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Abstract
A class-imbalanced classifier is a decision rule to predict the class membership of new samples from an available data
set where the class sizes differ considerably. When the class sizes are very different, most standard classification
algorithms may favor the larger (majority) class resulting in poor accuracy in the minority class prediction.
A class-imbalanced classifier typically modifies a standard classifier by a correction strategy or by incorporating a
new strategy in the training phase to account for differential class sizes. This article reviews and evaluates some
most important methods for class prediction of high-dimensional imbalanced data.The evaluation addresses the fun-
damental issues of the class-imbalanced classification problem: imbalance ratio, small disjuncts and overlap complex-
ity, lack of data and feature selection. Four class-imbalanced classifiers are considered. The four classifiers include
three standard classification algorithms each coupled with an ensemble correction strategy and one support
vector machines (SVM)-based correction classifier. The three algorithms are (i) diagonal linear discriminant analysis
(DLDA), (ii) random forests (RFs) and (ii) SVMs. The SVM-based correction classifier is SVM threshold adjustment
(SVM-THR). A Monte ^Carlo simulation and five genomic data sets were used to illustrate the analysis and address
the issues. The SVM-ensemble classifier appears to perform the best when the class imbalance is not too severe.
The SVM-THR performs well if the imbalance is severe and predictors are highly correlated. The DLDAwith a fea-
ture selection can perform well without using the ensemble correction.

Keywords: class-imbalanced prediction; feature selection; lack of data; performance metrics; threshold adjustment;
under-sampling ensemble

INTRODUCTION
Recent advancements in high-throughput technol-

ogy have accelerated interest in the development of

class prediction model (classifiers) for safety assess-

ment, disease diagnostics and prognostics and predic-

tion of response for patient assignment in clinical

studies [1–5]. Although many classification algo-

rithms and their applications have been published,

classification of imbalanced class size data, where

one class is under-represented relative to another,

remains among the leading challenges in the devel-

opment of prediction models.

Classification of the imbalanced data sets arises in

many practical biomedical applications. For example,

in clinical diagnostic tests of rare diseases or

pre-clinical drug-induced adverse toxicity, positive

outcomes are rare compared to negative outcomes.

Other examples include using gene-expression sig-

natures to distinguish primary from rare metastatic

adenocarcinomas [6], prediction of early intrahepatic

recurrence of patients with hepatocellular carcinoma

[7] and identification of different subtypes of cancer

[8]. For these applications, the interest is to correctly

identify the samples with outcomes of interest or
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classify the patients into appropriate subgroups as

accurately as possible for better intervention.

Most of the current standard classification algo-

rithms are designed to maximize the overall number

of correct predictions. This criterion is based on an

assumption of an equal cost of misclassifications in

each class. When the class sizes differ considerably,

most standard classifiers would favor the larger class.

In general, the majority class will have a high accuracy

in prediction (sensitivity if the positive class is the

majority and specificity if the negative class is the

majority) and the minority class will have a low accur-

acy. The procedures are not useful for the above appli-

cations. A main challenge in the class-imbalanced

classification is to develop a classifier that can provide

good accuracy for the minority class prediction [9–17].

Class-imbalanced prediction of high-dimensional

data presents an additional challenge. High-

throughput genomic, proteomic and metabolomic

data are characterized by a large number of predictors

(variables) with a relatively small number of samples.

In most studies, the majority of predictors are irrele-

vant to the class membership. Selection of a subset of

relevant predictors (feature selection) to enhance

predictive performance has become an integral part

in the development of classifiers [18].

The poor performance of standard classifiers in

minority class prediction can be attributed to these

factors: (i) the imbalance ratio, the ratio of the mi-

nority class size to the majority class size, (ii) the level

of data complexity, the separableness of minority and

majority class distributions and (ii) the lack of training

data. The first factor reflects the extent of the imbal-

ance between the majority class and minority class

sizes. A small imbalance ratio implies more difficulty

of the classification problem. The second factor is the

characteristics of imbalanced data, including small

disjuncts (subclusters in the minority class), ambigu-

ous boundary between classes, overlapping of two

classes in feature spaces, dimensionality of data and

noisy data. These issues will be addressed in terms of

the underlying minority class and majority class dis-

tributions. The third factor of the lack of training

data influences the first two factors. When the train-

ing data size is small, there is a lack of minority class

data. The boundary space of the minority class is

likely to be underestimated and results in poor per-

formance on the minority class prediction.

Figure 1 demonstrates how the data complexity

and lack of data affect the performance of a standard

linear classifier. The true boundaries are displayed

with dashed lines, and the learned boundaries are dis-

played with solid lines. The solid points represent the

data points in the majority class, and the open points

represent the data points in the minority class. In the

left figure, two class distributions are well separated.

The standard classifier would produce good discrim-

ination, regardless of the imbalance ratio and lack of

data. In the middle figure, the two classes are over-

lapped; the boundary between two classes is ambigu-

ous. The two circles in the overlapped region contain

small numbers of the minority class data surrounded

by a large number of majority class data. The bound-

ary of the minority class is likely to be underestimated

resulting in poor performance of the prediction. In

the right figure, when there is a large number of

data, both majority class and minority class data in

the overlapped region can be misclassified.

Recently, Blagus and Lusa [19] investigated the

joint effect of high dimensionality and class imbal-

ance focusing on the effect of variable selection and

effectiveness of some correction strategies. They

evaluated performance of six classification algorithms

with three data-based correction approaches (over-

and under-sampling and under-sampling ensemble)

and an algorithm-based threshold approach for logis-

tic regression modeling and random forests (RFs).

Their analyses provided some useful insights, such

as matching the prevalence of the classes in training

and test set did not guarantee good performance of

classifiers; the problems were exacerbated when deal-

ing with high-dimensional data. However, their

Figure 1: Effects of data complexity and lack of data on classification problem.
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analyses and interpretations are incomplete. For ex-

ample, they did not take the correlation structure

among genes into consideration in their simulation

studies and completely omitted investigating the

effect of lack of data, which is a main factor that

contributes to the poor performance of standard clas-

sification algorithms. Furthermore, their presentation

did not put sufficient emphasis on increasing the ac-

curacy of minority class prediction.

In this study, we review and discuss some most

important useful methods and fundamental issues for

classifying high-dimensional imbalanced class data.

