Arsenic methylation, GSTO1 polymorphisms, and metabolic

syndrome in arseniasis endemic area of southwestern Taiwan

Jein-Wen Chen¹, PhD; Wan-Fen Li¹, PhD; Ya-Hui Wang¹, MSc; Yeou-Lih Huang², PhD; Chien-Wen Sun¹, MSc; Chien-Jen Chen³, PhD; Shu-Li Wang^{1,4*}, PhD

 ¹Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan;
 ²Faculty of Biomedical Laboratory Science, Kaohsiung Medical University;
 ³Genomic Research Center, Academia Sinica, Taipei, Taiwan;
 ⁴Department of Public Health, China Medical University, Taichung, Taiwan

* Address correspondence to:

Dr. Shu-Li Wang,

Division of Environmental Health and Occupational Medicine, National Health

Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan,

ROC.

Tel.: +886 (0) 37 246 166 extn. <u>36509.</u> Fax: +886 (0) 37-587 406. E-Mail:

slwang@nhri.org.tw.

Running head: Arsenic and metabolic syndrome

Word count: 4580 including abstract (203) and main text; 6 tables

1 Abstract

2	Previous studies have shown that hair arsenic (As) levels are associated with an
3	increased prevalence of metabolic syndrome (MetS), which is a strong predictor for
4	type 2 diabetes. The objective of this study was to evaluate whether urinary arsenic
5	methylation is related to MetS in the arseniasis endemic area of southwestern
6	Taiwan, taking genetic factors into account. Subjects were from a community-based
7	cohort recruited in 1990 from three villages in Putai township. In 2002-2003, 247
8	subjects were successfully followed, including urinary arsenic speciation
9	measurements and single-nucleotide polymorphism determinations. We found that
10	subjects with MetS drank from well water with higher As concentrations. Multiple
11	logistic regression analysis showed that the odds ratio (OR) of MetS significantly
12	increased with increasing dimethylarsinic acid ratios (dimethylarsinic acid
13	levels/Total As) and decreasing monomethylarsonic acid ratios (monomethylarsonic
14	acid levels/Total As). The highest OR (4.65, 95% CI: 2.22-9.73, p<0.001) was found
15	in the higher secondary methylation index group with the GSTO1 AA genotype
16	compared to the reference group with lower secondary methylation index and the
17	GSTO1 AA genotype. Our findings suggested that a decreasing monomethylarsonic
18	acid ratio is associated with an increased risk of MetS and that this risk might be
19	marginally modified by the GSTO1 genotype among As-exposed subjects.

- **Keywords:** arsenic, metabolic syndrome, type 2 diabetes mellitus, risk factor,
- 22 methylation

1. Introduction

25	Due to the lack of treated tap water and the high salinity of shallow well water
26	during 1910-1960s, the local residents (before the 1970s) in an arseniasis endemic
27	area of southwestern Taiwan typically consumed artesian well water with arsenic
28	(As) concentrations as high as 0.7-0.93 mg/L (Kuo, 1964). Several studies have
29	shown a dose-response relationship between As in drinking water and the prevalence
30	of diabetes mellitus in southwestern Taiwan (Wang et al., 2003).
31	As is abundant in the environment (Smith et al., 2002) and its threat in the
32	Western Pacific region has been noted (Suk et al., 2003). A great deal of new
33	information is emerging from the extensive research on the health effects of chronic
34	As toxicity (Guha Mazumder, 2008). Chronic exposure to high levels of inorganic
35	As (iAs) is associated with a wide range of human ailments including cancer,
36	arteriosclerosis, hypertension, and type 2 diabetes (T2D) (Fu et al., 2010). Recently
37	it has been shown that even low levels of exposure to iAs in drinking water may
38	play a role in the prevalence of T2D (Navas-Acien et al., 2008). Groundwater and
39	industrial materials are important sources of As (Nordstrom, 2002). Epidemiological
40	studies carried out in Taiwan (Chiou et al., 2006), Bangladesh (Nabi et al., 2005),
41	and Mexico (Coronado-Gonzalez et al., 2007) have shown a strong diabetogenic
42	effect of As in humans.

43	It is recognized that iAs contributes to oxidative stress in several organs and
44	systems through generation of reactive oxygen species, which can function as
45	signaling molecules to activate a number of cellular stress-sensitive pathways linked
46	to insulin resistance and decreased insulin secretion (Izquierdo-Vega et al., 2006).
47	T2D accounts for 90-95% of all cases of diabetes and is a major public health
48	problem (Wild et al., 2004). The prevalence of T2D has been increasing
49	substantially worldwide, including in Taiwan (Wang et al., 2005). Conventional risk
50	factors have been identified, but they have not yet been sufficiently explained (Wang
51	et al., 1997). Metabolic syndrome (MetS) has been demonstrated as a strong
52	predictor for T2D incidence in middle-aged individuals (Wannamethee et al., 2005).
53	Established risks factors for T2D include older age, obesity, physical inactivity,
54	family history, and genetic polymorphisms (Navas-Acien et al., 2006). Moreover, As,
55	an environmental toxicant, has been suggested to play an etiologic role in the
56	development of diabetes (Tseng, 2004). Wang et al. (2007) has also reported a
57	relationship between hair arsenic levels and MetS in a cross-sectional study in
58	Taiwan.
59	The toxicity of As greatly differs among their chemical species, and methylated
60	arsenicals are considered to be less toxic than iAs. Methylation is the major
61	metabolic pathway for iAs in humans, and most of the iAs (arsenite [AsIII] and

62	arsenate [AsV]) are metabolized to monomethylarsonic acid (MMAV) and
63	dimethylarsinic acid (DMAV) before excretion in the urine. Methylation of As
64	involves a two-electron reduction of pentavalent (e.g., AsV and MMAV) to trivalent
65	(e.g., AsIII and MMAIII [monomethylarsonous acid]) As species followed by the
66	transfer of a methyl group from a methyl donor, such as S-adenosylmethionine
67	(Thompson, 1993). In the biotransformation process of As, As (+3 oxidation state)
68	methyltransferase (AS3MT) and glutathion S-transferase ω (GSTO) are required in a
69	variety of animals including humans (Aposhian and Aposhian, 2006). GST is a
70	phase II enzyme that can detoxify xenobiotics by catalyzing their conjugation with
71	reduced glutathione. GSTO1 is involved in the reduction activities of AsV, MMAV,
72	and DMAV (Agusa et al., 2010). Human AS3MT is known to catalyze the
73	methylation of arsenite (Fujihara et al., 2010). However, methylation of iAs is not
74	necessarily a detoxification process, in that methylation is paradoxically both a
75	detoxification and activation process (Thomas et al., 2007).
76	In order to evaluate the changes in disease risk, we follow a community-based
77	population with documented previous ingestion of As from artesian well water
78	(Chen et al., 1995). We aimed to assess if GSTO1 and AS3MT affected the As
79	methylation patterns and evaluated the association among As methylation patterns,
80	gene polymorphisms, and the occurrence of MetS.

