
Metric Characterizations of α-Well-Posedness for a System of
Mixed Quasivariational-Like Inequalities in Banach Spaces

L. C. Ceng1 and Y. C. Lin2

1Professor, Department of Mathematics, Shanghai Normal University, and Scientific Computing Key Lab-
oratory of Shanghai Universities, Shanghai 200234, China. This research was partially supported by the
National Science Foundation of China (11071169), Innovation Program of Shanghai Municipal Education
Commission (09ZZ133) and Leading Academic Discipline Project of Shanghai Normal University (DZL707).
Email: zenglc@hotmail.com

2Corresponding author. Professor, Department of Occupational Safety and Health, College of Public
Health, China Medical University, Taichung 404, Taiwan. This research was partially supported by grant
NSC99-2115-M-039-001- from the National Science Council of Taiwan. E-mail: yclin@mail.cmu.edu.tw

1



Abstract. The purpose of this paper is to investigate the problems of the well-posedness
for a system of mixed quasivariational-like inequalities in Banach spaces. First, we general-
ize the concept of α-well-posedness to the system of mixed quasivariational-like inequalities,
which includes symmetric quasi-equilibrium problems as a special case. Second, we establish
some metric characterizations of α-well-posedness for the system of mixed quasivariational-like
inequalities. Under some suitable conditions, we prove that the α-well-posedness is equiva-
lent to the existence and uniqueness of solution for the system of mixed quasivariational-like
inequalities. The corresponding concept of α-well-posedness in the generalized sense is also
considered for the system of mixed quasivariational-like inequalities having more than one
solution. The results presented in this paper generalize and improve some known results in
the literature.
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1. Introduction

The classical notion of well-posedness for a minimization problem (MP) is due to Tykhonov
[1], which has already been known as the Tykhonov well-posedness. the so-called Tykhonov
well-posedness means the existence and uniqueness of solution, and the convergence of every
minimizing sequence toward the unique solution. Taking into account that in many prac-
tical situations the solution may not be unique for a minimization problem, ones naturally
introduced the concept of well-posedness in the generalized sense, which means the existence
of minimizers and the convergence of some subsequence of every minimizing sequence to-
ward a minimizer. Obviously, the concept of well-posedness is inspired by numerical methods
producing optimizing sequences for optimization problems. In the following years, the well-
posedness has received much attention because it plays a crucial role in the stability theory
for optimization problems. A large number of results about well-posedness have appeared in
the literature; see, e.g., [12,20-26,37], where Refs. [12,20,22,24,37] are for the class of scalar
optimization problems, Refs. [21,23,25,39] for the class of vector optimization problems.

On the other hand, the concept of well-posedness has been generalized to other related
problems, such as variational inequalities [13,14,16,17,19,26,27,31-33,38,40], Nash equilibrium
problems [18,19,35,36], inclusion problems [13,16,34,41] and fixed point problems [6,7,13,16,34].
An initial notion of well-posedness for variational inequalities is due to Lucchetti and Patrone
[33]. They introduced the notion of well-posedness for variational inequalities and proved
some related results by means of Ekeland’s variational principle. Since then, many authors
have been devoted to generating the concept of well-posedness from the minimization problem
to various variational inequalities. Lignola and Morgan [32] introduced the parametric well-
posedness for a family of variational inequalities. Lignola [17] further introduced two concepts
of well-posedness and L-well-posedness for quasivariational-like inequalities and derived some
metric characterizations of well-posedness. At the same time, Del Prete et al. [31] introduced
the concept of α-well-posedness for a class of variational inequalities. Recently, Fang et al. [16]
generalized the concept of well-posedness to a class of mixed variational inequalities in Hilbert
spaces. They obtained some metric characterizations of its well-posedness and established the
links with the well-posedness of inclusion problems and fixed point problems. Furthermore,
Ceng and Yao [13] generalized the results of Fang et al. [16] to a class of generalized mixed
variational inequalities in Hilbert spaces. Ceng et al. [14] investigated the well-posedness for
a class of mixed quasivariational-like inequalities in Banach spaces. For the well-posedness
of variational inequalities with functional constraints, we refer to Huang and Yang [26] and
Huang et al. [27]. In 2006, Lignola and Morgan [18] presented the notion of α-well-posedness
for the Nash equilibrium problem and gave some metric characterizations of this type well-
posedness. Petrusel et al. [7] and Fuster et al. [6] discussed the well-posedness of fixed point
problems for multivalued mappings in metric spaces.

It is obvious that the equilibrium problem plays a very important role in the establish-
ment of a general mathematical model for a wide range of practical problems, which includes
as special cases optimization problems, Nash equilibria problems, fixed point problems, vari-
ational inequality problems and complementarity problems (see, e.g., [2,30]), and has been
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studied extensively and intensively. It is well known that each equilibrium problem can equiv-
alently be transformed into a minimizing problem by using gap function and some numerical
methods have been extended to solve of the equilibrium problem (see, e.g., [29]). This fact
motivates the researchers to study the well-posedness for equilibrium problems. Recently,
Fang et al. [15] introduced the concepts of parametric well-posedness for equilibrium prob-
lems and derived some metric characterizations for these types of well-posedness. For the
well-posedness of equilibrium problems with functional constraints, we refer the readers to
[28]. In 2009, Long and Huang [8] generalized the concept of α-well-posedness to symmet-
ric quasi-equilibrium problems in Banach spaces, which includes equilibrium problems, Nash
equilibrium problems, quasivariational inequalities, variational inequalities, and fixed point
problems as special cases. Under some suitable conditions, they established some metric char-
acterizations of α-well-posedness for symmetric quasi-equilibrium problems. Moreover, they
gave some examples to illustrate their results. Their results represent the generalization and
improvement of some previous known results in the literature, for instance, [13-18]. It is worth
pointing out that up to the publication of [8] there are no results concerned with the problems
of the well-posedness for symmetric quasi-equilibrium problems in Banach spaces.

In this paper, we consider and study the problems of the well-posedness for a system of
mixed quasivariational-like inequalities in Banach spaces. First, we generalize the concept
of α-well-posedness to the system of mixed quasivariational-like inequalities, which includes
symmetric quasi-equilibrium problems as a special case. Second, some metric characteriza-
tions of α-well-posedness for the system of mixed quasivariational-like inequalities are given
under very mild conditions. Furthermore, it is also proven that under quite appropriate con-
ditions the α-well-posedness is equivalent to the existence and uniqueness of solution for the
system of mixed quasivariational-like inequalities. At the same time, the corresponding con-
cept of α-well-posedness in the generalized sense is also considered for the system of mixed
quasivariational-like inequalities having more than one solution. In addition, we give some
examples to illustrate our results. The results presented in this paper generalize and improve
Long and Huang’s results in [8].