First, we review two general strategies for correction

of imbalanced data classification and use them with

the three classification algorithms—the diagonal

linear discriminant analysis (DLDA) [20], RF [21],

support vector machines (SVMs) [22, 23]—to

develop class-imbalanced classifiers. Four class-

imbalanced classifiers are considered, including

three standard classification algorithms each coupled

with an ensemble correction strategy and one

SVM-based correction classifier. Second, we describe

some commonly proposed metrics for performance

evaluation of class-imbalanced classifiers. Third, we

present a simulation study to address the three issues

in the class-imbalanced classification problem: imbal-

ance ratio, level of data complexity and lack of data.

Fourth, we present an analysis of class-imbalanced

classification for five public data sets. Finally, we

summarize the important issues in class-imbalanced

classification and recommend algorithms and correc-

tion strategies for dealing with classification of

high-dimensional imbalanced data.

CLASS-IMBALANCED CLASSIFIER
A class-imbalanced classifier is a decision rule on the

basis of a training data set where the class sizes differ

considerably. The performance of a class-imbalanced

classifier depends on the classification algorithm and

the strategy for correction of class imbalance as well

as the measures of performance (given below). A

class-imbalanced classifier typically either modifies

a standard classifier by a correction strategy or

incorporates a strategy in the training phase to ac-

count for differential class sizes. Standard classifiers,

such as the decision tree classification C4.5 or C5.0

[14–16], neural networks [24], k-nearest neighbor

[25, 26], and support vector machines [27–33],

were evaluated and modified for imbalanced classifi-

cation. Many correction strategies have been

proposed to improve standard classifiers; these strate-

gies generally can be categorized into the data-based

and the algorithm-based approaches described

below.

Data-based approach
The data-based approach, also known as the sam-

pling approach, uses a sampling technique to account

for class imbalance without modifying a classification

algorithm. This is the most common practice in

dealing with class-imbalanced data by either

under-sampling the majority class or over-sampling

the minority class [12]. Chawla et al. [34, 35] pro-

posed a technique to generate new synthetic minor-

ity class members by interpolating between several

positive examples that lied close together; this

method is known as SMOTE (synthetic minority

over-sampling technique). Chen et al. [36] general-

ized a single sampling approach to two ensemble

classifiers, multiple over-sampling and multiple

under-sampling ensembles, by generating different

bootstrap samples of equal class size in the training

set to build ensemble classifiers. Their analysis

showed that the under-sampling ensemble method

performed more consistent than the over-sampling

ensemble method. Recently, using simulation stu-

dies, Blagus and Lusa [19] showed that the multiple

under-sampling (down-sizing) method was effective

if class imbalance was not too severe. The data-based

approach can be applied to any classification

algorithm.

Algorithm-based approach
This approach modifies the standard classification

algorithm to account for class imbalance. Standard

classification algorithms generally use a default deci-

sion threshold to assign class membership (for ex-

ample, the probability of 0.5 is used to assign

positive and negative class in the logistic regression

prediction) for maximizing the classification accur-

acy, based on an assumption of an equal cost of mis-

classifications. An algorithm-based approach such as

an adjusting decision threshold is a simple modifica-

tion of the standard algorithm by changing the de-

cision threshold (boundary) in assigning class

memberships to account for differential misclassifica-

tion costs and/or prior probabilities [10, 11, 13]. This

approach is also referred to as a cost-sensitive learn-

ing. Chen etal. [37] considered the decision threshold

adjustment approach for four classification algo-

rithms, including classification tree, logistic regression
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model, Fisher’s linear discriminant and a modified

nearest neighbor. Their simulation analysis showed

that a change of decision threshold can increase the

sensitivity and decrease specificity, or vice versa,

but the accuracy remains more or less constant.

Alternatively, the one-class learning approach,

where the classifier learns only on one class to deter-

mine the decision boundary, can also be regarded as

an algorithm-based approach [38, 39]. Raskutti and

Kowalczk [27] demonstrated that a SVM learned

only from one class performed well for extremely

imbalanced data sets. Another algorithm-based ap-

proach is the ‘meta imbalanced classification ensem-

ble (MICE)’ algorithm, which partitions the majority

group and integrates the subclassifiers trained with

the partitions and the minority group to deal with

the class imbalance issue [40]. One drawback of the

algorithm-based approach is that it requires

algorithm-specific modification.

Although much research has been conducted, few

works provided systematic evaluation on the effects

of high dimensionality on the performance of

class-imbalanced classifiers. We consider the three

algorithms with their associated feature selection

methods, DLDA with between–within variance

ratio [20], RFs with mean decrease in accuracy

[21], SVMs with recursive feature elimination

[22, 23], coupled with an under-sampling ensemble

correction strategy. A brief description of the three

classifiers and feature selections are given in

Supplementary Data. These three algorithms have

been widely used and shown to perform well in

class prediction of the high-dimensional data [18].

Each algorithm also represents unique characteristics

for classifying high-dimensional imbalanced data.

Only the under-sampling ensemble approach is con-

sidered because the other sampling techniques do not

perform as well [19, 36]. The ensemble approach in

this study generated 101 base classifiers using differ-

ent bootstrap samples of equal class size; each boot-

strap sample set consisted of the entire minority

group samples and a set of random samples of

equal size generated from the majority group. The

majority voting was then used for assignment of new

samples.

There have been many recent works proposed to

improve the performance of SVM algorithms for

class-imbalanced classification [27–33]. However,

most of the SVM-based correction strategies still

rely on sampling techniques. Some approaches

were also used with an ensemble approach. In this

study, a simple SVM-based correction classifier is

presented: SVM threshold adjustment (SVM-THR).

SVM-THR
Let f(x) be the decision function of SVM for a given

sample x. A new sample x will be assigned to the

positive class (minority class) if f(x)� 0 and the nega-

tive class (majority class) if f(x) < 0. However, for

classifying imbalanced data, using the default decision

threshold will lead to high accuracy in predicting the

majority class and low accuracy in predicting the

minority class [28–33]. Chen et al. [37] showed that

a change of decision threshold can increase the ac-

curacy in predicting the minority class. Based on this

concept, we propose a simple approach by adjusting

the decision threshold as

y ¼ �1þ 2
nþ þ a

nþ þ n� þ 2a
¼

nþ � n�
nþ þ n� þ 2a

where nþ and n� are the class sizes of minority class

and majority class, respectively, and a is a constant to

modify the magnitude of the adjustment. In addition

to the misclassification costs and/or prior probabil-

ities, the constant a can be specified based on prior

analyses such as the performance of the standard

SVM, cross-validation, or ROC analysis. In this

study, the constant a is simply set to be 1. Since

the class size of minority class is smaller than the

size of majority class, the adjusted threshold y is

negative. The new threshold will force the classifi-

cation rule to pay more attention on the minority

class. Note that when the class sizes of two classes

are equal, the adjusted threshold y is equal to the

default 0.