2. Materials and Methods

2.1 Study site and subjects

84	Subjects were form a community-based cohort recruited in 1990 (Chen et al.,
85	1995) consisting of 1297 men and women over 40-years-old. All subjects were from
86	Putai village, a high arsenic exposure township in southwestern Taiwan, where the
87	prevalence of black foot disease (BFD) was the highest and a median As
88	concentration in the artesian well water ranging from 700 to 930 μ g/L (Kuo, 1964).
89	The soil and water from shallow wells in this area has a high salt content. The
90	residents, therefore, have used artesian well water since the 1900s. During 1972 and
91	thereafter, a tap water supply system was implemented in this BFD endemic area,
92	which almost completely supplied the entire area with municipal water. In 1997 and
93	2002-3, we successfully followed 287 subjects from the residents, and 247 subjects
94	with urinary arsenic speciation measurements and single-nucleotide polymorphism
95	determinations.
96	

2.2 Data and specimen collections

98 Informed consent from each participant and approval by the Human Subjects
99 Review Board of National Health Research Institutes in Taiwan was obtained prior

100	to data collection. Demographic factors, artesian well water usage, personal and
101	family disease history of diabetes mellitus, dietary habits, and life style information
102	were acquired using standardized questionnaires at both baseline and follow-up.
103	Blood pressure was measured using a mercury sphygmomanometer with a suitable
104	cuff. Two measurements were carried out at least 30 min apart while subjects sat
105	calmly. If the difference between the two measurements exceeded 5% (i.e., >5
106	mmHg out of 100 mmHg), blood pressure was measured a third time. The average
107	of the two closest values was used for data analysis. The fasting blood samples were
108	stored frozen after collection and then keep in a -70° C freezer until analysis.
109	
107	
110	2.3 Specimen analysis
	2.3 Specimen analysis We quantified four As species in urine collected at the 2002-2003 follow-up:
110	
110 111	We quantified four As species in urine collected at the 2002-2003 follow-up:
110111112	We quantified four As species in urine collected at the 2002-2003 follow-up: arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMA), and
110111112113	We quantified four As species in urine collected at the 2002-2003 follow-up: arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Urinary As species were analyzed using
 110 111 112 113 114 	We quantified four As species in urine collected at the 2002-2003 follow-up: arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Urinary As species were analyzed using high-performance liquid chromatography (HPLC) coupled with flow injection
 110 111 112 113 114 115 	We quantified four As species in urine collected at the 2002-2003 follow-up: arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Urinary As species were analyzed using high-performance liquid chromatography (HPLC) coupled with flow injection atomic absorption spectrometry. The HPLC system consisted of a solvent delivery

119	(FIAS-400; PerkinElmer, Waltham, MA, USA) was designed as the on-line interface
120	to the continuous hydride generation system (Analyst 100; PerkinElmer, Waltham,
121	MA, USA). The within-day and between-day precision (coefficient of variation,
122	CV%) for AsIII, AsV, MMA, and DMA determinations ranged from 1.0 to 3.7%.
123	The recoveries for AsIII, AsV, MMA, and DMA were 99.0, 98.9, 99.0, and 99.0%,
124	while the detection limits were 0.75, 1.47, 1.19, and 0.76 μ g/L, respectively.
125	Fasting plasma was analyzed in a central laboratory of the Kaohsiung Medical
126	Center for blood glucose, cholesterol, triglycerides, low- and high-density
127	lipoproteins, urine acid, and urine creatinine using a Beckmen Synchron LX20
128	System (Beckman Coulter, Brea, CA, USA). The CV% ranged between 0.4% and
129	3.4% with a mean of 2.8% and 2.2% for day-to-day and within-run measurements,
130	respectively.
131	
132	2.4 Genotype Analysis
133	Genomic DNA was extracted from buffy coat using a commercial kit (Gentra
134	Puregene; Qiagen, Hilden, Germany). The genotype of GSTO1 A140D was
135	determined using polymerase chain reaction (PCR) followed by restriction enzyme
136	digestion as described previously (Marahatta et al., 2006). For the GSTO1 A140D

137 genotype, a PCR containing 100 ng of DNA was incubated at 93^oC for 5 min

138	followed by 33 cycles at 93° C for 60 sec, 51° C for 60 seconds, and 72° C for 30
139	seconds, with a final 4-min extension at 72^{0} C. The A140D polymorphism was
140	detected by Cac 8I digestion, with the result of a single 254 bp band indicating the
141	presence of the D allele, while double bands (186 and 68 bp) indicating the A allele.
142	For the GSTO2 N142D genotype, PCR conditions included an initial step at 95°C for
143	5 min followed by 35 cycles of 93° C for 60 sec, 62° C for 60 sec, and 72° C for 30 sec,
144	with a final 4-min extension at 72^{0} C. A fragment of 185 bp was amplified and
145	analyzed using Mbo I. The presence of the variant D allele resulted in digested
146	bands of 122 and 63 bp. All PCR products were analyzed using 3.5% NuSieve
147	(Cambrex, Charles City, IA, USA) agarose gel electrophoresis. Primers for GSTO1
148	A140D were 5'-GAACTTGATGCACCCTTGGT-3' (forward) and
149	5'-TGATAGCTAGGAGAAATAATTAC-3' (reverse). Primers for GSTO2 N142D
150	were 5'-AGGCAGAACAGGAACTGGAA-3' (forward) and
151	5'-GAGGGACCCCTTTTTGTACC-3' (reverse).
152	The AS3MT M287T genotype was determined using a commercial TaqMan
153	SNP Genotyping Assay (Assay ID C_31979150_10; Applied Biosystems, Foster
154	City, CA, USA). Reactions were conducted following the instructions of the

- 155 manufacturer.

