1	Estimation of resistance of starch/polyvinyl alcohol blends to
2	permeation by organic solvents
3	
4	
5	
6	
7	
8	Keh-Ping Chao ¹ , Jing-Dong Chow ² , Wan-Lan Chai ² , and Gin-Ming Hong ¹
9	
10	¹ Department of Occupational Safety & Health
11	China Medical University
12	Taichung, Taiwan, ROC
13	
14	² Department of Environmental Engineering
15	Vanung University
16	Taoyuan, Taiwan, ROC
17	
18	
19	Revised by
20	Carbohydrate Polymers
21	CARBPOL-D-11-02064
22	
23	
24	Corresponding author
25	
26	Prof. Keh-Ping Chao
27	Dept. of Occupational Safety & Health
28	China Medical University
29	91 Hsueh-Shih Rd., Taichung
30	Taiwan 40402, ROC
31	Tel. No (886) 4-22053366 Ext. 6205
32	Fax. No (886) 4-22070500
33	E-mail: kpchao@mail.cmu.edu.tw

34 ABSTRACT

The chemical resistance of chlorinated hydrocarbons in starch/polyvinyl alcohol (PVA) 35 blends has been investigated using a permeation cell with an in-cell solid phase 36 37 microextraction (SPME) sampling device. The chlorinated hydrocarbon with a large 38 molecule size or lower polarity was found to be less permeable through the starch/PVA 39 blends. The tensile strength and chemical resistance of chlorinated hydrocarbons 40 decreased with an increase in the starch content of blends. For the starch/PVA blends, the 41 solubility of chlorinated hydrocarbons was inversely proportional to their molecular weight, 42 molar volume and $log K_{ow}$. The diffusion coefficients and solubility of permeants were proportional to the content of starch in the starch/PVA blends. It is plausible that the 43 44 blends will be inclined to the starch characteristics as the plasticizer (i.e. glycerin) disrupts the rigidity arrangements of the starch and PVA. The present work provides information 45 on the extent of organic compound permeation through starch/PVA blends for the practical 46 47 application.

48

49 Keywords: starch; polyvinyl alcohol (PVA); permeation; diffusion coefficient; solubility. 50 1. Introduction

51	Most synthetic polymers are difficult to degrade in a natural environment and may
52	contribute to severe pollution. In the past few years, attempts have been made to solve
53	these problems in the development of biodegradable polymers. Griffin (1974) proposed
54	a method to increase the biodegradability of plastics by blending. Several researchers
55	have focused on the production of starch-based polymers in which starch is blended with
56	biodegradable synthetic polymers such as polyvinyl alcohol (PVA) and polylactide (PLA)
57	(Imam et al., 2005; Park & Im, 2000; Zhao et al., 2006).
58	PVA is a water soluble polymer with excellent properties, such as low permeability
59	and high water absorption capability. The PVA film has been used in a wide range of
60	industrial and agricultural applications. However, PVA is relatively expensive and has a
61	low biodegradation rate (Mao et al., 2000). Starch is a cheap and fully biodegradable
62	polymer. A small amount of starch (6~30%) is blended with PVA to reduce the cost and
63	enhance the biodegradability of PVA (Jayasekara et al., 2004; Tang & Alavi, 2011).
64	Starch lacks the physico-mechanical characteristics of traditional plastics such as
65	strength, water resistibility, processability and thermal stability (Tang & Alavi, 2011).
66	In addition, the starch/PVA blends are compounded using a number of plasticizers, e.g.
67	water and glycerol, to increase their flexibility and workability (Chai et al., 2009; Liu et
68	al., 1999). Several studies have been conducted to understand the biodegradability,

3

69	processability and mechanical properties of starch/PVA blends (Mao et al., 2000;
70	Tudorachi et al., 2000; Zhao et al., 2006). Although PVA exhibits chemical resistance
71	to solvent, oil and grease, it is doubtful that the blending of starch to PVA with the
72	plasticizer, glycerin, may result in a degradation of chemical resistance with faster
73	breakthrough of the chemical as compared to the permeation of PVA material only.
74	Since the packaging and containers for organic chemicals are made of starch/PVC blends,
75	it is critical to assess the resistance of the starch/PVA blends to permeation by these
76	chemicals.
77	In this study, the permeability of chlorinated hydrocarbons through the starch/PVA
78	blends was estimated using a 1-inch permeation cell. The corn starch was grafted with
79	sodium trimetaphosphate (STMP) and then blended with the plasticizer (i.e. glycerin)
80	and PVA. The diffusion coefficients and solubility of chlorinated hydrocarbons in the
81	starch/PVA blends were determined using the diffusion equation of Fick's law. Finally,
82	correlations between the diffusion coefficients or solubilities and several physical and
83	chemical properties of the chlorinated hydrocarbons were investigated. The correlation
84	analysis may provide an understanding in the permeation process of organic compounds
85	in the PVA/starch blends.

69 processability and mechanical properties of starch/PVA blends (Mao et al., 2000;

4