METRICS FORCLASS-
IMBALANCED CLASSIFIERS
Many metrics have been used for assessment of the

performance of classifiers. All of them are based on

the four simple measures: the number of true posi-

tives (TP), the number of false positives (FP), the

number of true negatives (TN) and the number of

false negatives (FN). Four commonly used perform-

ance metrics are sensitivity, specificity, precision

(positive predictive value) and overall accuracy.

The sensitivity is SN¼TP/(TPþ FN), specificity is

SP¼TN/(TNþ FP), precision is PV¼TP/(TP

þFP) and the accuracy is ACC¼ (TPþTN)/

(TPþ FPþTNþ FN). The accuracy can be ex-

pressed as rSNþ (1�r)SP, where r is the

page 4 of 14 Lin and Chen
 by guest on M

arch 12, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

http://bib.oxfordjournals.org/cgi/content/full/bbs006/DC1
http://bib.oxfordjournals.org/cgi/content/full/bbs006/DC1
http://bib.oxfordjournals.org/


proportion of positive samples. Accuracy is the most

commonly used single metric for performance evalu-

ation; however, it is not an appropriate metric when

the class sizes differ considerably. Two alternative

metrics, G-mean (geometric mean) and F-measure,

have been used for performance assessment of

class-imbalanced classifiers, where G-mean¼

(SN� SP)1/2 and F-measure¼ (1þb2)� SN� PV/

(b2
� PVþ SN). G-mean is a measure of the ability

of a classifier to balance sensitivity and specificity. For

a fixed total (SNþ SP), G-mean has the maximum

when sensitivity and specificity are equal. F-measure

is the weighted harmonic mean of the sensitivity and

precision. The coefficient b represents the relative

preference of sensitivity against precision. The sensi-

tivity is preferred if b> 1, while the precision is pre-

ferred if b< 1. If b¼ 1, the sensitivity and precision

are equally important. The b is set as the ratio of the

majority class size to the minority class size to em-

phasize the sensitivity. In evaluation of classifiers, the

high values of SN and SP are desirable, but typically

there is a tradeoff between the two. These metrics

are computed to evaluate performance of the stand-

ard and imbalanced data classifiers for imbalanced

class data. We only report the four metrics, SN,

SP, ACC and G-mean, in the text, and results for

the F-measure are reported in the Supplementary

Tables.

SIMULATION EXPERIMENTS
Four simulation experiments were conducted to

investigate the effects of class imbalance on the per-

formance of four class-imbalanced classifiers. The

three factors that affect the performance of classifiers

were investigated: imbalance ratio, distributions of

minority and majority class data, and sample size.

The imbalance ratio is the ratio of the minority

class size to the majority class size. The performance

of class-imbalanced classifiers typically decreases as

the ratio decreases. The factors for the distributions

of minority and majority class data considered in-

volve mean differences between two classes, the vari-

ance–covariance structure and the number of

variables (dimensions). Intuitively, large mean differ-

ences would likely lead to a well separation of the

two classes; thus, the standard classifiers can work

well. In contrary, a large standard deviation (vari-

ance) would likely have a (large) overlapping area

between two classes, resulting in poor performance.

A correlation matrix of a real data set was used to

generate the correlated model versus independent

model in the investigation. The effects of dimension-

ality were investigated, and subsets of variables were

selected to compare with all variables. Finally, the

sample size of the training data set is expanded to

explore its effect on the performance of class-

imbalanced classification.

The simulation design was based on the public

colon data set, which contained 2000 genes [41].

One hundred genes were randomly selected as

marker genes. The means for the majority class

were 0 for all 2000 genes, and the means for the

minority class were 0 for non-marker genes and 1

for the marker genes. The data were generated from

a 2000-dimensional multivariate normal distribution

with the correlation matrix based on the correlation

matrix r of the colon data set. Let V(S,R) denote the

structure for the correlation matrix of the simulated

data, where S and R represent, respectively, the

standard deviation and (off-diagonal) correlation

matrix among the 2000 genes. The standard devi-

ation S is 1 or 2 and the correlation matrix R is

either 0 or the correlation matrix of colon data r.
For example, V(2,0) denote the standard deviation 2

and correlation 0 for all 2000 genes. The simulation

was repeated 1000 times. The results were averaged

over these 1000 repetitions.

The first experiment was to investigate the effects

of the imbalance ratio on the performance of classi-

fiers. We compared the independent model and cor-

related model with standard deviation of 1. The total

number of training samples was 80 with the imbal-

ance ratios of 1/15, 1/7, 1/3 and 1/1, and additional

80 samples were generated as test data. The effect of

the feature selection was evaluated by selecting 50

top-ranked genes (see Supplementary Data) and

comparing with 2000 genes without a feature

selection.

Table 1 shows empirical estimates of the sensitiv-

ity, specificity and accuracy as well as G-mean for the

three standard classifiers, DLDA, RF and SVM, and

their ensemble classifiers. The results with the

F-measure are given in Supplementary Table S1.

As previously discussed, when the positive class size

is much smaller than the negative class size, the sen-

sitivity is low and the specificity is high, which results

in high overall predictive accuracy. The estimates of

the G-mean are high only when both sensitivity and

specificity are high. Thus, the G-mean is a more

appropriate measure of performance than the accur-

acy in imbalanced classification. Comparing the
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estimates with and without a feature selection, fea-

ture selection did improve the performance of

DLDA substantially. SVM and RF only showed

little improvement since the SVM and RF algo-

rithms implicitly performed variable selection in the

development of the prediction model; however, the

many selected variables were not useful for improve-

ment because of imbalanced class sizes. With regard

to the standard versus ensemble classifiers, all three

algorithms showed considerable improvement by

using the ensemble methods when the genes were

independent. When the genes were correlated, the

effect of class imbalance on performance was less

pronounced, and the sensitivity and specificity were

more balanced, especially for DLDA and SVM. In

other words, the ensemble approach for the three

classifiers improved less when the genes were corre-

lated. Besides, both DLDA and RF performed less

well in the presence of correlation. The minimum

estimate of G-mean was 0.96 for both DLDA- and

RF-ensemble classifiers when the genes were inde-

pendent, but the maximum estimates were 0.77 and

0.89, respectively, when the genes were correlated.