2.5 Data analysis

158	Adult Treatment Panel III (2001) (Alberti et al., 2006; Saely et al., 2006)
159	criteria were adopted to define MetS: fasting plasma glucose ($\geq 110 \text{ mg/dL}$),
160	triglycerides (\geq 150 mg/dL), high density lipoprotein (\leq 40 mg/dL for men and \leq 50
161	mg/dL for women), increased systolic (\geq 130 mmHg) or diastolic (\geq 85 mmHg)
162	blood pressure, and waist girth (\geq 90 cm for men and \geq 80 cm for women). MetS
163	was defined as the presence of three or more of the risk factors mentioned above. We
164	also calculated insulin sensitivity (Si), which was the inverse of the homeostasis
165	model assessment index, defined as 22.5EXP[-ln(glucose)]/insulin (Cohen et al.,
166	2006).
167	The total urine As (TotAs) in the present study was defined as the sum of AsIII,
167 168	The total urine As (TotAs) in the present study was defined as the sum of AsIII, AsV, MMA, and DMA. The cumulative arsenic exposure (CAE) (mg/L-y) was
168	AsV, MMA, and DMA. The cumulative arsenic exposure (CAE) (mg/L-y) was
168 169	AsV, MMA, and DMA. The cumulative arsenic exposure (CAE) (mg/L-y) was defined as the sum of the products, derived by multiplying the As concentration in
168 169 170	AsV, MMA, and DMA. The cumulative arsenic exposure (CAE) (mg/L-y) was defined as the sum of the products, derived by multiplying the As concentration in the well water by the duration of water consumption during consecutive periods of
168 169 170 171	AsV, MMA, and DMA. The cumulative arsenic exposure (CAE) (mg/L-y) was defined as the sum of the products, derived by multiplying the As concentration in the well water by the duration of water consumption during consecutive periods of living at different villages (Chen et al., 1995). Primary methylation index (PMI) and
 168 169 170 171 172 	AsV, MMA, and DMA. The cumulative arsenic exposure (CAE) (mg/L-y) was defined as the sum of the products, derived by multiplying the As concentration in the well water by the duration of water consumption during consecutive periods of living at different villages (Chen et al., 1995). Primary methylation index (PMI) and secondary methylation index (SMI) were defined as MMA divided by (AsIII+AsV)

176	among the groups (analysis of variance, ANOVA) using GM. A chi-square test was
177	performed for categorical variables. The univariate and multivariate logistic
178	regression analyses were used to evaluate MetS status in relation to risk factors, with
179	the multivariate model adjusted for significant risk factors identified by univariate
180	analysis. All analyses were performed using SPSS v15 (SPSS, Chicago, IL, USA).
181	
182	3. Results
183	Among the 247 followed subjects, 111 were found to have MetS. Table 1
184	shows the occurrence of MetS according to demographic factors, life style, and
185	MetS-related risk factors. The mean age of the group with MetS (64.34 ± 7.93) was
186	significantly higher than that of the group without MetS (60.36 ± 9.00) ($p < 0.001$).
187	Insulin sensitivity showed a significant difference the groups without and with MetS
188	$(0.95 \pm 0.47 \text{ vs. } 0.51 \pm 0.37, \text{ respectively; } p < 0.001)$. We also found that the As
189	concentration in the well water and betel nut chewing significantly correlated with
190	the risk of MetS after adjustment for age. Table 2 shows MetS according to As
191	metabolites and genotypes. MMA levels were significantly lower in the group with
192	MetS than those without MetS. Subjects without MetS tended to have a higher
193	incidence of the AA genotype, with borderline significance after adjustment for age.
194	Table 3 shows the Pearson correlation coefficients for Si and As metabolites. We

195	found that Si was associated with MMA, MMA%, PMI, and SMI. TotAs showed a
196	high correlation with other As metabolites, but not with CAE. Table 4 shows the
197	results of multiple logistic regression analysis for MetS in relation to tertiles of As
198	methylation patterns by three models. The upper groups of MMA% (MMA/TotAs),
199	DMA% (DMA/TotAs), PMI, and SMI showed significant differences as compared
200	to their reference groups. MMA% and PMI were negatively associated with MetS
201	(OR = 0.35, 95% CI: 0.18-0.66 and 0.39, 95% CI: 0.20-0.76 for MMA% > 0.11 and
202	PMI > 0.91 compared to MMA% < 0.06 and PMI $< 0.44,$ respectively). DMA% and
203	SMI were also associated with increased risk of MetS ($OR = 2.01, 95\%$ CI:
204	1.05-3.86 and 2.61, 95% CI: 1.35-5.08 for DMA% > 0.82 and SMI > 12.03,
205	respectively). Table 5 shows the arsenic methylation patterns linked to MetS. Three
206	models for logistic regression were performed and four As methylation patterns,
207	MMA%, DMA%, PMI, and SMI, were considered. We found the MetS OR for
208	subjects with a lower PMI and higher SMI was significantly higher (3.71, 95% CI:
209	1.90-7.21) than that for subjects with a higher PMI and lower SMI. Consistently, the
210	MetS OR for subjects with a lower MMA% and higher DMA% was significantly
211	higher (3.63, 95% CI: 1.90-6.96) than that for subjects with a higher MMA% and
212	lower DMA%. Table 6 shows the arsenic methylation patterns and GSTO1
213	genotypes linked to MetS. The analysis of the four As methylation patterns and

214	GSTO1 genotypes were performed using three logistic regression models. Subjects
215	with a lower PMI, lower MMA%, and the AD+DD genotype showed a significantly
216	higher MetS risk of around 3-4 fold (ORs were 4.00 and 3.24 for lower PMI and
217	lower MMA%, respectively). Subjects with both a higher SMI and higher DMA%
218	showed a significantly higher MetS risk (ORs were 3.87 and 3.54 for higher SMI
219	and higher DMA%, respectively).
220	
221	4. Discussion
222	The positive association between arsenic exposure and increased rates of
223	diabetes has been shown in Taiwan; however, its association with MetS, an
224	important risk factor and predictor for cardiovascular diseases including T2D
225	(especially for middle-age subjects), is seldom studied. A cross-sectional study in
226	Taiwan (Wang et al., 2007) indicated the increasing prevalence of MetS from the 2 nd
227	tertile (0.034 μ g/g) of hair arsenic levels (OR = 2.54, <i>p</i> = 0.015) after adjustment for
228	age, gender, occupation, and life style. To our knowledge, the present study is the
229	first to report the relation between arsenic methylation patterns and MetS, with
230	genotype and other risk covariates taken into account.
231	The excretion of methylated As metabolites in urine is the result of a number of
232	factors, though our knowledge of the importance of these factors is limited.