2. Preliminaries

Throughout this paper, unless specified otherwise, let X and Y be two real Banach spaces,
let their dual spaces be denoted by X∗ and Y ∗ respectively, let the duality pairing between
X and X∗ and the one between Y and Y ∗ be denoted by the same 〈·, ·〉. We write xn ⇀ x to
indicate that the sequence {xn} converges weakly to x. xn → x implies that {xn} converges
strongly to x. Let C ⊂ X and D ⊂ Y be two nonempty closed and convex subsets. Let
S : C ×D → 2C and T : C ×D → 2D be two set-valued mappings, let A : C ×D → X∗, B :
C ×D → Y ∗, η̂ : C × C → X and η̄ : D ×D → Y be four single-valued mappings, and let
f, g : C ×D → R be two real-valued functions. Suppose that α is a nonnegative real number
and N = {1, 2, ...}.
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In this paper, we consider the system of mixed quasivariational-like inequalities (in short,
SMQVLI), which is to find a point (x0, y0) ∈ C ×D such that

{
x0 ∈ S(x0, y0) and 〈A(x0, y0), η̂(x0, z)〉+ f(x0, y0)− f(z, y0) ≤ 0, ∀z ∈ S(x0, y0),
y0 ∈ T (x0, y0) and 〈B(x0, y0), η̄(y0, w)〉+ g(x0, y0)− g(x0, w) ≤ 0, ∀w ∈ T (x0, y0).

(2.1)
Remark 2.1. Whenever A = 0, B = 0, η̂ = 0 and η̄ = 0, the problem (2.1) reduces

to the following symmetric quasi-equilibrium problem (in short, SQEP) of finding a point
(x0, y0) ∈ C ×D such that

{
x0 ∈ S(x0, y0) and f(x0, y0) ≤ f(z, y0), ∀z ∈ S(x0, y0),
y0 ∈ T (x0, y0) and g(x0, y0) ≤ g(x0, w), ∀w ∈ T (x0, y0).

(2.2)

This problem was first considered by Noor and Oettli [38], which includes equilibrium problems
[2], Nash equilibrium problems [3], quasivariational inequalities [4], variational inequalities [5]
and fixed point problems [6,7] as special cases. It is worth mentioning that Noor and Oettli
[38] only established the existence of solutions for SQEP (2.2). Subsequently, Long and Huang
[8] investigated the α-well-posedness for SQEP (2.2) in Banach spaces.

Denote by Γ the solution set of SMQVLI (2.1). In the following we introduce the notions
of α-approximating sequence and α-well-posedness for SMQVLI (2.1).

Definition 2.1. A sequence {(xn, yn)} ⊂ C × D is called an α-approximating sequence
for SMQVLI (2.1) if there exists a sequence εn > 0 with εn → 0 such that

{
d(xn, S(xn, yn)) ≤ εn, i.e., xn ∈ B(S(xn, yn), εn), ∀n ∈ N,
d(yn, T (xn, yn)) ≤ εn, i.e., yn ∈ B(T (xn, yn), εn), ∀n ∈ N,

and{
〈A(xn, yn), η̂(xn, z)〉+ f(xn, yn)− f(z, yn) ≤ εn + α

2
‖xn − z‖2, ∀z ∈ S(xn, yn), ∀n ∈ N,

〈B(xn, yn), η̄(yn, w)〉+ g(xn, yn)− g(xn, w) ≤ εn + α
2
‖yn − w‖2, ∀w ∈ T (xn, yn), ∀n ∈ N,

where B(S(x, y), ε) denotes the ball of radius ε around S(x, y), that is, the set {m ∈ X :
d(S(x, y),m) = infb∈S(x,y) ‖m−b‖ ≤ εn}. Whenever α = 0, we say that the sequence {(xn, yn)}
is an approximating sequence for SMQVLI (2.1).

We remark that, if A = 0, B = 0, η̂ = 0 and η̄ = 0, the notions of α-approximating
sequence and approximating sequence for SMQVLI (2.1) reduce to the ones of α-approximating
sequence and approximating sequence for SQEP (2.2) in [8, Definition 2.1], respectively.

Definition 2.2. SMQVLI (2.1) is said to be α-well-posed if it has a unique solution (x0, y0)
and every α-approximating sequence {(xn, yn)} converges strongly to (x0, y0). Whenever α =
0, we say that SMQVLI (2.1) is well-posed.

We remark that, if A = 0, B = 0, η̂ = 0 and η̄ = 0, the notions of α-well-posedness and
well-posedness for SMQVLI (2.1) reduce to the ones of α-well-posedness and well-posedness
for SQEP (2.2) in [8, Definition 2.2], respectively.
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Definition 2.3. SMQVLI (2.1) is said to be α-well-posed in the generalized sense if the
solution set Γ of SMQVLI (2.1) is nonempty and every α-approximating sequence {(xn, yn)}
has a subsequence which converges strongly to some element of Γ . Whenever α = 0, we say
that SMQVLI (2.1) is well-posed in the generalized sense.

We remark that, if A = 0, B = 0, η̂ = 0 and η̄ = 0, the notions of α-well-posedness in the
generalized sense and well-posedness in the generalized sense for SMQVLI (2.1) reduce to the
ones of α-well-posedness in the generalized sense and well-posedness in the generalized sense
for SQEP (2.2) in [8, Definition 2.3], respectively.

In order to investigate the α-well-posedness for SMQVLI (2.1), we need the following
definitions.

Definition 2.4 (see [9]). The Painleve-Kuratowski limits of a sequence {Hn} ⊂ X are
defined by

lim inf
n

Hn = {y ∈ X : ∃yn ∈ Hn, n ∈ N, with lim
n

yn = y},
lim sup

n
Hn = {y ∈ X : ∃nk ↑ +∞, nk ∈ N, ∃ynk

∈ Hnk
, k ∈ N, with lim

k
ynk

= y}.

Definition 2.5 (see [9]). A set-valued mapping F from a topological space (W, τ) to a
topological space (Z, σ) is called

(i) (τ, σ)-closed if for every x ∈ K, for every sequence {xn} τ -converging to x, and for
every sequence {yn} σ-converging to a point y, such that yn ∈ F (xn), one has y ∈ F (x), i.e.,

F (x) ⊃ lim sup
n

F (xn).

(ii) (τ, σ)-lower semicontinuous if for every x ∈ K, for every sequence {xn} τ -converging
to x, and for every y ∈ F (x), there exists a sequence {yn} σ-converging to y, such that
yn ∈ F (xn) for n sufficiently large, i.e.,

F (x) ⊂ lim inf
n

F (xn).

(iii) (τ, σ)-subcontinuous on K, if for every sequence {xn} τ -converging in K, every se-
quence {yn}, such that yn ∈ F (xn), has a σ-convergent subsequence.