Table 2 shows the performance of the SVM

algorithm-based correction classifier, SVM-THR.

The results with F-measure are given in

Supplementary Table S2. SVM-THR performed

reasonably well. An adjustment of decision threshold

to favor minority class prediction made a tradeoff

between the specificity and sensitivity which led to

slightly lower specificities and much higher sensitiv-

ities (Table 1). SVM-THR performed very well

under the correlated model with the imbalance

ratio of 1/15. The estimate of G-mean for

SVM-THR was 0.91 which was higher than the

best estimate 0.79 among all ensemble classifiers

(Table 1). The feature selection generally improved

the performance of SVM-THR except that the im-

balance ratio was 1/7 and 1/3 under the correlated

model.

Table 1: Performance of the standard and ensemble classifiers for DLDA, RF and SVM classification algorithms
based on 1000 repetitions

Independent model: V(1,0) Correlated modela: V(1,r)

Standard Ensemble Standard Ensemble

Classifier Ratiob mg
c SN SP ACC G-mean SN SP ACC G-mean SN SP ACC G-mean SN SP ACC G-mean

DLDA 1/15 All 0.00 1.00 0.94 0.00 0.97 0.97 0.97 0.97 0.38 0.75 0.73 0.49 0.57 0.57 0.57 0.54
50 0.44 1.00 0.97 0.62 0.97 0.97 0.97 0.96 0.56 0.85 0.83 0.66 0.67 0.69 0.69 0.66

1/7 All 0.03 1.00 0.88 0.08 1.00 1.00 1.00 1.00 0.47 0.71 0.68 0.57 0.59 0.60 0.60 0.58
50 0.98 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.69 0.81 0.80 0.74 0.76 0.77 0.77 0.76

1/3 All 0.86 1.00 0.96 0.92 1.00 1.00 1.00 1.00 0.57 0.68 0.66 0.62 0.63 0.63 0.63 0.62
50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.74 0.78 0.77 0.76 0.77 0.77 0.77 0.77

1/1 All 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.65 0.65 0.65 0.64 0.65 0.65 0.65 0.64
50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.77 0.77 0.77 0.76 0.77 0.77 0.77 0.76

RF 1/15 All 0.00 1.00 0.94 0.00 0.97 0.96 0.96 0.96 0.01 1.00 0.94 0.02 0.61 0.62 0.62 0.59
50 0.00 1.00 0.94 0.00 0.96 0.96 0.96 0.96 0.12 0.99 0.94 0.22 0.67 0.69 0.69 0.66

1/7 All 0.00 1.00 0.88 0.00 1.00 1.00 1.00 1.00 0.05 0.99 0.88 0.13 0.72 0.74 0.74 0.72
50 0.14 1.00 0.89 0.32 0.99 0.99 0.99 0.99 0.29 0.97 0.89 0.49 0.77 0.77 0.77 0.77

1/3 All 0.02 1.00 0.76 0.09 1.00 1.00 1.00 1.00 0.32 0.98 0.82 0.54 0.83 0.85 0.85 0.84
50 0.78 1.00 0.95 0.88 1.00 1.00 1.00 1.00 0.53 0.92 0.82 0.69 0.78 0.78 0.78 0.78

1/1 All 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77

SVM 1/15 All 0.00 1.00 0.94 0.00 0.96 0.95 0.95 0.95 0.56 1.00 0.97 0.71 0.66 0.68 0.68 0.65
50 0.26 1.00 0.95 0.42 0.97 0.97 0.97 0.97 0.61 1.00 0.97 0.76 0.78 0.82 0.82 0.79

1/7 All 0.02 1.00 0.88 0.05 0.99 0.99 0.99 0.99 0.96 1.00 0.99 0.98 0.87 0.89 0.89 0.88
50 0.91 1.00 0.99 0.95 1.00 1.00 1.00 1.00 0.90 1.00 0.99 0.95 0.96 0.97 0.97 0.97

1/3 All 0.75 1.00 0.94 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
50 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1/1 All 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

aThe correlated model was based on the correlation matrix r of a public colon data set and the standard deviation 1. bThe class ratio of
positive-to-negative samples. cThe classifiers are performedbased on all genes (mg¼ all) or 50 selected genes (mg¼ 50).
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The second experiment investigated how the

standard deviation of the class distributions affected

the performance of classifiers. The same parameters

for the sample size and imbalance ratio as the first

experiment were used with the standard deviation 2

for the two covariance models V(2,0) and V(2,r).
The results are as expected: the sensitivity, specificity

and G-mean estimates were lower under the models

V(2,0) and V(2,r) than the corresponding estimates

under the models V(1,0) and V(1,r), respectively.

The detailed simulation results are given in

Supplementary Tables S3 and S4.

The third experiment explored the effect of

dimensionality (the number of genes) on classifica-

tion of class-imbalanced data. We compared 500,

1000, and 2000 genes with the imbalance ratio 1/

15 for models V(1,0) and V(1,r) (Table 3 and

Supplementary Table S5). Note that 500 and 1000

genes were randomly generated from the 2000

genes. The class-imbalanced classifiers performed

better in classifying low-dimensional data than

high-dimensional data, especially for the standard

classifiers under the independent model.

The last experiment investigated the effect of the

sample size on the performance of standard classifiers.

We considered the sample sizes of 80, 240 and 400

with the imbalance ratio 1/15 for models V(1,0)
and V(1,r) (Table 4 and Supplementary Table S6).

When the number of training data was 240 or 400,

the standard DLDA and SVM classifiers improved

considerably. However, RF showed only small

improvement.

EXAMPLES
Five publicly available data sets, colon cancer data,

gene-imprint data, breast cancer data, lung cancer

data and lymphoma data, were analyzed for further

evaluation. Five-fold cross-validation was used to

evaluate the performance of each class-imbalanced

classifier. Each cross-validation took the class ratio

into account and was repeated 50 times to obtain

different partitions. The estimates of SN, SP, ACC

and G-mean were the averages of the estimates over

the 50 repetitions, and the standard deviations were

calculated.