233	According to a report from the National Research Council (1999), it can be
234	concluded that the level of arsenic has little influence on methylation efficiency. The
235	rates of As metabolites in our study are close to those of a previous study (Vahter,
236	2000), which indicated that most individuals have an average of 10-30% iAs,
237	10–20% MMA, and 60–70% DMA (for this study, 17%, 10%, and 73% for iAs,
238	MMA, and DMA, respectively). In one study, a 500- μ g/L increase in the
239	concentration of As metabolites in urine corresponded to a 2% increase in urine
240	MMA and a 3% decrease in DMA (Hopenhayn-Rich et al., 1996). We found an
241	association between AS3MT and MMA that was similar to the results of a recent
242	study (Ahusa et al., 2010). MMA%, PMI, and SMI are affected by AS3MT (MM vs.
243	MT genotype: 0.10 vs. 0.22, 0.82 vs. 1.75, and 18.25 vs. 3.45, respectively; data not
244	shown). Some studies have shown that MMA is more cytotoxic (Petrick et al., 2000)
245	and genotoxic (Mass et al., 2001) than AsIII and AsV, suggesting that the oxidation
246	state of methylated arsenicals is important for the manifestation of their toxic and/or
247	genotoxic effects. A recent study (Chung et al., 2009) showed that MMM% might be
248	a potential predictor of cancer risk and that changes in MMA% are linked to
249	individual cancer susceptibility related to AS3MT. In the present study, however, we
250	found that Si increased with increasing MMA, MMA%, PMI, and SMI. We also
251	found that lower PMI and MMA% and higher SMI and DMA% seemed to be risk

252	factors for MetS. When looking at the As methylation pattern and the genotypes of
253	GSTO1 (Table 5), As methylation patterns seems to be dominate factors of MetS
254	risk, as apposed to GSTO1. Up to now, a clear cut-off level for As exposure or
255	As-induced health effects has not been established. The biological exposure index of
256	$35 \ \mu g/g$ creatinine is based on an estimated risk for lung cancer. The thresholds of
257	different As metabolites for developing MetS are not clear and await further
258	investigation.
259	Several factors can influence the toxicity of As towards organs involved in
260	glucose metabolism and can determine the progression of insulin resistance, such as
261	personal susceptibility with respect to genetics, nutritional uptake, health status,
262	detoxification capability, interactions with other trace elements, and the other
263	well-recognized risk factors for diabetes mellitus. Although drinking water is the
264	main source of As uptake, up to 44% of ingested As may come from food sources
265	(Del Razo et al., 2002). Another study has indicated that diet is the largest exposure
266	source for most individuals, with an average intake of about 50 μ g/d from food
267	(Tchounwou et al., 2003). Other uptake routes are usually much smaller, but may
268	become significant in areas of As contamination. For accumulative As, we measured
269	individual As exposure and then multiplied the number of years lived in a specific
270	area times the average As level in the well water. The measurement, however, was

271	based on one measurement for the period and assumed constant water As
272	concentrations throughout the period. Das et al. (1989) proposed that selenium (Se)
273	and As counteract each other in regards to glucose metabolism and that the joint
274	effect of high As and low Se could play a role in developing T2D. The variation of
275	exposure to Se, consumption of As via food, and other nutrients were not considered
276	in this study.
277	Induction of oxidative stress and interference of signal transduction or gene
278	expression by As or by its methylated metabolites are the most possible causes to
279	As-induced T2D through mechanisms of induced insulin resistance (Tseng, 2004).
280	In subjects with chronic As exposure, oxidative stress is increased. The expression
281	levels of tumor necrosis factor α (TNF α) and interleukin-6 (IL-6), both cytokines,
282	are well known for their effect on the induction of insulin resistance. Fu et al. (2010)
283	indicated that low levels of As provoke a cellular adaptive oxidative stress response
284	that increases antioxidant levels, dampens reactive oxygen species signaling
285	involved in glucose-stimulated insulin secretion, and thus disturbs β -cell function. It
286	was reported that the methylation of As in individuals via drinking water (in Taiwan)
287	is associated with genetic polymorphism in GST (Chiou et al., 1997). Between
288	individuals, there are a lot of differences in As biomethylation. As such, it is likely
289	that there are genetic polymorphisms affecting the regulation of As

290	methyltransferases. It is possible that As metabolism is also affected by the
291	documented polymorphism in enzymes involved in the remethylation of
292	homocysteine.
293	Current available evidence (including in vitro, in vivo, and animal studies) are
294	inadequate to establish the cause-effect relationship between As and MetS. Due to
295	the short biological half-life of arsenic, hair or nails may be a more valid source for
296	estimating individual As exposure. Further studies should focus on the measurement
297	of appropriate samples (e.g., hair) that more accurately represent long-term As
298	exposure.
299	
300	5. Conclusions
301	We found that the group of subjects with MetS had a higher As concentration in
302	their well water. AS3MT polymorphisms were associated with MMA%, PMI, and
303	SMI. Multiple logistic regression analysis showed that the OR of MetS significantly
304	decreased with increasing MMA% and decreasing DMA%. We found that subjects
305	with lower PMI and higher SMI levels had a significantly increased OR of MetS.
306	The high OR (4.65, 95% CI: 2.22-9.73, $p < 0.001$) was found in the higher SMI group
307	with the AA genotype compared to the reference group with lower SMI and the AA
308	genotype. Our findings suggested that decreasing MMA% and PMI as well

309	increasing DMA% and SMI are associated with an increased risk of MetS and that
310	this risk might be marginally modified by the GSTO1 genotype among As-exposed
311	subjects.
312	
313	Acknowledgements
314	The authors thank Ms. HY Chen for support with sample collection and
315	management. The statistical assistance from Mr. KH Chang is also acknowledged.
316	This study was supported by grant EO-094-PP-11 and EO-095-PP-07 from the
317	National Health Research Institutes (NHRI), Taiwan.

319 **REFERENCES**

Agusa, T., Iwata, H., Fujihara, J., Kunito, T., Takeshita, H., Minh, T.B., Trang, P.T.,
Viet, P.H., Tanabe, S., 2010. Genetic polymorphisms in glutathione S-transferase
(GST) superfamily and arsenic metabolism in residents of the Red River Delta,