Definition 2.6 (see [9]). Let V be a nonempty subset of X. The measure of non-
compactness µ of the set V is defined by

µ(V ) = inf{ε > 0 : V ⊂
n⋃

i=1

Vi, diamVi < ε, i = 1, 2, ..., n},

where diam means the diameter of a set.
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Definition 2.7 (see [9]). Let (X, d) be a metric space and Let U, V be nonempty subsets
of X. The Hausdorff metric H(·, ·) between U and V is defined by

H(U, V ) = max{e(U, V ), e(V, U)},
where e(U, V ) = supu∈U d(u, V ) with d(u, V ) = infv∈V ‖u − v‖. Let {Un} be a sequence of
nonempty subsets of X. We say that Un converges to U in the sense of Hausdorff metric if
H(Un, U) → 0. It is easy to see that e(Un, U) → 0 iff d(un, U) → 0 for all section un ∈ Un.
For more details on this topic, we refer the readers to [9].

Now, we prove the following lemma.

Lemma 2.1. Suppose that set-valued mappings S and T are nonempty convex-valued,
the function f(·, y) is convex on C for any y ∈ D, and the function g(x, ·) is convex on D for
any x ∈ C. Then (x0, y0) ∈ Γ if and only if the following two conditions hold:

x0 ∈ S(x0, y0), 〈A(x0, y0), η̂(x0, z)〉+f(x0, y0)−f(z, y0) ≤ α

2
‖x0−z‖2, ∀z ∈ S(x0, y0), (2.3)

y0 ∈ T (x0, y0), 〈B(x0, y0), η̄(y0, w)〉+g(x0, y0)−g(x0, w) ≤ α

2
‖y0−w‖2, ∀w ∈ T (x0, y0), (2.4)

where both η̂ : C × C → X and η̄ : D × D → Y are affine in the second variable such that
η̂(x, x) = 0 and η̄(y, y) = 0 for all (x, y) ∈ C ×D.

Proof. The necessity is obvious. For the sufficiency, suppose that (2.3) and (2.4) hold.
Now let us show that (x0, y0) ∈ Γ . Indeed, let z ∈ S(x0, y0) and for any t ∈ [0, 1], zt =
tz + (1− t)x0. Since S(x0, y0) is convex, zt ∈ S(x0, y0) and so

〈A(x0, y0), η̂(x0, zt)〉+ f(x0, y0)− f(zt, y0) ≤ α

2
‖x0 − zt‖2, ∀t ∈ (0, 1].

Also, since f(·, y) is convex for any y ∈ D and η̂ : C ×C → X is affine in the second variable
with η̂(x, x) = 0, ∀x ∈ X, we have

t{〈A(x0, y0), η̂(x0, z)〉+ f(x0, y0)− f(z, y0)}
= 〈A(x0, y0), tη̂(x0, z) + (1− t)η̂(x0, x0)〉+ f(x0, y0)− (tf(z, y0) + (1− t)f(x0, y0))
≤ 〈A(x0, y0), η̂(x0, zt)〉+ f(x0, y0)− f(zt, y0)
≤ α

2
‖x0 − zt‖2

= α
2
t2‖x0 − z‖2, ∀t ∈ (0, 1].

Thus, dividing by t in the above inequality, we have

〈A(x0, y0), η̂(x0, z)〉+ f(x0, y0)− f(z, y0) ≤ α

2
t‖x0 − z‖2, ∀t ∈ (0, 1], z ∈ S(x0, y0). (2.5)

By the similar argument,

〈B(x0, y0), η̄(y0, w)〉+ g(x0, y0)− g(x0, w) ≤ α

2
t‖y0 − w‖2, ∀t ∈ (0, 1], w ∈ T (x0, y0). (2.6)
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The combination of (2.5) and (2.6) implies, for t tending to zero, that (x0, y0) is a solution of
SMQVLI (2.1). This completes the proof. 2

Corollary 2.1 (i.e., [8, Lemma 2.1]). Suppose that set-valued mappings S and T are
nonempty convex-valued, the function f(·, y) is convex on C for any y ∈ D, and the function
g(x, ·) is convex on D for any x ∈ C. Then (x0, y0) solves SQEP (2.2) if and only if the
following two conditions hold:

x0 ∈ S(x0, y0), f(x0, y0) ≤ f(z, y0) +
α

2
‖x0 − z‖2, ∀z ∈ S(x0, y0),

y0 ∈ T (x0, y0), g(x0, y0) ≤ g(x0, w) +
α

2
‖y0 − w‖2, ∀w ∈ T (x0, y0).

Proof. Put A = 0, B = 0, η̂ = 0 and η̄ = 0 in Lemma 2.1. Then, utilizing Lemma 2.1
we get the desired result. 2

3. Metric Characterizations of α-Well-Posedness for SMQVLI

In this section, we shall investigate some metric characterizations of α-well-posedness for
SMQVLI (2.1).

For any ε > 0, the α-approximating solution set of SMQVLI (2.1) is defined by

Ωα(ε) = {(x0, y0) ∈ C ×D :
x0 ∈ B(S(x0, y0), ε), 〈A(x0, y0), η̂(x0, z)〉+ f(x0, y0)− f(z, y0) ≤ ε + α

2
‖x0 − z‖2, ∀z ∈ S(x0, y0),

y0 ∈ B(T (x0, y0), ε), 〈B(x0, y0), η̄(y0, w)〉+ g(x0, y0)− g(x0, w) ≤ ε + α
2
‖y0 − w‖2, ∀w ∈ T (x0, y0)}.

Theorem 3.1. SMQVLI (2.1) is α-well-posed if and only if the solution set Γ of SMQVLI
(2.1) is nonempty and

lim
ε→0

diamΩα(ε) = 0. (3.1)

Proof. Suppose that SMQVLI (2.1) is α-well-posed. Then, Γ is a singleton, and Ωα(ε) 6= ∅
for any ε > 0, since Γ ⊂ Ωα(ε). Suppose by contraction that

lim
ε→0

diamΩα(ε) > β > 0.

Then there exists εn > 0 with εn → 0, and (xn, yn), (x̄n, ȳn) ∈ Ωα(εn) such that

‖(xn, yn)− (x̄n, ȳn)‖ > β, ∀n ∈ N,

where the norm ‖ · ‖ in the product space X × Y is defined as follows

‖(u, v)− (ū, v̄)‖ =
√
‖u− ū‖2 + ‖v − v̄‖2, ∀(u, v), (ū, v̄) ∈ X × Y. (3.2)
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(It is not difficult to verify that X × Y is a Banach space in terms of the last norm.)

Since (xn, yn), (x̄n, ȳn) ∈ Ωα(εn) and SMQVLI (2.1) is α-well-posed, the sequences {(xn, yn)}
and {(x̄n, ȳn)}, which are both α-approximating sequences for SMQVLI (2.1), converge strongly
to the unique solution (x0, y0), and this leads to a contraction. Therefore, (3.1) holds.

Conversely, let (3.1) hold and {(xn, yn)} ⊂ C × D be any α-approximating sequence for
SMQVLI (2.1). Then, there exists a sequence εn > 0 with εn → 0 such that

d(xn, S(xn, yn)) ≤ εn, and 〈A(xn, yn), η̂(xn, z)〉+f(xn, yn)−f(z, yn) ≤ εn+
α

2
‖xn−z‖2, ∀z ∈ S(xn, yn),

d(yn, T (xn, yn)) ≤ εn, and 〈B(xn, yn), η̄(yn, w)〉+g(xn, yn)−g(xn, w) ≤ εn+
α

2
‖yn−w‖2, ∀w ∈ T (xn, yn).