Colon cancer data
The colon cancer data set consisted of 40 colon

tumor and 22 normal colon tissue samples from an

Affymetrix oligonucleotide array with more than

6500 genes. A clustering algorithm revealed broad

coherent patterns that suggest a high degree of or-

ganization underlying gene expression in these tissues

[41]. The current data set contained the expression of

the 2000 genes with highest minimal intensity across

the 62 tissues. The ratio of positive-to-negative was

about 1.8:1. The data set is available on the web at

(http://genomics-pubs.princeton.edu/oncology/).

Gene-imprint data
The gene-imprint data set was collected to study

imprinted genes from the UCSC Genome Browser

(http://genome.ucsc.edu/). Imprinted genes tend to

affect growth in the womb and behavior after birth.

Aberrant imprinting is the cause of various diseases

[42]. Greally [43] described that a lack of short inter-

spersed transposable elements (SINEs) is a genomic

characteristic of regions undergoing genomic im-

printing, which can help predict the presence and

extent of imprinted regions. The current data set

contained 131 samples and 1446 predictors, where

43 were imprinted and 88 were non-imprinted

genes. The ratio of positive-to-negative was about

1:2.1. The data set was obtained from GreallyLab

web at http://greallylab.aecom.yu.edu/.

Table 2: Performance of the SVM-based classifier,
SVM-THR, based on 1000 repetitions

Correlation
structure

Ratiob mg
c SN SP ACC G-mean

Independentç
model: V(1,0)

1/15 All 1.00 0.71 0.73 0.84
50 1.00 0.80 0.81 0.89

1/7 All 1.00 0.79 0.81 0.89
50 1.00 0.88 0.90 0.94

1/3 All 1.00 0.94 0.95 0.97
50 1.00 0.97 0.98 0.99

1/1 All 1.00 1.00 1.00 1.00
50 1.00 1.00 1.00 1.00

Correlateda

model: V(1,r)
1/15 All 0.96 0.84 0.84 0.89

50 0.98 0.85 0.86 0.91
1/7 All 1.00 0.92 0.93 0.96

50 1.00 0.89 0.91 0.94
1/3 All 1.00 1.00 1.00 1.00

50 1.00 0.98 0.99 0.99
1/1 All 1.00 1.00 1.00 1.00

50 1.00 1.00 1.00 1.00

aThe correlatedmodelwasbasedon the correlationmatrixr of a public
colon data set and the standard deviation 1. bThe class ratio of
positive-to-negative samples. cThe classifiers are performed based on
all genes (mg¼ all) or 50 selected genes (mg¼ 50).
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Table 4: Effects of increasing the training data on the performance of the standard classifiers based on 1000 repe-
titions and the ratio of positive-to-negative is 1/15

Independent model: V(1,0) Correlated modela: V(1,r)

Classifier nb mg
c SN SP ACC G-mean SN SP ACC G-mean

DLDA 80 All 0.00 1.00 0.94 0.00 0.38 0.75 0.73 0.49
50 0.44 1.00 0.97 0.62 0.56 0.85 0.83 0.66

240 All 0.22 1.00 0.95 0.44 0.50 0.72 0.71 0.59
50 1.00 1.00 1.00 1.00 0.71 0.80 0.79 0.75

400 All 0.83 1.00 0.99 0.91 0.57 0.72 0.71 0.64
50 1.00 1.00 1.00 1.00 0.74 0.79 0.78 0.76

RF 80 All 0.00 1.00 0.94 0.00 0.01 1.00 0.94 0.02
50 0.00 1.00 0.94 0.00 0.12 0.99 0.94 0.22

240 All 0.00 1.00 0.94 0.00 0.01 1.00 0.94 0.05
50 0.07 1.00 0.94 0.22 0.17 0.99 0.94 0.37

400 All 0.00 1.00 0.94 0.00 0.01 1.00 0.94 0.05
50 0.14 1.00 0.95 0.36 0.18 0.99 0.94 0.40

SVM 80 All 0.00 1.00 0.94 0.00 0.56 1.00 0.97 0.71
50 0.26 1.00 0.95 0.42 0.61 1.00 0.97 0.76

240 All 0.15 1.00 0.95 0.36 1.00 1.00 1.00 1.00
50 0.97 1.00 1.00 0.98 1.00 1.00 1.00 1.00

400 All 0.71 1.00 0.98 0.84 1.00 1.00 1.00 1.00
50 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00

aThe correlatedmodel was based on the correlation matrix r of a public colon data set and the standard deviation1. bThe total number of training
data is 80, 240 or 400. cThe classifiers are performedbased on all genes (mg¼ all) or 50 selected genes (mg¼ 50).

Table 3: Effects of numbers of genes on the performance of the class-imbalanced classifiers based on 1000 repeti-
tions and the ratio of positive-to-negative is 1/15

Independent model: V(1,0) Correlated modela: V(1,r)

Standard Ensemble Standard Ensemble

Classifier mb mg
c SN SP ACC G-mean SN SP ACC G-mean SN SP ACC G-mean SN SP ACC G-mean

DLDA 500 All 0.59 1.00 0.97 0.75 1.00 1.00 1.00 1.00 0.56 0.83 0.81 0.65 0.69 0.73 0.73 0.70
50 0.89 1.00 0.99 0.94 1.00 1.00 1.00 1.00 0.61 0.85 0.84 0.70 0.73 0.77 0.77 0.74

1000 All 0.01 1.00 0.94 0.02 0.99 0.99 0.99 0.99 0.45 0.79 0.77 0.56 0.61 0.64 0.63 0.60
50 0.71 1.00 0.98 0.83 0.99 0.99 0.99 0.99 0.59 0.85 0.83 0.67 0.71 0.73 0.73 0.70

2000 All 0.00 1.00 0.94 0.00 0.97 0.97 0.97 0.97 0.38 0.75 0.73 0.49 0.57 0.57 0.57 0.54
50 0.44 1.00 0.97 0.62 0.97 0.97 0.97 0.96 0.56 0.85 0.83 0.66 0.67 0.69 0.69 0.66

RF 500 All 0.00 1.00 0.94 0.00 1.00 1.00 1.00 1.00 0.04 1.00 0.94 0.08 0.73 0.76 0.76 0.73
50 0.00 1.00 0.94 0.00 0.99 0.99 0.99 0.99 0.10 0.99 0.94 0.20 0.74 0.77 0.77 0.74

1000 All 0.00 1.00 0.94 0.00 0.99 0.99 0.99 0.99 0.02 1.00 0.94 0.04 0.67 0.69 0.69 0.66
50 0.00 1.00 0.94 0.00 0.98 0.98 0.98 0.98 0.08 0.99 0.94 0.16 0.70 0.73 0.72 0.69