323 Vietnam. Toxicol Appl Pharmacol 242, 352-362.

- Alberti, K.G., Zimmet, P., Shaw, J., 2006. Metabolic syndrome--a new world-wide
 definition. A Consensus Statement from the International Diabetes Federation.
 Diabet Med 23, 469-480.
- Aposhian, H.V., Aposhian, M.M., 2006. Arsenic toxicology: five questions. Chem
 Res Toxicol 19, 1-15.
- Chen, C.J., Hsueh, Y.M., Lai, M.S., Shyu, M.P., Chen, S.Y., Wu, M.M., Kuo, T.L.,
 Tai, T.Y., 1995. Increased prevalence of hypertension and long-term arsenic
 exposure. Hypertension 25, 53-60.
- 332 Chiou, H.Y., Hsueh, Y.M., Hsieh, L.L., Hsu, L.I., Hsu, Y.H., Hsieh, F.I., Wei, M.L.,
- Chen, H.C., Yang, H.T., Leu, L.C., Chu, T.H., Chen-Wu, C., Yang, M.H., Chen,
 C.J., 1997. Arsenic methylation capacity, body retention, and null genotypes of
- glutathione S-transferase M1 and T1 among current arsenic-exposed residents in
 Taiwan. Mutat Res 386, 197-207.
- Chiu, H.F., Chang, C.C., Tsai, S.S., Yang, C.Y., 2006. Does arsenic exposure
 increase the risk for diabetes mellitus? J Occup Environ Med 48, 63-67.
- Chung, C.J., Hsueh, Y.M., Bai, C.H., Huang, Y.K., Huang, Y.L., Yang, M.H., Chen,
 C.J., 2009. Polymorphisms in arsenic metabolism genes, urinary arsenic
- 341 methylation profile and cancer. Cancer Causes Control 20, 1653-1661.
- Cohen, D., Stolk, R.P., Grobbee, D.E., Gispen-de Wied, C.C., 2006. Hyperglycemia
 and diabetes in patients with schizophrenia or schizoaffective disorders. Diabetes
 Care 29, 786-791.
- 345 Coronado-Gonzalez, J.A., Del Razo, L.M., Garcia-Vargas, G., Sanmiguel-Salazar, F.,
 346 Escobedo-de la Pena, J., 2007. Inorganic arsenic exposure and type 2 diabetes
 347 mellitus in Mexico. Environ Res 104, 383-389.
- Das, P.M., Sadana, J.R., Gupta, P.K., Kumar, K., 1989. Experimental selenium
 toxicity in guinea pigs: biochemical studies. Ann Nutr Metab 33, 57-63.
- Del Razo, L.M., Garcia-Vargas, G.G., Garcia-Salcedo, J., Sanmiguel, M.F., Rivera,
 M., Hernandez, M.C., Cebrian, M.E., 2002. Arsenic levels in cooked food and
- assessment of adult dietary intake of arsenic in the Region Lagunera, Mexico.
 Food Chem Toxicol 40, 1423-1431.
- Fu, J., Woods, C.G., Yehuda-Shnaidman, E., Zhang, Q., Wong, V., Collins, S., Sun,
 G., Andersen, M.E., Pi, J., 2010. Low-level arsenic impairs glucose-stimulated

356 insulin secretion in pancreatic beta cells: involvement of cellular adaptive 357 response to oxidative stress. Environ Health Perspect 118, 864-870. 358 Fujihara, J., Soejima, M., Yasuda, T., Koda, Y., Agusa, T., Kunito, T., Tongu, M., 359 Yamada, T., Takeshita, H., 2010. Global analysis of genetic variation in human arsenic (+3 oxidation state) methyltransferase (AS3MT). Toxicol Appl 360 361 Pharmacol 243, 292-299. 362 Guha Mazumder, D.N., 2008. Chronic arsenic toxicity & human health. Indian J 363 Med Res 128, 436-447. 364 Hopenhayn-Rich, C., Biggs, M.L., Smith, A.H., Kalman, D.A., Moore, L.E., 1996. 365 Methylation study of a population environmentally exposed to arsenic in 366 drinking water. Environ Health Perspect 104, 620-628. 367 Izquierdo-Vega, J.A., Soto, C.A., Sanchez-Pena, L.C., De Vizcaya-Ruiz, A., Del Razo, L.M., 2006. Diabetogenic effects and pancreatic oxidative damage in rats 368 369 subchronically exposed to arsenite. Toxicol Lett 160, 135-142. 370 Kuo, T.L., 1964. Arsenic content of artesian well water in endemic area of chronic 371 arsenic poisoning, in Reports of insulin of pathology. National Taiwan 372 University College of Medicine, Taipei, Taiwan 7-13. 373 Marahatta, S.B., Punyarit, P., Bhudisawasdi, V., Paupairoj, A., Wongkham, S., 374 Petmitr, S., 2006. Polymorphism of glutathione S-transferase omega gene and 375 risk of cancer. Cancer Lett 236, 276-281. 376 Mass, M.J., Tennant, A., Roop, B.C., Cullen, W.R., Styblo, M., Thomas, D.J., 377 Kligerman, A.D., 2001. Methylated trivalent arsenic species are genotoxic. 378 Chem Res Toxicol 14, 355-361. 379 Nabi, A.H., Rahman, M.M., Islam, L.N., 2005. Evaluation of biochemical changes 380 in chronic arsenic poisoning among Bangladeshi patients. Int J Environ Res 381 Public Health 2, 385-393. National Research Council, 1999. Risk assessment of arsenic in drinking water. 382 383 Subcommittee on arsenic in drinking water. National Academy Press, 384 Washington DC, pp. 263. 385 Navas-Acien, A., Silbergeld, E.K., Pastor-Barriuso, R., Guallar, E., 2008. Arsenic 386 exposure and prevalence of type 2 diabetes in US adults. JAMA 300, 814-822. 387 Navas-Acien, A., Silbergeld, E.K., Streeter, R.A., Clark, J.M., Burke, T.A., Guallar, E., 2006. Arsenic exposure and type 2 diabetes: a systematic review of the 388 389 experimental and epidemiological evidence. Environ Health Perspect 114, 390 641-648. 391 Nordstrom, D.K., 2002. Worldwide occurrences of arsenic in ground water. Science 392 296, 2143-2145. Petrick, J.S., Ayala-Fierro, F., Cullen, W.R., Carter, D.E., Vasken Aposhian, H., 2000. 393