This implies that {(xn, yn)} ⊂ Ωα(εn), ∀n ∈ N . Since the solution set Γ of SMQVLI (2.1)
is nonempty, we can take two elements in Γ arbitrarily, denoted by (x0, y0) and (x̄0, ȳ0),
respectively. Note that Γ ⊂ Ωα(ε) for all ε > 0. Hence both (x0, y0) and (x̄0, ȳ0) lie in Ωα(εn)
for all n ≥ 1. This fact together with (3.1) yields

‖(xn, yn)− (x0, y0)‖ ≤ diamΩα(εn) → 0 and ‖(xn, yn)− (x̄0, ȳ0)‖ ≤ diamΩα(εn) → 0. (3.3)

Utilizing (3.3) and the uniqueness of the limit we conclude that (x0, y0) = (x̄0, ȳ0). This means
that Γ is a singleton. Thus, it is known that SMQVLI (2.1) has the unique solution (x0, y0)
and {(xn, yn)} converges strongly to (x0, y0). This shows that SMQVLI (2.1) is α-well-posed.
This completes the proof. 2

Corollary 3.1 (i.e., [8, Theorem 3.1]). SQEP (2.2) is α-well-posed if and only if the
solution set Γ of SQEP (2.2) is nonempty and

lim
ε→0

diamMε = 0,

where

Mε = {(x0, y0) ∈ C ×D : x0 ∈ B(S(x0, y0), ε), f(x0, y0)− f(z, y0) ≤ ε + α
2
‖x0 − z‖2,∀z ∈ S(x0, y0),

y0 ∈ B(T (x0, y0), ε), g(x0, y0)− g(x0, w) ≤ ε + α
2
‖y0 − w‖2,∀w ∈ T (x0, y0)}.

Proof. Put A = 0, B = 0, η̂ = 0 and η̄ = 0 in Theorem 3.1. Then, utilizing Theorem 3.1
we get the desired result. 2

In the sequel the following concept will be needed to apply to our main results.

Definition 3.1. Let C be a nonempty, closed convex subset of X. A single-valued mapping
η : C × C → X is said to be Lipschitz continuous if there exists a constant λ > 0 such that

‖η(x, y)‖ ≤ λ‖x− y‖, ∀x, y ∈ C.
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We remark that, whenever X = H a Hilbert space and C = K a nonempty closed convex
subset of H, the Lipschitz continuous mapping η : K × K → H has been introduced and
considered in Ansari and Yao [10]. In their main result for the existence of solutions and
convergence of iterative algorithm (i.e., [10, Theorem 3.1]), the Lipschitz continuous mapping
η : K ×K → H satisfies the following conditions:

(a) η(x, y) + η(y, x) = 0 for all x, y ∈ K,
(b) η(x, y) = η(x, z) + η(z, y) for all x, y, z ∈ K,
(c) η(·, ·) is affine in the first variable,
(d) for each fixed y ∈ K, x 7→ η(y, x) is sequentially continuous from the weak topology

to the weak topology (in short, (w, w)-continuous).

Inspired by the above restrictions imposed on the Lipschitz continuous mapping η, we give
the following theorem.

Theorem 3.2. Assume that the following conditions hold:
(i) set-valued mappings S and T are nonempty convex-valued, (s, w)-closed, (s, s)-lower

semicontinuous and (s, w)-subcontinuous on C ×D;
(ii) single-valued mappings A and B are (s, w∗)-continuous on C ×D;
(iii) single-valued mappings η̂ and η̄ are Lipschitz continuous with constants λ̂ and λ̄

respectively, such that
(a) η̂(x1, x3) = η̂(x1, x2)+ η̂(x2, x3) for all x1, x2, x3 ∈ C and η̄(y1, y3) = η̄(y1, y2)+ η̄(y2, y3)

for all y1, y2, y3 ∈ D,
(b) η̂(·, ·) and η̄(·, ·) both are affine in the second variable;
(iv) functions f and g are continuous on C ×D;
(v) for any y ∈ D, the function f(·, y) is convex on C; for any x ∈ C, the function g(x, ·)

is convex on D.
Then, SMQVLI (2.1) is α-well-posed if and only if

Ωα(ε) 6= ∅, ∀ε > 0, and lim
ε→0

diamΩα(ε) = 0. (3.4)

Proof. First, utilizing condition (iii) (a), we can readily obtain that

η̂(x1, x1) = 0, and η̂(x1, x2) = −η̂(x2, x1), ∀x1, x2 ∈ C;

η̄(y1, y1) = 0, and η̄(y1, y2) = −η̄(y2, y1), ∀y1, y2 ∈ D.

The necessity has been proved in Theorem 3.1. For the sufficiency, let condition (3.4)
hold. Let {(xn, yn)} ⊂ C ×D be any α-approximating sequence for SMQVLI (2.1). Now let
us show that Γ is a singleton and {(xn, yn)} converges strongly to the unique element of Γ .
As a matter of fact, since {(xn, yn)} be α-approximating sequence for SMQVLI (2.1), there
exists a sequence εn > 0 with εn → 0 such that

d(xn, S(xn, yn)) ≤ εn, and 〈A(xn, yn), η̂(xn, z)〉+f(xn, yn)−f(z, yn) ≤ εn+
α

2
‖xn−z‖2, ∀z ∈ S(xn, yn),
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d(yn, T (xn, yn)) ≤ εn, and 〈B(xn, yn), η̄(yn, w)〉+g(xn, yn)−g(xn, w) ≤ εn+
α

2
‖yn−w‖2, ∀w ∈ T (xn, yn).

This means {(xn, yn)} ⊂ Ωα(εn), ∀n ∈ N . It follows from (3.4) that {(xn, yn)} is a Cauchy
sequence in Banach space (X×Y, ‖·‖) and hence converges strongly to a point (x0, y0) ∈ X×Y .
By the definition of the norm ‖ · ‖ in Banach space (X × Y, ‖ · ‖), we deduce that

‖xn − x0‖ ≤
√
‖xn − x0‖2 + ‖yn − y0‖2 = ‖(xn, yn)− (x0, y0)‖ → 0,

‖yn − y0‖ ≤
√
‖xn − x0‖2 + ‖yn − y0‖2 = ‖(xn, yn)− (x0, y0)‖ → 0.

On account of the closedness of C and D we conclude from {xn} ⊂ C and {yn} ⊂ D that
xn → x0 ∈ C and yn → y0 ∈ D. In order to show (x0, y0) ∈ Γ , we start to prove that

d(x0, S(x0, y0)) ≤ lim inf
n

d(xn, S(xn, yn)) = lim
n

εn = 0.