2000 All 0.00 1.00 0.94 0.00 0.97 0.96 0.96 0.96 0.01 1.00 0.94 0.02 0.61 0.62 0.62 0.59
50 0.00 1.00 0.94 0.00 0.96 0.96 0.96 0.96 0.12 0.99 0.94 0.22 0.67 0.69 0.69 0.66

SVM 500 All 0.50 1.00 0.97 0.67 1.00 1.00 1.00 1.00 0.98 1.00 1.00 0.99 0.90 0.94 0.94 0.92
50 0.75 1.00 0.98 0.86 1.00 1.00 1.00 1.00 0.70 1.00 0.98 0.82 0.87 0.92 0.92 0.89

1000 All 0.01 1.00 0.94 0.01 0.99 0.99 0.99 0.99 0.88 1.00 0.99 0.93 0.79 0.82 0.82 0.79
50 0.52 1.00 0.97 0.69 0.99 0.99 0.99 0.99 0.65 1.00 0.98 0.78 0.84 0.88 0.88 0.85

2000 All 0.00 1.00 0.94 0.00 0.96 0.95 0.95 0.95 0.56 1.00 0.97 0.71 0.66 0.68 0.68 0.65
50 0.26 1.00 0.95 0.42 0.97 0.97 0.97 0.97 0.61 1.00 0.97 0.76 0.78 0.82 0.82 0.79

aThe correlatedmodelwasbasedon the correlationmatrixr of a public colondata set and the standarddeviation1. bThenumber of genes is 500,1000
or 2000. cThe classifiers are performedbased on all genes (mg¼ all) or 50 selected genes (mg¼ 50).

page 8 of 14 Lin and Chen
 by guest on M

arch 12, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

http://bib.oxfordjournals.org/


Breast cancer data
The breast cancer data set consists of 99 tumor spe-

cimens from breast cancer patients with 7650 genes

[44]. Breast cancer is the most commonly diagnosed

cancer in women and the second leading fatal cancer

among women in the United States [45]. Breast

cancer tumors could be divided into two subgroups

based on the estrogen receptor (ER) status. Patients

with ER-positive tumors have a better survival

than those with ER-negative tumors [46]. The

ER-positive patients can benefit from anti-estrogens,

such as tamoxifen. Sotiriou etal. [44] found that gene

expression patterns were strongly associated with ER

status. Of the 99 patients in this data set, 34 were ER

negative and 65 were ER positive. The ratio of

positive-to-negative was about 1.9:1. The data set

is publicly available at http://www.pnas.org/.

Lung cancer data
Lung cancer is the leading cause of cancer death in

the United States [45]. It has been suggested that

gene expression profiling could serve as a diagnostic

tool in lung cancer [47]. The lung cancer data set

contained a total of 203 examples with 12 600 genes.

Of the 203 samples, 17 were normal (negative) lung

samples and the remaining were 186 tumor (positive)

samples. The ratio of positive-to-negative was about

10.9:1. The genes with standard deviations <50 ex-

pression units were removed, and the new data set

consists of 3312 genes. The data are available at

http://www.pnas.org/ and www.genome.wi.mit

.edu/MPR/lung.

Lymphoma data
There are two common non-Hodgkin’s lymphoma

types: diffuse large B-cell lymphomas (DLBCL) and

follicular lymphoma (FL) [48]. The lymphoma data

set contained 58 patients with DLBCL and 19 pa-

tients with FL with 6817 genes [8]. We set the

DLBCL samples as positives and FL samples as nega-

tives, and then the ratio of positive-to-negative is

about 3.1:1. The gene-expression data set is available

at www.genome.wi.mit.edu/MPR/lymphoma.

Table 5 shows the sensitivity, specificity, accuracy

and G-mean for the standard DLDA, RF and SVM

classifiers. Table 6 shows the results for the RF clas-

sifier with the ensemble correction strategy, and

the detailed results for the DLDA, RF, SVM

and SVM-THR classifiers are shown in the

Supplementary Tables S7–S9. The results generally

agree with the results from the simulation study.

The standard classifiers have high accuracy in pre-

dicting the majority class where the performance of

RF and SVM is highly sensitive to imbalanced class

sizes and DLDA is less affected. The feature selection

substantially improves the performance of DLDA,

and only little improvement for SVM and RF.

Both SVM and RF ensemble correction methods

improved the performance considerable.

DISCUSSION
Many biomedical applications have suffered the

problem of class-imbalanced classifications where

the class imbalances may hinder the performance of

standard classifiers. The issues of the class-imbalanced

problem have been known for some time and much

research has been conducted for addressing it. Only a

few studies [19] have partly investigated the effect of

class imbalances on classification of high-dimensional

data. Many key problems of classification of

high-dimensional imbalanced data still remain to be

addressed.

This article investigates the five major factors that

affect the performance of classifiers for high-

dimensional data classification: (i) imbalance ratio,

(ii) the minor and majority class distributions,

(iii) sample size, (iv) feature selection and (v) the

class-imbalanced classifier (classification algorithm

and the strategy for correction of class imbalance).

The first three factors characterize the underlying

issues in the class-imbalanced problem. Any of the

three factors or combinations can affect the perform-

ance of a classifier. The last two factors address the

methods to improve the minority class prediction.

The imbalance ratio measures the degree of diffi-

culty for a standard classifier to address the imbalance

problem. The performance of a classifier generally

depends on the magnitude of the imbalance ratio

(Tables 1 and 2; Supplementary Tables S1 and S2).

The performance is also affected by the class distri-

butions, dimensionality and sample size. The per-

formance decreases as the standard deviation or

number of genes increases or sample size decreases

(Tables 3 and 4; Supplementary Tables S3–S6).

The performance of a classifier highly depends on

the underlying distributions of the data of each class.