394	Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang
395	human hepatocytes. Toxicol Appl Pharmacol 163, 203-207.
396	Saely, C.H., Koch, L., Schmid, F., Marte, T., Aczel, S., Langer, P., Hoefle, G., Drexel,
397	H., 2006. Adult Treatment Panel III 2001 but not International Diabetes
398	Federation 2005 criteria of the metabolic syndrome predict clinical
399	cardiovascular events in subjects who underwent coronary angiography.
400	Diabetes Care 29, 901-907.
401	Smith, A.H., Lopipero, P.A., Bates, M.N., Steinmaus, C.M., 2002. Arsenic
402	epidemiology and drinking water standards. Science 296, 2145-2146.
403	Suk, W.A., Ruchirawat, K.M., Balakrishnan, K., Berger, M., Carpenter, D., Damstra,
404	T., de Garbino, J.P., Koh, D., Landrigan, P.J., Makalinao, I., Sly, P.D., Xu, Y.,
405	Zheng, B.S., 2003. Environmental threats to children's health in Southeast Asia
406	and the Western Pacific. Environ Health Perspect 111, 1340-1347.
407	Tchounwou, P.B., Patlolla, A.K., Centeno, J.A., 2003. Carcinogenic and systemic
408	health effects associated with arsenic exposurea critical review. Toxicol Pathol
409	31, 575-588.
410	Thomas, D.J., Li, J., Waters, S.B., Xing, W., Adair, B.M., Drobna, Z., Devesa, V.,
411	Styblo, M., 2007. Arsenic (+3 oxidation state) methyltransferase and the
412	methylation of arsenicals. Exp Biol Med (Maywood) 232, 3-13.
413	Thompson, D.J., 1993. A chemical hypothesis for arsenic methylation in mammals.
414	Chem Biol Interact 88, 89-14.
415	Tseng, C.H., 2004. The potential biological mechanisms of arsenic-induced diabetes
416	mellitus. Toxicol Appl Pharmacol 197, 67-83.
417	Vahter, M., 2000. Genetic polymorphism in the biotransformation of inorganic
418	arsenic and its role in toxicity. Toxicol Lett 112-113, 209-217.
419	Wang, S.L., Chang, F.H., Liou, S.H., Wang, H.J., Li, W.F., Hsieh, D.P., 2007.
420	Inorganic arsenic exposure and its relation to metabolic syndrome in an
421	industrial area of Taiwan. Environ Int 33, 805-811.
422	Wang, S.L., Chiou, J.M., Chen, C.J., Tseng, C.H., Chou, W.L., Wang, C.C., Wu, T.N.,
423	Chang, L.W., 2003. Prevalence of non-insulin-dependent diabetes mellitus and
424	related vascular diseases in southwestern arseniasis-endemic and nonendemic
425	areas in Taiwan. Environ Health Perspect 111, 155-159.
426	Wang, S.L., Pan, W.H., Hwu, C.M., Ho, L.T., Lo, C.H., Lin, S.L., Jong, Y.S., 1997.
427	Incidence of NIDDM and the effects of gender, obesity and hyperinsulinaemia in
428	Taiwan. Diabetologia 40, 1431-1438.
429	Wannamethee, S.G., Shaper, A.G., Lennon, L., Morris, R.W., 2005. Metabolic
430	syndrome vs Framingham Risk Score for prediction of coronary heart disease,
431	stroke, and type 2 diabetes mellitus. Arch Intern Med 165, 2644-2650.

- Wen, C.P., Cheng, T.Y., Tsai, S.P., Hsu, H.L., Wang, S.L., 2005. Increased mortality
 risks of pre-diabetes (impaired fasting glucose) in Taiwan. Diabetes Care 28,
 2756-2761.
- 435 Wild, S., Roglic, G., Green, A., Sicree, R., King, H., 2004. Global prevalence of
- diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27,
- 437 1047-1053.

Table 1. Occurrence of metabolic syndrome according to demographic factors, life

	Metabolic				
Characteristics	No (n = 136)	Yes $(n = 111)$	<i>p</i> -value ^a	<i>p</i> -value ^b	
	Mean \pm SD	Mean ± SD		-	
Continuous variable					
Age (y)	60.36 ± 9.00	64.34 ± 7.93	< 0.001***		
Residing yrs (y)	42.29 ± 14.08	46.66 ± 12.46	0.011*	0.97	
Drinking yrs (y)	19.95 ± 12.90	25.31 ± 12.32	0.001^{**}	0.13	
As concentration in well water $(\mu g/L)^{c}$	569.94 ± 321.51	684.39 ± 245.93	0.005^{**}	0.03^{*}	
CAE (mg/L-y)	13.96 ± 9.03	$17.71 \pm 8.62^{\circ}$	0.001**	0.13	
Glucose (mg/dL)	97.77 ± 42.64	127.39 ± 56.85	$< 0.001^{***}$	< 0.001***	
Waist girth (cm)	80.73 ± 9.18	89.77 ± 10.56	< 0.001****	< 0.001***	
Systolic blood pressure (mmHg)	128.42 ± 19.51	146.32 ± 20.24	< 0.001***	< 0.001***	
Diastolic blood pressure (mmHg)	77.39 ± 12.65	84.78 ± 14.09	< 0.001****	< 0.001***	
Triglycerides (mg/dL)	98.40 ± 49.27	181.34 ± 102.80	< 0.001****	< 0.001***	
High density lipoprotein (mg/dL)	45.11 ± 12.57	33.57 ± 7.85	< 0.001****	< 0.001***	
Insulin sensitivity ^d	0.95 ± 0.47	0.51 ± 0.37	< 0.001***	< 0.001***	
	Frequency (%)	Frequency (%)			
Categorical variable					
Gender					
Female	79 (58.09)	62 (55.86)	0.72	0.01	
Male	57 (41.91)	49 (44.14)	0.72	0.81	
Alcohol drinking	. ,	. ,			
No	126 (92.65)	98 (89.09)	0.33	0.27	
Yes	10 (7.35)	12 (10.91)	0.55	0.27	
Betel nut chewing					
No	126 (95.45)	98 (89.91)	0.09	0.045^{*}	
Yes	6 (4.55)	11 (10.09)	0.07	0.045	
Smoking					
No	105 (80.15)	78 (72.90)	0.19	0.28	
Yes (including ever)	26 (19.85)	29 (27.10)	0.17	0.20	
Secondary Smoking					
No	92 (71.32)	81 (75.00)	0.52	0.69	
Yes	37 (28.68)	27 (25.00)	0.32	0.09	
Education					
No	36 (26.47)	40 (36.04)			
Primary	71 (52.21)	57 (51.35)	0.11	0.46	
High school or higher	29 (21.32)	14 (12.61)			
Exercise					
No	75 (55.15)	59 (53.15)	0.75	0.47	
Yes	61 (44.85)	52 (46.85)	0.75	0.47	

style, and metabolic syndrome parameters (n = 247)

^aStudent's T test for continuous variables, chi-square test for categorical variables ^bage-adjusted

^c102 subjects had records available

^dinsulin sensitivity, which was the inverse of the homeostasis model assessment index, was defined as

