to promote apoptosis in gastric cancer
(Zheng et al., 2005), and low p27kip1 levels may promote carcino-
genesis associated with the Helicobacter pylori infection (Eguchi
et al., 2004).

The cyclin B1 protein level has been shown to be a critical factor
affecting survival, and cyclin B1 overexpression is correlated with
the aggressiveness and metastatic potential of gastric cancer. Cy-
clin B1 overexpression was found in approximately 49% of gastric
carcinomas (Begnami et al., 2010). Knockdown of cyclin B1 was
shown to inhibit cancer cell proliferation in vitro and in vivo (And-
roic et al., 2008). A recent study provided evidence that the growth
inhibitory and apoptosis induction effects of betulinic acid are
mediated by targeting cyclin B1 protein downregulation in human
gastric AGS cancer cells (Yang et al., 2010). Furthermore, null or
low expression of p27kip1 in tumor cells in diffuse large B-cell lym-
phomas was reported to be strongly associated with increased
expression of cyclin B1 (Bai et al., 2001). Knockdown of the tumor
suppressor FHL1 in lung cancer cells also suppressed p27kip1

expression and elevated the expression of cyclin B1 simultaneously
(Niu et al., 2011). In contrast, overexpression of cyclin B1 and
downregulation of p27kip1 protein were suggested to result in tu-
mor progression and development (Begnami et al., 2010; Kim,
2007).

Our results suggest that euphol may inhibit cancer cell growth
and tumor development by inhibition of cyclin B1 expression and
elevation of p27kip1 protein levels.
lli selectively inhibits human gastric cancer cell growth through the induc-
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Fig. 5. Role of ERK1/2 in the expressions of the cell cycle regulatory proteins in the
euphol-treated cells. (A) PD98058 suppressed euphol-induced p27kip1 protein
expression but elevated cyclin B1 expression. Beta-actin was used as an internal
control. (B) Quantification of the cyclin B1 protein expression from the Western blot
analyses. Euphol inhibited cyclin B1 expression in a dose-dependent manner, and
PD98059 reversed this effect in the euphol-treated cells. (C) Quantification of
p27kip1 protein expression from the Western blot analyses. Euphol increased the
p27kip1 expression in a dose-dependent manner, and PD98059 reversed this effect
in the euphol-treated cells. Each bar is the mean ± SD of the 3 independent
experiments (⁄⁄P < 0.01, compared with the control group).
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5. Conclusions

The present study demonstrated that euphol has antiprolifera-
tive effects and selectively promotes apoptosis in human gastric
cancer cells. The mechanism underlying the effect of euphol in-
volves mitochondrial-dependent caspase-3 activation and growth
arrest through induction of p27kip1 and inhibition of cyclin B1 in
human gastric CS12 cancer cells. ERK1/2 participated in the eup-
hol-induced apoptosis and growth inhibition. This study provides
a mechanistic insight and supports the premise that euphol is a
potentially promising agent for development as chemotherapy
against gastric cancer in humans. The specificity of euphol in tar-
geting cancer cells may lead to the reduction of toxic side effects
in cancer patients.
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