Regardless of the imbalance ratio between the class

sizes, a large variance will hinder the performance,

whereas a large mean difference will enhance the

performance. When the variance is large, there will

be between class overlap; the minority data will
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likely be classified to the majority class since there are

more majority data in the overlapping area. On the

other hand, the class data will be well separated or

less overlapped when the difference between the two

class means is large. The standard classifiers can per-

form well (Figure 1). An additional simulation study

was conducted with a mean difference of 2 between

two classes with the total sample size 80 and the

imbalance ratio 1/15. DLDA, for example, had sen-

sitivities of 0.68 and 1 without and with variable

selection, respectively. Furthermore, genomic vari-

ables are correlated; the performance of a classifier

is also affected by the underlying correlation struc-

tures. In general, the standard classifiers produce

more balanced sensitivity and specificity for the cor-

related model than the independent model, resulting

Table 6: Performancea of RF standard and ensemble classifiers on the five imbalanced data sets

RF-Standard RF-Ensemble

Data mg
b SNc SP ACC G-mean SN SP ACC G-mean

Colon cancer All 0.88 0.69 0.81 0.78 0.83 0.83 0.83 0.83
(0.02) (0.07) (0.03) (0.04) (0.03) (0.05) (0.03) (0.03)

50 0.89 0.76 0.84 0.82 0.84 0.83 0.84 0.84
(0.02) (0.06) (0.03) (0.04) (0.03) (0.05) (0.03) (0.03)

Gene imprint All 0.64 0.99 0.87 0.79 0.79 0.86 0.84 0.83
(0.04) (0.01) (0.02) (0.03) (0.03) (0.02) (0.01) (0.02)

50 0.68 0.92 0.84 0.79 0.80 0.83 0.82 0.81
(0.04) (0.02) (0.02) (0.02) (0.03) (0.03) (0.02) (0.02)

Breast cancer All 0.93 0.71 0.85 0.81 0.87 0.84 0.86 0.85
(0.02) (0.04) (0.02) (0.02) (0.02) (0.02) (0.01) (0.01)

50 0.92 0.83 0.89 0.87 0.89 0.85 0.87 0.87
(0.01) (0.02) (0.01) (0.01) (0.02) (0.00) (0.01) (0.01)

Lung cancer All 0.99 0.83 0.98 0.91 0.98 0.94 0.98 0.96
(0.00) (0.02) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00)

50 0.99 0.88 0.99 0.94 0.99 0.94 0.99 0.97
(0.00) (0.04) (0.00) (0.02) (0.00) (0.01) (0.00) (0.01)

Lymphoma All 0.98 0.62 0.89 0.78 0.87 0.97 0.89 0.92
(0.00) (0.07) (0.02) (0.05) (0.01) (0.03) (0.01) (0.02)

50 0.97 0.76 0.92 0.86 0.89 0.96 0.91 0.92
(0.01) (0.07) (0.02) (0.04) (0.02) (0.03) (0.01) (0.02)

aThe performancewas evaluatedbased on 5-fold cross-validationwith 50 repetitions. bThe classifiers are performedbased on all genes (mg¼ all) or
50 selectedgenes (mg¼ 50). cThe estimates (standarddeviations) of the fourmeasures, sensitivity (SN), specificity (SP), accuracy (ACC) andG-mean.

Table 5: Examples of predictive performance of three standard classification algorithms for five imbalanced genetic
and gene expression data

DLDA RF SVM

Data No. of
predictorsa

#P/#Nb mg
c SNd SP ACC SN SP ACC SN SP ACC

Colon Cancer 2000 40/22 All 0.70 0.61 0.67 0.88 0.69 0.81 0.88 0.78 0.84
50 0.85 0.84 0.85 0.89 0.76 0.84 0.89 0.78 0.85

Gene imprint 1446 43/88 All 0.57 0.98 0.84 0.64 0.99 0.87 0.68 0.90 0.83
50 0.83 0.70 0.75 0.68 0.92 0.84 0.70 0.84 0.79

Breast cancer 7650 65/34 All 0.86 0.81 0.84 0.93 0.71 0.85 0.91 0.74 0.86
50 0.89 0.85 0.87 0.92 0.83 0.89 0.90 0.76 0.85

Lung cancer 3312 186/17 All 0.98 0.97 0.98 0.99 0.83 0.98 0.99 0.90 0.99
50 0.99 0.94 0.99 0.99 0.88 0.99 0.99 0.88 0.98

Lymphoma 6817 58/19 All 0.81 0.76 0.80 0.98 0.62 0.89 0.98 0.98 0.98
50 0.89 0.94 0.90 0.97 0.76 0.92 0.97 0.90 0.95

aThe number of predictors (genes). bThe ratio of the positive-to-negative samples. cThe classifiers are performed based on all genes (mg¼ all) or 50
selected genes (mg¼ 50). dThree measures of performance for evaluation of the three algorithms, sensitivity (SN), specificity (SP) and accuracy
(ACC). eThe performancewas evaluatedbased on 5-fold cross-validationwith 50 repetitions.
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in that the correction strategies are more effective

for the independent model (Tables 1 and 2;

Supplementary Tables S1–S4).

A lack of data is the primary contributor to the

poor accuracy in the minority class prediction. The

data complexity characteristics, such as small dis-

juncts, ambiguous boundary and overlapping be-

tween classes, can be attributed to the lack of

minority data. When there is a lack of minority

class data, the training data set is unlikely to include

sufficient instances of the minority class in the

boundary area; therefore, the estimated decision

boundary can be far less than the true boundary

and results in poor minority prediction. On the

other hand, when there are sufficient data, the esti-

mated decision will approximate well to the true

boundary; the classifier may not be affected by the

imbalance between classes (Figure 1). Thus, a stand-

ard classifier could perform well when the sample

size is sufficiently large or the difference between

classes is not too small (Tables 4 and

Supplementary Table S6).

All classifiers suffer from lack of data; each factor

or combination affects particular classifiers differ-

ently. It is useful to identify which algorithm and

correction strategy is more robust to a particular im-

balance factor or combination. For the algorithms

and correction strategies investigated in this study,

DLDA appeared to be less affected by the imbal-

anced class sizes; this result is consistent with a con-

clusion by Blagus and Lusa [19]. The reason for the

performance of DLDA might be that the decision

boundary for DLDA was based on the sample

means and variances of the two classes which are

independent of the ratio of class sizes. For DLDA,

the feature selection is essential for classification of

high-dimensional data, even when the class size is

balanced. All three ensemble classifiers improve the

balance between sensitivity and specificity when the

class imbalance was modest or severe. It appears that

SVM generally performs better than RF. The

SVM-THR was shown to perform better than the

three ensemble classifiers when the feature variables

were correlated and the class imbalance was severe.

The ensemble voting classification is a bagging

method [36] based on the idea that a combination

of the results of several classifiers will have more ac-

curate prediction than an individual component clas-

sifier. However, the main use of the ensemble

approach in class-imbalanced problem is to obtain

more balanced estimates of sensitivity and specificity.