Indeed, suppose that the left inequality does not hold. Then there exists a positive number γ
such that

lim inf
n

d(xn, S(xn, yn)) < γ < d(x0, S(x0, y0)),

or equivalently, there exist an increasing sequence {nk} and a sequence {zk}, zk ∈ S(xnk
, ynk

),
∀k ∈ N such that

‖xnk
− zk‖ < γ, ∀k ∈ N.

Since the set-valued mapping S is (s, w)-closed and (s, w)-subcontinuous, the sequence {zk}
has a subsequence, denoted still by {zk}, converging weakly to a point z0 ∈ S(x0, y0). From
the weak lower semicontinuity of the norm, it follows that

γ < d(x0, S(x0, y0)) ≤ ‖x0 − z0‖ ≤ lim inf
k

‖xnk
− zk‖ < γ,

which leads to a contradiction. Thus we must have d(x0, S(x0, y0)) = 0 and hence x0 ∈
S(x0, y0). Similarly, we can prove y0 ∈ T (x0, y0).

To complete the proof, we take a point z ∈ S(x0, y0) arbitrarily. Since S is (s, s)-lower
semicontinuous, there exists a sequence {zn} converging strongly to z, such that zn ∈ S(xn, yn)
for n sufficiently large. Furthermore, utilizing condition (iii) (a) and the Lipschitz continuity
of η̂ we deduce that

‖η̂(xn, zn)− η̂(x0, z)‖ = ‖η̂(xn, zn)− η̂(x0, zn) + η̂(x0, zn)− η̂(x0, z)‖
≤ ‖η̂(xn, zn)− η̂(x0, zn)‖+ ‖η̂(x0, zn)− η̂(x0, z)‖
= ‖η̂(xn, zn) + η̂(zn, x0)‖+ ‖η̂(x0, zn) + η̂(z, x0)‖
= ‖η̂(xn, x0)‖+ ‖η̂(z, zn)‖
≤ λ̂(‖xn − x0‖+ ‖zn − z‖) → 0 as n →∞.

Since A is (s, w∗)-continuous, it is known that A(xn, yn) converges weak∗ly to A(x0, y0), that is,
for each x ∈ X, the real sequence {〈A(xn, yn), x〉} converges to the real number 〈A(x0, y0), x〉.
This implies that {〈A(xn, yn), x〉} is a bounded sequence of real numbers for each x ∈ X. Thus
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{A(xn, yn)} is bounded in the norm topology according to the uniform boundedness principle
[11], that is, supn≥1 ‖A(xn, yn)‖ < ∞.

Now observe that

|〈A(xn, yn), η̂(xn, zn)〉 − 〈A(x0, y0), η̂(x0, z)〉|
= |〈A(xn, yn), η̂(xn, zn)〉 − 〈A(xn, yn), η̂(x0, z)〉+ 〈A(xn, yn), η̂(x0, z)〉 − 〈A(x0, y0), η̂(x0, z)〉|
≤ |〈A(xn, yn), η̂(xn, zn)− η̂(x0, z)〉|+ |〈A(xn, yn)− A(x0, y0), η̂(x0, z)〉|
≤ ‖A(xn, yn)‖‖η̂(xn, zn)− η̂(x0, z)‖+ |〈A(xn, yn)− A(x0, y0), η̂(x0, z)〉| → 0 as n →∞.

Consequently, it follows from condition (iv) that

〈A(x0, y0), η̂(x0, z)〉+ f(x0, y0)− f(z, y0) = lim
n
{〈A(xn, yn), η̂(xn, zn)〉+ f(xn, yn)− f(zn, yn)}

≤ lim
n

(εn +
α

2
‖xn − zn‖2)

= α
2
‖x0 − z‖2,

for all z ∈ S(x0, y0). Analogously, we have

〈B(x0, y0), η̄(y0, w)〉+ g(x0, y0)− g(x0, w) ≤ α

2
‖y0 − w‖2, ∀w ∈ T (x0, y0).

It follows from Lemma 2.1 that (x0, y0) ∈ Γ . Therefore, SMQVLI (2.1) is α-well-posed. This
completes the proof. 2

Corollary 3.2 (i.e., [8, Theorem 3.2]). Assume that the following conditions hold:
(i) set-valued mappings S and T are nonempty convex-valued, (s, w)-closed, (s, s)-lower

semicontinuous and (s, w)-subcontinuous on C ×D;
(ii) functions f and g are continuous on C ×D;
(iii) for any y ∈ D, the function f(·, y) is convex on C; for any x ∈ C, the function g(x, ·)

is convex on D.
Then, SQEP (2.2) is α-well-posed if and only if

Mε 6= ∅, ∀ε > 0, and lim
ε→0

diamMε = 0.

To illustrate Theorem 3.2, we give the following two examples.

Example 3.1. Let X = Y = R and C = D = R+ (= [0, +∞)). Let S(x, y) =
[0, x], T (x, y) = [0, y], A(x, y) = B(x, y) = −(x − y)2, η̂(x, z) = x − z, η̄(y, w) = y −
w, f(x, y) = x2 − y2 and g(x, y) = y2 − x2 for all x, z ∈ C and y, w ∈ D. Obviously, the
conditions (i)-(v) of Theorem 3.2 are satisfied. Note that

{(x, y) ∈ C ×D : d(x, S(x, y)) ≤ ε, 〈A(x, y), η̂(x, z)〉+ f(x, y)− f(z, y) ≤ ε + α
2
‖x− z‖2,

∀z ∈ S(x, y)}
= {(x, y) ∈ C ×D : d(x, S(x, y)) ≤ ε, − (x− y)2(x− z) + x2 − z2 ≤ ε + α

2
(x− z)2, ∀z ∈ S(x, y)}

= {(x, y) ∈ C ×D : d(x, S(x, y)) ≤ ε, − (x− y)2(x− z)− (2 + α)(z − αx
2+α

)2 + 4
2+α

x2 − 2ε ≤ 0,

∀z ∈ S(x, y)}
= [0,

√
(2+α)ε

2
]×R,
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and

{(x, y) ∈ C ×D : d(y, T (x, y)) ≤ ε, 〈B(x, y), η̄(y, w)〉+ g(x, y)− g(x,w) ≤ ε + α
2
‖y − w‖2,

∀w ∈ T (x, y)}
= {(x, y) ∈ C ×D : d(y, T (x, y)) ≤ ε, − (x− y)2(y − w) + y2 − w2 ≤ ε + α

2
(y − w)2, ∀w ∈ T (x, y)}

= {(x, y) ∈ C ×D : d(y, T (x, y)) ≤ ε, − (x− y)2(y − w)− (2 + α)(w − αy
2+α

)2 + 4
2+α

y2 − 2ε ≤ 0,

∀w ∈ T (x, y)}
= R× [0,

√
(2+α)ε

2
].

It follows that

Ωα(ε) = [0,

√
(2 + α)ε

2
]× [0,

√
(2 + α)ε

2
]

and so diamΩα → 0 as ε → 0. By Theorem 3.2, SMQVLI (2.1) is α-well-posed.