22.5EXP[-ln(glucose)]/insulin p<0.05, *p<0.01, ***p<0.001

	Metabolic				
Characteristics	No (n = 136)	Yes $(n = 111)$	p-value ^b	p-value ^c	
	Mean \pm SD	Mean \pm (SD)	_		
Arsenic metabolites ^a					
iAs%	17.2 ± 14.4	16.8 ± 16.2	0.84	0.98	
oAs%	82.6 ± 14.1	83.4 ± 15.8	0.84	0.98	
AsIII%	10.1 ± 11.6	10.4 ± 13.1	0.73	0.98	
AsV%	7.3 ± 7.3	6.9 ± 6.5	0.85	0.99	
MMA%	10.6 ± 9.2	9.4 ± 8.8	$0.08^{\#}$	$0.06^{\#}$	
DMA%	72.3 ± 18.4	73.5 ± 20.0	0.49	0.37	
PMI	0.92 ± 0.75	0.75 ± 0.71	$0.08^{\#}$	$0.06^{\#}$	
SMI	16.12 ± 31.21	19.98 ± 32.71	0.35	0.42	
AsIII (µg/g creatinine)	3.79 ± 4.60	4.12 ± 6.15	0.64	0.79	
AsV (µg/g creatinine)	1.78 ± 1.93	1.47 ± 1.14	0.11	0.29	
iAs (µg/g creatinine)	5.57 ± 4.84	5.58 ± 6.08	0.98	0.97	
MMA ($\mu g/g$ creatinine)	4.51 ± 5.92	3.08 ± 2.95	0.02^{*}	0.03^{*}	
DMA (µg/g creatinine)	32.79 ± 28.94	35.52 ± 36.98	0.53	0.42	
oAs (µg/g creatinine)	37.30 ± 30.92	38.60 ± 38.26	0.77	0.63	
TotAs (µg/g creatinine)	42.87 ± 33.06	44.19 ± 40.94	0.78	0.66	
	Frequency (%)	Frequency (%)			
Genotypes					
<i>GST01</i> A140D					
AA	92 (68.15)	66 (60.00)			
AD	37 (27.41)	31 (28.18)	0.08	0.06	
DD	6 (4.44)	13 (11.82)			
<i>GST02</i> N142D					
NN	68 (50.75)	53 (47.75)			
ND	53 (39.55)	48 (43.24)	0.84	0.61	
DD	13 (9.70)	10 (9.01)			
<i>AS3MT</i> M287T		· · ·			
MM	130 (97.74)	109 (99.09)	o c o d		
MT	3 (2.26)	1 (0.91)	0.63 ^d	0.29	

Table 2. Metabolic syndrome according to arsenic patterns and genotypes (n = 247)

^aiAs: inorganic arsenic, AsIII+AsV; oAs: organic arsenic, MMA+DMA; TotAs: total arsenic, iAs+oAs; PMI: MMA/(AsIII+AsV); SMI: DMA/MMA; (As metabolites)%: (As metabolites)/TotAs ^bStudent's T test for continuous variables, chi-square test for categorical variables ^cage-adjusted

^dFisher's Exact Test

[#]*p*<0.1, ^{*}*p*<0.05

	Si	CAE	TotAs	MMA	DMA	iAs	MMA%	DMA%	PMI	SMI
Si	1.0									
CAE ^a	-0.03	1.0								
TotAs	0.05	$0.11^{\#}$	1.0							
MMA	0.14^{*}	0.09	0.40^{***}	1.0						
DMA	0.04	0.09	0.97^{***}	0.26***	1.0					
As	0.03	0.18^{**}	0.49^{***}	0.26***	0.36***	1.0				
MMA%	0.14^{*}	0.02	0.23***	0.62***	-0.33***	-0.08	1.0			
DMA%	-0.03	-0.002	0.37***	-0.19***	0.48^{***}	-0.23***	-0.64***	1.0		
PMI	0.14^{*}	0.04	0.11 [#]	0.66***	0.06	-0.22***	0.60^{***}	-0.03	1.0	
SMI	0.14^{*}	-0.03	0.45***	-0.23***	0.52***	0.15**	-0.41***	0.35***	-0.30***	1.0

Table 3. Pearson correlation coefficients for insulin sensitivity and arsenic metabolites (n = 247)

^an = 238 [#]p < 0.1, p < 0.05, p < 0.01, p < 0.001

Characteristics	OR	95% CI	<i>p</i> -value	OR ^a	95% CI	<i>p</i> -value	OR^b	95% CI	<i>p</i> -value
As concentration	in well	water (µg/L) ^c				-			
< 700	1.00			1.00			1.00		
700 - 767.65	1.56	(0.85 - 2.84)	0.15	1.35	(0.72 - 2.53)	0.34	1.25	(0.66 - 2.39)	0.49
> 767.65	1.51	(0.81 - 2.80)	0.19	1.33	(0.71 - 2.51)	0.38	1.24	(0.65 - 2.37)	0.52
CAE									
< 12.60	1.00			1.00			1.00		
12.60 - 18.90	1.56	(0.83 - 2.93)	0.17	1.04	(0.51 - 2.15)	0.91	1.01	(0.48 - 1.89)	0.98
> 18.90	2.71	(1.42 - 5.17)	0.003**	1.96	(0.83 - 4.65)	0.13	1.73	(0.72 - 4.19)	0.22
AsIII%									
< 5.2	1.00			1.00			1.00		
5.2 - 8.9	1.02	(0.54 - 1.91)	0.95	1.05	(0.55 - 2.00)	0.89	1.09	(0.56 - 2.11)	0.80
> 8.9	0.94	(0.52 - 1.71)	0.84	0.88	(0.48 - 1.63)	0.69	0.78	(0.41 - 1.49)	0.45
AsV%									
< 3.1	1.00			1.00			1.00		
3.1 - 6.4	0.87	(0.46 - 1.63)	0.66	0.91	(0.47 - 1.77)	0.78	0.86	(0.43 - 1.71)	0.67
> 6.4	0.81	(0.45 - 1.46)	0.48	0.80	(0.43 - 1.46)	0.46	0.80	(0.43 - 1.49)	0.48
MMA%									
< 5.8	1.00			1.00			1.00		
5.8 - 11.3	0.96	(0.51 - 1.80)	0.89	0.97	(0.50 - 1.89)	0.92	0.91	(0.45 - 1.81)	0.78
> 11.3	0.36	(0.19 - 0.68)	0.001**	0.34	(0.18 - 0.64)	0.001^{**}	0.35	(0.18 - 0.66)	0.001^{**}
DMA%									
< 72.4	1.00			1.00			1.00		
72.4 - 81.9	1.57	(0.84 - 2.94)	0.16	1.59	(0.84 - 2.99)	0.15	1.60	(0.83 - 3.08)	0.17
> 81.9	1.83	(0.99 - 3.38)	$0.06^{\#}$	1.94	(1.03 - 3.65)	0.04^{*}	2.01	(1.05 - 3.86)	0.04^{*}
PMI									
< 0.44	1.00			1.00			1.00		
0.44 - 0.91	0.86	(0.47 - 1.60)	0.64	0.83	(0.44 - 1.58)	0.56	0.82	(0.42 - 1.60)	0.57
> 0.91	0.40	(0.21 - 0.76)	0.005^{**}	0.39	(0.20 - 0.74)	0.004^{**}	0.39	(0.20 - 0.76)	0.006^{**}
SMI								,	
< 6.06	1.00			1.00			1.00		
6.06 - 12.03	1.23	(0.65 - 2.33)	0.52	1.29	(0.68 - 2.45)	0.44	1.23	(0.63 - 2.39)	0.54
> 12.03	2.44	(1.31 - 4.56)	0.005^{**}	2.71	(1.41 - 5.21)	0.003**	2.61	(1.35 - 5.08)	0.005^{**}
^a adjusted by age									

