
Two-tier screening model for SDB 

Original article 

 

A Two-Tier Screening Model Using Quality-of-Life Measures and Pulse 

Oximetry to Screen Adults with Sleep-Disordered Breathing 

 

1Ning-Hung Chen MD, 2Min-Chi Chen PhD, 3Hsueh-Yu Li MD,  

4Chang-Wei Chen MSc, 5Pa-Chun Wang MD, MSc.  

 

1Sleep Center, Department of Pulmonary and Critical Care Medicine and Department 
of Respiratory Care, Chang Gung Memorial Hospital; Department of Respiratory 
Care, Chang Gung University, Taoyuan, Taiwan 
 
2Department of Public Health & Biostatistics Consulting Center, School of Medicine, 
Chang Gung University, Taoyuan, Taiwan 
 
3Department of Otolaryngology, Chang Gung Memorial Hospital; Chang Gung 
University, Taoyuan, Taiwan 
 
4Department of Psychology, National Chengchi University, Taipei, Taiwan 
 
5Department of Otolaryngology, Cathay General Hospital, Taipei; Fu Jen Catholic 
University School of Medicine, Taipei; and Department of Public Health, China 
Medical University, Taichung, Taiwan 
 

Financial support: none 
 
Running Title: Two-tier screening model for SDB 
 
Words count: 3,075 
 

Correspondence and Reprint Request to: 
Dr. Pa-Chun Wang 
Department of Otolaryngology, Cathay General Hospital 
280 Sec.4 Jen-Ai Rd. Taipei, Taiwan 
Telephone: 8862-27082121 ext 3333 
FAX: 8862-27074949 
Email: drtony@seed.net.tw 

 



1 
 

ABSTRACT 

Purpose: Using quality-of-life measures and pulse oximetry, this study developed a 

2-tiered prediction algorithm with an aim to prioritize sleep-disordered breathing 

(SDB) patients for polysomnography. 

Methods: Data from 355 patients were evaluated to obtain their clinical information, 

Chinese version of Epworth Sleepiness Scale (CESS), and Snore Outcomes Survey 

(CSOS) scores against respiratory distress index (RDI). In the 1st-tier screening, 

receiver operating characteristics were calculated with an initial strategy of choosing 

optimal prediction sensitivity. The 2nd-tier strategy investigated the association 

between pulse oximetry data (desaturation index of 3%) against RDI to optimize 

prediction specificity.  

Results: The “SOS score of 55 and ESS score of 9” was the optimal combination that 

yielded the highest sensitivity (0.603) in the 1st-tier screening. The strategy can 

included 94.93% possible patients (probability=0.6) with positive predictive value of 

0.997. The area under the curve (AUC) was 0.88 (p<0.001). Desaturation index of 3% 

would optimized specificity (0.966, probability=0.5) in the 2nd-tier screening to 

exclude 54% of innocent patients, with negative predictive values of 0.93 and AUC of 

0.951 (p<0.001). The 2-tier screening model jointly excluded 4.8% of innocent 

subjects and prioritized 40% of severe patients for polysomnography.  

Conclusions: The prediction model is sufficiently accurate and feasible for 

large-scale population screening. 
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ABBREVIATIONS 

AUC: area under the curve 

AASM: American Academy of Sleep Medicine 

BMI: body mass index 

CESS: Chinese version of Epworth Sleepiness Scale 

CSOS: Chinese version of Sleep Outcomes Survey 

DI: desaturation index 

NPV: negative predictive value 

OSAS: obstructive sleep apnea 

PPV: positive predictive value 

PSG: polysomnography 

RDI: respiratory disturbance index 

ROC: receiver-operating curve 

SDB: sleep-disordered breathing 
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INTRODUCTION 

Sleep-disordered breathing (SDB) is a prevalent disorder among the middle-aged 

that can seriously compromise a patient’s quality-of-life [1,2]. Patients of SDB may 

suffer from symptoms ranging from snoring to apnea (obstructive sleep apnea 

syndrome, OSAS). They have higher risks of developing cardiovascular 

complications and neuro-cognitive dysfunctions. The SDB can also raise the risk of 

accidents in traffic and working places [3,4].  

 

Due to insufficient capacity and long waiting time for overnight polysomnography 

(PSG), there have been several attempts to develop screening approaches that will 

simplify diagnostic procedures and reduce costs. Studies based on clinical features 

[5-7], quality-of-life measures [7-9] and pulse oximetry have been conducted to 

predict SDB, with some extend of success [5,10,11]. Unfortunately, there is little 

consensus as to the most reliable clinical features that will discriminate the absence or 

presence of SDB [5,6].  

 

A simple but cost-effective screening system can help clinicians to prioritize 

patients for full overnight PSG, especially for those who need immediate surgical or 

medical attention. For screening methods widely used by researchers, the 

questionnaire is generally regarded as simple and sensitive, but less specific, while the 

oximeter is more sophisticated but specific [5-11]. This study combined the merits of 
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these two methods to design a two-tier screening model, using a sensitive 

questionnaire in the first-tier to exclude innocent subjects and the more specific 

oximeter in the second-tier to identify severely diseased subjects for early PSG. We 

hypothesize that a stepwise approach with proper risk stratification strategies can 

overcome the limitation of individual screening tools to optimize effectiveness of the 

whole prediction algorithm. 