Example 3.2. Let X = Y = R and C = D = R+ (= [0, +∞)). Let S(x, y) =
[0, x], T (x, y) = [0, y], A(x, y) = B(x, y) = −(x − y)2, η̂(x, z) = x − z, η̄(y, w) = y − w and
f(x, y) = g(x, y) = −xy for all x, z ∈ C and y, w ∈ D. It is easy to see that the conditions
(i)-(v) of Theorem 3.2 are satisfied, and Ωα(ε) = [0, +∞) × [0, +∞). But, SMQVLI (2.1) is
not α-well-posed, since diamΩα(ε) 6→ 0 as ε → 0.

Whenever α = 0, we have the following result.

Theorem 3.3. Assume that the following conditions hold:
(i) set-valued mappings S and T are nonempty convex-valued, (s, w)-closed, (s, s)-lower

semicontinuous and (s, w)-subcontinuous on C ×D;
(ii) single-valued mappings A and B are (s, w∗)-continuous on C ×D;
(iii) single-valued mappings η̂ and η̄ are Lipschitz continuous with constants λ̂ and λ̄

respectively, such that for all x1, x2, x3 ∈ C and y1, y2, y3 ∈ D

η̂(x1, x3) = η̂(x1, x2) + η̂(x2, x3) and η̄(y1, y3) = η̄(y1, y2) + η̄(y2, y3);

(iv) functions f and g are continuous on C ×D.
Then, SMQVLI (2.1) is well-posed if and only if

Ω0(ε) 6= ∅, ∀ε > 0, and lim
ε→0

diamΩ0(ε) = 0.

Corollary 3.3 (i.e., [8, Corollary 3.1]). Assume that the following conditions hold:
(i) set-valued mappings S and T are nonempty convex-valued, (s, w)-closed, (s, s)-lower

semicontinuous and (s, w)-subcontinuous on C ×D;
(ii) functions f and g are continuous on C ×D.

Then, SQEP (2.2) is well-posed if and only if

Mε 6= ∅, ∀ε > 0, and lim
ε→0

diamMε = 0.
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The following theorem shows that under some suitable conditions, the α-well-posedness of
SMQVLI (2.1) is equivalent to the existence and uniqueness of its solutions.

Theorem 3.4. Let X and Y be two finite-dimensional spaces. Suppose that the following
conditions hold:

(i) set-valued mappings S and T are nonempty convex-valued, closed, lower semicontinuous
and subcontinuous on C ×D;

(ii) single-valued mappings A and B are continuous on C ×D;
(iii) single-valued mappings η̂ and η̄ are Lipschitz continuous with constants λ̂ and λ̄

respectively, such that
(a) η̂(x1, x3) = η̂(x1, x2)+ η̂(x2, x3) for all x1, x2, x3 ∈ C and η̄(y1, y3) = η̄(y1, y2)+ η̄(y2, y3)

for all y1, y2, y3 ∈ D,
(b) η̂(·, ·) and η̄(·, ·) both are affine in the second variable;
(iv) the functions f and g are continuous on C ×D;
(v) for any y ∈ D, the function f(·, y) is convex on C; for any x ∈ C, the function g(x, ·)

is convex on D;
(vi) Ωα(ε) is nonempty bounded for some ε > 0.

Then, SMQVLI (2.1) is α-well-posed if and only if SMQVLI (2.1) has a unique solution.

Proof. The necessary of the theorem is obvious. In order to show the sufficiency, let
(x0, y0) be the unique solution of SMQVLI (2.1) and {(xn, yn)} be any α-approximating se-
quence for SMQVLI (2.1). Then there exists a sequence εn > 0 with εn → 0 such that,

d(xn, S(xn, yn)) ≤ εn, and 〈A(xn, yn), η̂(xn, z)〉+f(xn, yn)−f(z, yn) ≤ εn+
α

2
‖xn−z‖2, ∀z ∈ S(xn, yn),

d(yn, T (xn, yn)) ≤ εn, and 〈B(xn, yn), η̄(yn, w)〉+g(xn, yn)−g(xn, w) ≤ εn+
α

2
‖yn−w‖2, ∀w ∈ T (xn, yn).

which means {(xn, yn)} ⊂ Ωα(εn), ∀n ∈ N . Let ε > 0 be such that Ωα(ε) is nonempty
bounded. Then there exists n0 ∈ N such that {(xn, yn)} ⊂ Ωα(εn) ⊂ Ωα(ε) for all n ≥ n0.
Thus, {(xn, yn)} is bounded and so the sequence {(xn, yn)} has a subsequence {(xnk

, ynk
)}

which converges to (x̃, ỹ). Reasoning as in Theorem 3.2, one can prove that (x̃, ỹ) solves
SMQVLI (2.1). The uniqueness of the solution implies that (x0, y0) = (x̃, ỹ), and so the
whole sequence {(xn, yn)} converges to (x0, y0). Thus, SMQVLI (2.1) is α-well-posed. This
completes the proof. 2

Example 3.3. Let X = Y = R and C = D = R+ (= [0, +∞)). Let S(x, y) =
[0, x], T (x, y) = [0, y], A(x, y) = B(x, y) = −(x − y)2, η̂(x, z) = x − z, η̄(y, w) = y −
w, f(x, y) = x2 − y2 and g(x, y) = y2 − x2 for all x, z ∈ C and y, w ∈ D. Clearly, the
conditions (i)-(vi) of Theorem 3.3 are satisfied, and SMQVLI (2.1) has a unique solution
(x0, y0) = (0, 0). By Theorem 3.3, SMQVLI (2.1) is α-well-posed.

Corollary 3.4 (i.e., [8, Theorem 3.3]) Let X and Y be two finite-dimensional spaces.
Suppose that the following conditions hold:

14



(i) set-valued mappings S and T are nonempty convex-valued, closed, lower semicontinuous
and subcontinuous on C ×D;

(ii) the functions f and g are continuous on C ×D;
(iii) for any y ∈ D, the function f(·, y) is convex on C; for any x ∈ C, the function g(x, ·)

is convex on D;
(iv) Mε is nonempty bounded for some ε > 0.

Then, SQEP (2.2) is α-well-posed if and only if SQEP (2.2) has a unique solution.

4. Metric Characterizations of α-Well-Posedness
in the Generalized Sense for SMQVLI

In this section, we derive some metric characterizations of α-well-posedness in the gener-
alized sense for SMQVLI (2.1) by considering the non-compactness of approximate solution
set.