It does not necessarily improve the overall predictive

accuracy.

The decision threshold adjustment was developed

to estimate the optimal decision threshold for speci-

fied misclassification costs and/or prior probabilities

of the prevalence [10, 11, 13]. When the class sizes

are unequal, a shift in a decision threshold to favor

the minority class can increase minority class predic-

tion. There are two challenges in the proposed

SVM-THR approach: the choices of shifted distance

and the function to adjust the threshold. The linear

kernel distance function and the adjusted threshold

y, a function composed of sizes of positive and nega-

tive samples with a constant a, were used in this

study based on empirical comparisons. Specifically,

the numerator of the new threshold represents the

difference between the two class sizes and denomin-

ator represents the total sample sizes plus 2a. When

a¼ 0, the new threshold only depends on the two

class sizes. This new threshold may lead to the over

adjustment when the imbalance ratio is too small or

the size of training data is large. The constant a was

added to alleviate the magnitude of the adjustment.

Based on our empirical analysis, the constant a was

determined as 1. This adjustment is simple and seems

to perform reasonably well.

In the microarray experiments, the collected data

typically contains tens of thousands genes; however,

many gene are unexpressed, expressed at a relative

small level or in only a few samples. Filtering out

these genes before data analysis is generally essential

to increase the power for identifying the differen-

tially expressed genes (predictive features) [49]. The

example colon data set took this issue into consider-

ation in the simulation experiments. This data set

contained the expressions of 2000 genes after filter-

ing out the genes with low intensity from more than

6500 genes. The feature selection methods were fur-

ther identified as 50 most discriminating genes from

the underlying 100 differentially expressed genes.

The number of genes was varied to investigate the

relations between class-imbalanced and dimensional-

ity. A simulation study with 500 and 1000 genes, in

addition to 2000 genes, was conducted (Tables 3 and

Supplementary Table S5). The results show that

dimensionality has impact on classifiers’ performance.

The performances of class-imbalanced classifiers de-

crease as the dimensions increase, regardless of the

correction strategies and feature selection.

Blagus and Lusa [19] concluded that matching the

prevalence of the classes in training and test set does

High-dimensional class-imbalanced classification page 11 of 14
 by guest on M

arch 12, 2012
http://bib.oxfordjournals.org/

D
ow

nloaded from
 

http://bib.oxfordjournals.org/cgi/content/full/bbs006/DC1
http://bib.oxfordjournals.org/cgi/content/full/bbs006/DC1
http://bib.oxfordjournals.org/cgi/content/full/bbs006/DC1
http://bib.oxfordjournals.org/cgi/content/full/bbs006/DC1
http://bib.oxfordjournals.org/


not guarantee good performance of classifiers. A clas-

sification model is developed to predict class category

of future samples based on the fundamental assump-

tion of that the training samples are representative of

the future samples. That is, each future sample is either

from the major class distribution or from the minor

class distribution, regardless of population size. The

performance of a classifier is independent of preva-

lence of classes. Matching the prevalence should not

have an effect on the performance of a classifier.

Three classification algorithms, DLDA [20], RF

[21] and SVM [22, 23], were considered to investi-

gate the class-imbalanced problem in the simulation

study and real examples, because these classification

algorithms have been commonly used and work well

in classification of high-dimensional data [18]. The

performance of other algorithms on classifying

high-dimensional class-imbalanced data, such as k-
nearest neighbor (k-NN) and prediction analysis of

microarrays (PAM), can be found in Blagus and Lusa

[19]. In addition, the effect of the minority and ma-

jority class distributions (the complexity of data) was

studied in terms of the standard deviations 1 and 2,

and mean difference of 1 and 2 between two classes.

Other aspects, such as subgroups with different

means and/or standard deviation or small/no differ-

ences can also be studied. For the effect of no differ-

ence or small differences, Blagus and Lusa [19]

showed that the class-imbalanced problem is more

severe.

One goal in oncology studies is to classify the

tumor tissues and normal tissues or divide cancers

into biologic subtypes. Both the sensitivity and spe-

cificity are required to be high for better treatment

decisions and avoidance of unnecessary side effects.

In this study, five publicly available imbalanced data

sets were used for evaluation of the four

class-imbalanced classifiers. It seems that the difficulty

in classifying the imbalanced data sets is not as serious

as that in the simulation study. The predictive per-

formance (sensitivity, specificity and accuracy) de-

pends on the three factors, imbalance ratio, class

distributions and sample size. For the examined

data sets, it could be due to the large mean difference

or large sample size.

In summary, the effect of class imbalance depends

on the imbalance ratio, total sample size in the train-

ing phase, distributions of the data in each class

and selection of the relevant variables as well as the

classification algorithm and correction strategy.

The poor prediction accuracy of the minority class

is primarily caused by the lack of data. In the exam-

ined situations, the SVM-ensemble classifier gener-

ally outperforms others except when the imbalance is

severe and the variables are correlated, where the

SVM-THR performs the best. Building a good clas-

sifier requires sufficient numbers of minority and ma-

jority class samples in the training data. For

predicting high-dimensional data, we suggest that

one should collect the samples for each class as

balanced as possible, a prior cost estimation of the

collecting minority class data is useful. Afterward,

standard classifiers are identified and the effects of

class imbalance are evaluated. Finally, an appropriate

class-imbalanced classifier is selected based on the

effect of class imbalance and the misclassification

costs.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� Theperformance of classifyinghigh-dimensional imbalanceddata
is affected by imbalance ratio, distributions of minority andma-
jority class data, sample size and feature selection as well as the
classification algorithm and correction strategy.

� A standard classifier couldperformwell in classification of imbal-
anced datawhen the sample size is sufficiently large.

� DLDA appears to be less affected by the class imbalanced, and
the feature selection is essential for classification of
high-dimensional data, evenwhen the class size is balanced.

� The SVM-ensemble classifier generally outperforms others
exceptwhen the imbalance is severe and thevariables are corre-
lated, where the SVM-THRperforms the best.

� For predicting high-dimensional data, we suggest that one
should follow the steps: (i) to collect the samples for each class
as balanced as possible, (ii) to evaluate the effects of class imbal-
ance using standard classifiers and (iii) an appropriate
class-imbalanced classifier is selected based on the effect of
class imbalance and the pre-specifiedmisclassification costs.
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