 

METHODS 

 

Patients 

 

In a consecutive manner, 355 patients (aged 18-80 years) who received PSG test in 

the sleep clinic were examined to evaluate their sleep status. All had a variety of 

sleep-related complaints that necessitated consult and all provided informed consent 

for this study. Their demographic and characteristics data were collected upon entry. 

 

The patients were administered with the Chinese versions of SOS and ESS [12,13]. 

All surveys were validated and considered statistically equivalent to their original 

English versions [12,13]. Permissions to use these surveys were secured and the 

ethics committee of Chang Gung Memorial Hospital approved this study. 
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Sleep study 

 

The patients all received standard overnight in-lab polysomnography (Nicolet, 

Nicolet Inc. Madison, WI) to obtain at least 6 hours of sleep data recording. The sleep 

respiratory disturbance index (RDI) obtained was used as the gold standard for data 

analysis. RDI was defined as the sum of total apnea and hypopnea episodes per hour 

of sleep. Apnea episode was defined as cessation of airflow lasting longer than 10 

seconds, whereas hypopnea was defined as ≥30% reduction of oral and nasal flow 

lasting longer than 10 seconds with 4% desaturation. Based on the definition of the 

American Academy of Sleep Medicine (AASM), patients with RDI >5 episodes/hour 

had OSAS and over 30 episodes/hour were severe cases [14]. To improve the clinical 

relevance of the screening algorithm, RDI of 5 and 30 episodes/hour were used as 

cut-off points to dichotomize variables for further analyses.  

 

Quality-of-life measures 

 

The Chinese version of the SOS and ESS were used for the first-tier screening. , 

Both of them were outcome measures to evaluate the health impact and treatment 

effectiveness for adults with SDB and had been previously translated and validated by 

the authors [14,15]. 

 

Chinese version of Snore Outcomes Survey (CSOS)  
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The SOS is a validated outcome measure that evaluates the health impact and 

treatment effectiveness of adults with SDB and snoring [15]. It contains eight items 

that evaluates the duration, severity, frequency, and consequences of problems 

associated with SDB on a Likert scale, each with 5-to-6 response options. The SOS 

total score is transformed into a scale ranging from 0 (worst) to 100 (best). The 

Chinese version of SOS was translated and validated by the authors in previous study, 

with good correlation to PSG results [12]. Patients with SOS scores of 55 or less are 

considered to be a loud snorer.  

 

Chinese version of Epworth Sleepiness Scale (CESS)  

 

The eight-item ESS is widely used for evaluating adults on the average sleep 

propensity in daily life [16]. Scores for each item range from 0 to 3 and the total 

Epworth score ranges from 0 to 24 (lowest to highest sleep propensity). The reliability, 

unitary structure and validity of the ESS are supported by experimental evidences in 

distinguishing the excessive daytime sleepiness of SDB from that of normal subjects 

[16]. Patients with ESS scores higher than 12 are considered to have pathologic 

sleepiness. Chinese version of ESS was also translated and validated by the authors in 

previous study, with good correlation to PSG results. [13] 
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Pulse oximetry 

 

Pulse oximetry is frequently used in the clinical hospital setting to measure the 

oxygen saturation of patients. It is a small and sophisticated device clipped on the 

fingertip to record oxygen saturation. Desaturation 2%, 3%, or 4% mean a 2%, 3% or 

4% oxygen saturation drop from previous recording. The number of desaturation 

events of 2%, 3%, and 4% was recorded in selected cases overnight. Desaturation 

index of 2%, 3%, and 4% was defined as the number of the episodes of 2%, 3%, and 

4% desaturation over the hours of sleep recording.  

 

The Pulsox-3i (Minolta Co.,Ltd, Osaka, Japan) was chosen as oxygen saturation 

monitoring in the second-tier screening. Patients had Pulsox-3i monitoring and 

recording simultaneously with standard polysomnography. The sleep oxygen 

desaturation events were retrieved and stored using Pulsox-3 DS-3 Data Analysis 

(Minolta Co.,Ltd, Osaka, Japan) software. 

 

Statistical analysis 

 

Association between RDI and Patient Demographics and Survey Scores 

 

 The Spearman correlation coefficient was used to examine the association 

between RDI, patient demographics, and survey scores. 



9 
 

 

First-Tier Screening Modeling 

 

According to the definition of AASM, RDI was dichotomized as “non-obstructive 

sleep apnea syndromes (non-OSAS)” for RDI＜5 vs. “obstructive sleep apnea 

syndromes (OSAS)” for RDI≧5. Multiple logistic regression was applied to examine 

the possibility of “having OSAS” using the variables chosen from the demographic 

characters that were significantly association with RDI, such as gender, age, BMI, 

CSOS, and CESS. Using these demographic characters against OSAS (RDI≧5), the 

receiver-operating characteristic (ROC) curve was applied to determine the diagnostic 

thresholds for CSOS/CESS combinations that were more likely to differentiate 

“OSAS” from “non-OSAS”. 