Theorem 4.1. SMQVLI (2.1) is α-well-posed in the generalized sense if and only if the
solution set Γ of SMQVLI (2.1) is nonempty compact and

e(Ωα(ε),Γ ) → 0 as ε → 0. (4.1)

Proof. Suppose that SMQVLI (2.1) is α-well-posed in the generalized sense. Then Γ is
nonempty. To show the compactness of Γ , let {(xn, yn)} ⊂ Γ . Clearly, if {(xn, yn)} is an
approximation sequence of SMQVLI (2.1), then it is also α-approximation sequence. Since
SMQVLI (2.1) is α-well-posed in the generalized sense, it contains a subsequence converging
strongly to an element of Γ . Thus, Γ is compact. Now, we prove that (4.1) holds. Suppose
by contradiction that there exist γ > 0, 0 < εn → 0, and (xn, yn) ∈ Ωα(εn) such that

d((xn, yn),Γ ) ≥ γ. (4.2)

Being {(xn, yn)} ⊂ Ωα(εn), {(xn, yn)} is an α-approximating sequence for SMQVLI (2.1).
Since SMQVLI (2.1) is α-well-posed in the generalized sense, there exists a subsequence
{(xnk

, ynk
)} of {(xn, yn)} converging strongly to some element of Γ . This contradicts (4.2)

and so (4.1) holds.
To prove the converse, suppose that Γ is nonempty compact and (4.1) holds. Let {(xn, yn)}

be an α-approximating sequence for SMQVLI (2.1). Then {(xn, yn)} ⊂ Ωα(εn), and so
e(Ωα(εn),Γ ) → 0. This implies that there exists a sequence {(zn, wn)} ⊂ Γ such that

‖(xn, yn)− (zn, wn)‖ → 0.

where the norm ‖ · ‖ in the product space X × Y is defined as follows

‖(u, v)− (ū, v̄)‖ =
√
‖u− ū‖2 + ‖v − v̄‖2, ∀(u, v), (ū, v̄) ∈ X × Y.
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(It is not hard to verify that X × Y is a Banach space in terms of the last norm.)

Since Γ is compact, there exists a subsequence {(znk
, wnk

)} of {(zn, wn)} converging strongly
to (x0, y0) ∈ Γ . Hence the corresponding subsequence {(xnk

, ynk
)} of {(xn, yn)} converges

strongly to (x0, y0). Therefore, SMQVLI (2.1) is α-well-posed in the generalized sense. 2

We give the following example to illustrate that the compactness condition of Γ is neces-
sary.

Example 4.1. Let X = Y = R and C = D = R+ (= [0, +∞)). Let S(x, y) =
[x, x+y], T (x, y) = [y, x+y], A(x, y) = B(x, y) = x2+y2, η̂(x, z) = x−z, η̄(y, w) = y−w and
f(x, y) = g(x, y) = xy for all x, z ∈ C and y, w ∈ D. Then Γ = Ωα(ε) = [0, +∞)× [0, +∞). It
is clear that e(Ωα(ε),Γ ) → 0 as ε → 0. It is easy to see that the diverging sequence {(n, n)}n∈N

is an α-approximating sequence, but it has no convergent subsequence. Therefore, SMQVLI
(2.1) is not α-well-posed in the generalized sense.

Corollary 4.1 (i.e., [8, Theorem 4.1]). SQEP (2.2) is α-well-posed in the generalized sense
if and only if the solution set Γ of SQEP (2.2) is nonempty compact and

e(Mε, Γ) → 0 as ε → 0.

Theorem 4.2. Assume that the following conditions hold:
(i) set-valued mappings S and T are nonempty convex-valued, (s, w)-closed, (s, s)-lower

semicontinuous and (s, w)-subcontinuous on C ×D;
(ii) single-valued mappings A and B are (s, w∗)-continuous on C ×D;
(iii) single-valued mappings η̂ and η̄ are Lipschitz continuous with constants λ̂ and λ̄

respectively, such that
(a) η̂(x1, x3) = η̂(x1, x2)+ η̂(x2, x3) for all x1, x2, x3 ∈ C and η̄(y1, y3) = η̄(y1, y2)+ η̄(y2, y3)

for all y1, y2, y3 ∈ D,
(b) η̂(·, ·) and η̄(·, ·) both are affine in the second variable;
(iv) functions f and g are continuous on C ×D;
(v) for any y ∈ D, the function f(·, y) is convex on C; for any x ∈ C, the function g(x, ·)

is convex on D.
Then, SMQVLI (2.1) is α-well-posed in the generalized sense if and only if

Ωα(ε) 6= ∅, ∀ε > 0, and lim
ε→0

µ(Ωα(ε)) = 0. (4.3)

Proof. Suppose that SMQVLI (2.1) is α-well-posed in the generalized sense. By the same
argument as in Theorem 4.1, Γ is nonempty compact, and e(Ωα(ε),Γ ) → 0 as ε → 0. Clearly
Ωα(ε) 6= ∅ for any ε > 0, because Γ ⊂ Ωα(ε). Observe that for any ε > 0, we have

H(Ωα(ε),Γ ) = max{e(Ωα(ε),Γ ), e(Γ ,Ωα(ε))} = e(Ωα(ε),Γ ).
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Since Γ is compact, µ(Γ ) = 0 and the following relation holds (see, e.g., [12]):

µ(Ωα(ε)) ≤ 2H(Ωα(ε),Γ ) + µ(Γ ) = 2H(Ωα(ε),Γ ) = 2e(Ωα(ε),Γ ).

It follows that (4.3) holds.
Conversely, suppose that (4.3) holds. It is easy to prove that Ωα(ε), for any ε > 0, is

closed. Note that Ωα(ε) ⊂ Ωα(ε′) whenever ε < ε′, their intersection Ωα =
⋂

ε>0 Ωα(ε) is
nonempty compact and satisfies: limε→0H(Ωα(ε),Ωα) = 0 ([9, p. 412]), where

Ωα = {(x0, y0) ∈ C ×D :
x0 ∈ S(x0, y0), 〈A(x0, y0), η̂(x0, z)〉+ f(x0, y0)− f(z, y0) ≤ α

2
‖x0 − z‖2, ∀z ∈ S(x0, y0),

y0 ∈ T (x0, y0), 〈B(x0, y0), η̄(y0, w)〉+ g(x0, y0)− g(x0, w) ≤ α
2
‖y0 − w‖2, ∀w ∈ T (x0, y0)}.

By Lemma 2.1, we obtain that Ωα coincides with the solution set Γ of SMQVLI (2.1). Thus,
Γ is compact.

Let {(xn, yn)} be any α-approximating sequence for SMQVLI (2.1). Then there exists a
sequence εn > 0 with εn → 0 such that

d(xn, S(xn, yn)) ≤ εn, and 〈A(xn, yn), η̂(xn, z)〉+f(xn, yn)−f(z, yn) ≤ εn+
α

2
‖xn−z‖2, ∀z ∈ S(xn, yn),

d(yn, T (xn, yn)) ≤ εn, and 〈B(xn, yn), η̄(yn, w)〉+g(xn, yn)−g(xn, w) ≤ εn+
α

2
‖yn−w‖2, ∀w ∈ T (xn, yn).

which means {(xn, yn)} ⊂ Ωα(εn), ∀n ∈ N . It follows from (4.3) that there exists a sequence
{(zn, wn)} ⊂ Γ such that

‖(xn, yn)− (zn, wn)‖ = d((xn, yn),Γ ) ≤ e(Ωα(εn),Γ ) = H(Ωα(εn),Γ ) → 0.