Table 4. Multiple logistic regression analysis for metabolic syndrome in relation to tertiles of previously exposed arsenic methylation patterns (n = 247)

^aadjusted by age ^badjusted by age and betel nut chewing

^cn = 238 [#]p<0.1, ^{*}p<0.05, ^{**}p<0.01

		Metabolic syndrome			syndrome							
		No (n = 136)	Yes (n = 111)	OR	95% CI	<i>p</i> -value	OR ^a	95% CI	<i>p</i> -value	OR^b	95% CI	<i>p</i> -value
		Freque	ncy (%)									
PMI	SMI											
High	Low	58 (67.44)	28 (32.56)	1.00			1.00			1.00		
Low	Low	23 (65.16)	14 (37.84)	1.26	(0.57 - 2.82)	0.57	1.30	(0.58 - 2.93)	0.52	1.41	(0.61 - 3.26)	0.43
High	High	21 (56.76)	16 (43.24)	1.58	(0.72 - 3.48)	0.26	1.7	(0.76 - 3.84)	0.19	2.17	(0.92 - 5.09)	$0.08^{\#}$
Low	High	34 (39.08)	53 (60.92)	3.23	(1.73 - 6.02)	< 0.001***	3.41	(1.79 - 6.50)	< 0.001***	3.71	(1.90 - 7.21)	< 0.001***
MMA/TotAs	DMA/TotAs											
High	Low	64 (68.09)	30 (31.91)	1.00			1.00			1.00		
Low	Low	169 (61.54)	10 (38.46)	1.33	(0.54 - 3.28)	0.53	1.35	(0.55 - 3.32)	0.52	1.27	(0.51 - 3.18)	0.61
High	High	16 (51.61)	15 (48.39)	2.00	(0.88 - 4.57)	0.10	2.05	(0.89 - 4.70)	$0.09^{\#}$	1.96	(0.82 - 4.65)	0.13
Low	High	40 (41.67)	56 (58.33)	2.99	(1.65 - 5.41)	< 0.001***	3.32	(1.78 - 6.19)	< 0.001***	3.63	(1.90 - 6.96)	< 0.001***

Table 5. Arsenic methylation patterns and metabolic syndrome (n = 247)

^aadjusted by age ^badjusted by age and betel nut chewing [#]p<0.1, ***p<0.001

		Metabolic syndrome										
		No (n = 135)	Yes (n = 110)	OR	95% CI	<i>p</i> -value	OR ^a	95% CI	<i>p</i> -value	OR^b	95% CI	<i>p</i> -value
		Freque	ncy (%)									
PMI	GSTO1											
High	AA	48 (66.67)	24 (33.330	1.00			1.00			1.00		
High	AD + DD	30 (60.00)	20 (40.00)	1.33	(0.63 - 2.82)	0.45	1.29	(0.60 - 2.76)	0.52	1.32	(0.61 - 2.90)	0.48
Low	AA	44 (51.16)	42 (48.84)	1.91	(1.00 - 3.65)	$0.05^{\#}$	1.94	(1.00 - 3.77)	0.05^{*}	2.03	(1.03 - 4.01)	0.04^{*}
Low	AD + DD	13 (35.14)	24 (64.86)	3.69	(1.60 - 8.50)	< 0.001***	3.96	(1.65 - 9.47)	0.002^{**}	4.00	(1.65 - 9.71)	0.002^{**}
SMI	GSTO1											
Low	AA	57 (74.03)	20 (25.97)	1.00			1.00			1.00		
Low	AD + DD	23 (51.11)	22 (48.89)	2.73	(1.26 - 5.92)	0.01^{*}	2.78	(1.27 - 6.07)	0.01^{*}	2.91	(1.29 - 6.57)	0.01^{*}
High	AA	35 (43.21)	46 (56.79)	3.75	(1.91 - 7.34)	< 0.001***	4.25	(2.10 - 8.60)	< 0.001***	4.65	(2.22 - 9.73)	< 0.001**
High	AD + DD	20 (47.62)	22 (52.38)	3.14	(1.42 - 6.92)	0.005^{**}	3.15	(1.39 - 7.14)	0.006^{**}	3.87	(1.62 - 9.26)	0.002^{**}
MMA%	GSTO1											
High	AA	55 (71.43)	22 (28.57)	1.00			1.00			1.00		
High	AD + DD	24 (51.06)	23 (48.94)	2.40	(1.13 - 5.10)	0.02^{*}	2.40	(1.12 - 5.14)	0.02^{*}	2.35	(1.07 - 5.15)	0.03^{*}
Low	AA	37 (45.68)	44 (54.32)	2.97	(1.54 - 5.75)	0.001^{**}	3.28	(1.65 - 6.52)	< 0.001***	3.36	(1.66 - 6.79)	< 0.001**
Low	AD + DD	19 (47.50)	21 (52.50)	2.76	(1.25 - 6.11)	0.01^{*}	2.87	(1.26 - 6.53)	0.01^{*}	3.24	(1.37 - 7.66)	0.007^{**}
DMA%	GSTO1											
Low	AA	57 (71.25)	23 (28.750	1.00			1.00			1.00		
Low	AD + DD	22 (56.41)	17 (43.59)	1.92	(0.86 - 4.25)	0.11	1.93	(0.87 - 4.30)	0.11	1.86	(0.83 - 4.18)	0.13
High	AA	35 (44.87)	43 (55.13)	3.05	(1.58 - 5.88)	< 0.001****	3.50	(1.75 - 6.99)	< 0.001***	3.44	(1.69 - 6.99)	< 0.001*
High	AD + DD	21 (43.75)	27 (56.25)	3.19	(1.51 - 6.73)	0.002^{**}	3.32	(1.53 - 7.19)	0.002^{**}	3.54	(1.59 - 7.87)	0.002^{**}

Table 6. Arsenic methylation patterns and *GSTO1* genotypes linked to metabolic syndrome (n = 247)

^aadjusted by age ^badjusted by age and betel nut chewing [#]p<0.1, *p<0.05, **p<0.01, ***p<0.001