Since Γ is compact, there exists a subsequence {(znj
, wnj

)} of {(zn, wn)} converging strongly
to (x0, y0) ∈ Γ . Hence, the corresponding subsequence {(xnj

, ynj
)} of {(xn, yn)} converges

strongly to (x0, y0). Thus, SMQVLI (2.1) is α-well-posed in the generalized sense. 2

Example 4.2. Let X = Y = R and C = D = [0, 1]. Let S(x, y) = [0, x], T (x, y) =
[0, y], A(x, y) = B(x, y) = −(x−y)2, η̂(x, z) = x−z, η̄(y, w) = y−w and f(x, y) = g(x, y) =
−xy for all x, z ∈ C and y, w ∈ D. Obviously, the conditions (i)-(v) of Theorem 4.2 are
satisfied, and Ωα(ε) = [0, 1] × [0, 1]. By Theorem 4.2, SMQVLI (2.1) is α-well-posed in the
generalized sense.

Corollary 4.2 (i.e., [8, Theorem 4.2]). Assume that the following conditions hold:
(i) set-valued mappings S and T are nonempty convex-valued, (s, w)-closed, (s, s)-lower

semicontinuous and (s, w)-subcontinuous on C ×D;
(ii) functions f and g are continuous on C ×D;
(iii) for any y ∈ D, the function f(·, y) is convex on C; for any x ∈ C, the function g(x, ·)

is convex on D.
Then, SQEP (2.2) is α-well-posed in the generalized sense if and only if

Mε 6= ∅, ∀ε > 0, and lim
ε→0

µ(Mε) = 0.
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We now give a sufficient condition for the α-well-posedness in the generalized sense of
SMQVLI (2.1) in finite-dimensional spaces.

Theorem 4.3. Let X and Y be two finite-dimensional spaces. Suppose that the following
conditions hold:

(i) set-valued mappings S and T are nonempty convex-valued, closed, lower semicontinuous
and subcontinuous on C ×D;

(ii) single-valued mappings A and B are continuous on C ×D;
(iii) single-valued mappings η̂ and η̄ are Lipschitz continuous with constants λ̂ and λ̄

respectively, such that
(a) η̂(x1, x3) = η̂(x1, x2)+ η̂(x2, x3) for all x1, x2, x3 ∈ C and η̄(y1, y3) = η̄(y1, y2)+ η̄(y2, y3)

for all y1, y2, y3 ∈ D,
(b) η̂(·, ·) and η̄(·, ·) both are affine in the second variable;
(iv) functions f and g are continuous on C ×D;
(v) for any y ∈ D, the function f(·, y) is convex on C; for any x ∈ C, the function g(x, ·)

is convex on D;
(vi) Ωα(ε) is nonempty bounded for some ε > 0.

Then, SMQVLI (2.1) is α-well-posed in the generalized sense.

Proof. Let {(xn, yn)} be any α-approximating sequence for SMQVLI (2.1). Then there
exists a sequence εn > 0 with εn → 0 such that

d(xn, S(xn, yn)) ≤ εn, and 〈A(xn, yn), η̂(xn, z)〉+f(xn, yn)−f(z, yn) ≤ εn+
α

2
‖xn−z‖2, ∀z ∈ S(xn, yn),

d(yn, T (xn, yn)) ≤ εn, and 〈B(xn, yn), η̄(yn, w)〉+g(xn, yn)−g(xn, w) ≤ εn+
α

2
‖yn−w‖2, ∀w ∈ T (xn, yn).

As proven in Theorem 3.3, {(xn, yn)} is bounded. Then there exists a subsequence {(xnj
, ynj

)}
of {(xn, yn)} which converges to (x0, y0). Reasoning as in Theorem 3.2, one can prove that
(x0, y0) solves SMQVLI (2.1). Therefore, SMQVLI (2.1) is α-well-posed in the generalized
sense. 2

The following example shows that the nonempty boundedness of Ωα(ε) is necessary for
some ε > 0.

Example 4.3. Let X = Y = R and C = D = R+ (= [0, +∞)). Let S(x, y) =
[0, x], T (x, y) = [0, y], A(x, y) = B(x, y) = −(x − y)2, η̂(x, z) = x − z, η̄(y, w) = y − w
and f(x, y) = g(x, y) = −xy for all x, z ∈ C and y, w ∈ D. Clearly, the conditions (i)-(v) of
Theorem 4.3 are satisfied. But Ωα(ε) = [0, +∞)× [0, +∞) is unbounded. Therefore, SMQVLI
(2.1) is not α-well-posed in the generalized sense.

Corollary 4.3 (i.e., [8, Theorem 4.3]). Let X and Y be two finite-dimensional spaces.
Suppose that the following conditions hold:
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(i) set-valued mappings S and T are nonempty convex-valued, closed, lower semicontinuous
and subcontinuous on C ×D;

(ii) functions f and g are continuous on C ×D;
(iii) for any y ∈ D, the function f(·, y) is convex on C; for any x ∈ C, the function g(x, ·)

is convex on D;
(iv) Mε is nonempty bounded for some ε > 0.

Then, SQEP (2.2) is α-well-posed in the generalized sense.

5. Concluding Remarks

In this paper, we generalize the concept of α-well-posedness to the system of mixed
quasivariational-like inequalities which includes as a special case symmetric quasi-equilibrium
problems considered in Long and Huang [8]. It is well known that symmetric quasi-equilibrium
problems include equilibrium problems, Nash equilibrium problems, quasivariational inequali-
ties, variational inequalities and fixed point problems as special cases. It is worth emphasizing
that the results presented in [8] generalize and improve some known results in the recent lit-
erature; see, e.g., [13-18].

Further, under some suitable conditions, we obtain some metric characterizations of α-
well-posedness for the system of mixed quasivariational-like inequalities in Banach spaces.
The results presented in this paper represent the supplement, improvement, generalization
and development of Long and Huang’s known results [8] in the following aspects:

(i) The symmetric quasi-equilibrium problem (SQEP) in [8] is extended to develop the more
general problem, that is, the system of mixed quasivariational-like inequalities (SMQVLI)
in the setting of Banach spaces. Moreover, the concept of α-well-posedness (resp., in the
generalized sense) for SQEP is extended to develop the concept of α-well-posedness (resp., in
the generalized sense) for SMQVLI.

(ii) Since the system of mixed quasivariational-like inequalities (SMQVLI) is more general
and more complicated than the symmetric quasi-equilibrium problem (SQEP), the assump-
tions in our results are very different from the corresponding ones in [8]; see, for instance, the
assumptions imposed on the single-valued mappings A, B and η̂, η̄.

(iii) The new technique of arguments are applied to deriving our main results. As a matter
of fact, in the process of proving our main results, our arguments depend on the properties
of the mappings η̂, η̄, the uniform boundedness principle for a family of linear continuous
functionals, the completion of the Banach space (X×Y, ‖ · ‖), etc. For instance, see the proof
of Theorem 3.2.
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