 

The area under curve (AUC) was calculated. CESS and CSOS were dichotomized 

simultaneously at various cut points and were entered into the estimated logistic 

regression model with age, gender and BMI, and the patient was considered a 

"OSAS" case when the estimated probability from multiple logistic regression was 

greater than 0.5. As a result, the sensitivity, specificity, positive and negative 

predictive values (PPV and NPV) were derived based on different CSOS and CESS 

combination. The bootstrapping technique was used for cross-validation since it is 

impossible to collect more new samples to evaluate the validation of our predictive 

logistic regression, and it was also helpful to identify the cut-off point, the optimal 
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CSOS and CESS combination which would yield relatively higher sensitivity of this 

model to include as many OSAS patients as possible. 

 

Second-Tier Screening Modeling 

 

 In the second-tier screening, the pulse oximeter was used. Although it was easy to 

use and clinical available than standard PSG, it still took whole night to record. It was 

also sophisticate to calculate than the questionnaire. For cost-effectiveness reason and 

to achieve a power of 80% with a significance level of 5%, we performed power 

analysis based on a preliminary study which showed 85% of patients from 1st-teir 

were correctly identified as cases. In order to demonstrate a difference between our 

preliminary study (85%) and 75% in other literature,[17] at least 98 subjects was 

required. So we randomly selected 100 possible OSA patients that were identified of 

having OSAS (predicted positive for RDI≧5) in 1st-tier screening for pulse oximeter 

examination. Binary RDI in the second-tier screening was defined as “severe OSAS” 

with RDI≧30 against “non-severe OSAS” with RDI＜30. The area under the curve 

(AUC) of ROC of DI2, DI3, and DI4 were calculated and DI3 was best fitted to 

predict the severity of OSAS. Logistic regression was used to evaluate the 

relationship between “severe OSAS” and DI3.  

 

The sensitivity, specificity, and PPV and NPV of DI3 were also tabulated. The 

optimal DI3 cut-off point yielded relatively higher specificity of the second-tier 
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screening model, without sacrificing sensitivity, to exclude as many “non-severe 

OSAS” patients as possible. Similarly, the bootstrapping was used in the 2-tier 

screening for cross-validation. 

 

Data management 

 

All data were stored in Access 7.0 database (Microsoft, Redmond, Seattle) and 

analyzed using the SAS software package (SAS Institute, Cary, North Carolina). A p 

value <0.05 was considered statistically significant. 

 
 

RESULTS 

 

Study population 

 

The initial study group consisted of 355 patients. There were 312 (87.9%) males 

and 43 (12.1%) females. The mean RDI was 38.3±29.9 episodes/hr. The mean RDI is 

40.21±29.28 episodes/hr for men and it is significantly higher than female 

(23.31±32.19 episodes/hr) with p-value <0.001 using a 2-sample t-test. The 

demographic data and the distribution of the severity of RDI in these patients are 

shown in Table 1.  

 

First-tier screening prediction 
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Estimated probability of OSAS 

 

Gender, age, BMI, CESS, and CSOS were used to predict the probability of having 

OSAS (RDI≥5). Multiple logistic regression was used to predict the probability of 

having OSAS (RDI≥5) in the first-tier screening and the results are shown in Table 2. 

Based on this model, the probability of having OSAS was: 
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
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For example, a 50-year-old male with BMI of 30, CESS score 12, and CSOS 50 

would have a predicted probability of having OSAS of 0.97 

 

Cut-off point and model predictability 

 

The ROC curve of the first-tier screening is shown in Fig 1. The sensitivity, 

specificity, and PPV and NPV of different possible CSOS/CESS combinations in 

predicting OSAS are shown in Table 3. The combination of “CSOS score of 55 and 

CESS score of 9” was the optimal cut-off point that yielded relatively higher 

sensitivity (0.603) and specificity in this first-tier screening model. 

 

Second-tier screening prediction 

 

Study population 
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The second-tier screening study group consisted of 100 randomly selected patients 

after power analysis from the predicted positive population (RDI≥5, presumably 

having OSAS, n=337) of the first-tier screening. There were 83 (83%) males and 17 

(17%) females, with mean age of 43.3±11.5 years and BMI of 26.5±3.7. The mean 

RDI was 32.2±28.4 episodes/hr. Nineteen (19%) patients did not have OSAS (RDI<5 

episodes/Hr), while 21 (21%) had RDI≥5 but <15 episodes/hr, 18 (18%) had RDI≥15 

but <30 episodes/hr, and 42 (42%) have RDI>30. The mean DI3 of this cohort was 

22.3±21.5%. 

 

Desaturation index 

 

The ROC curve using DI3 against severe OSAS (RDI>30) showed that the area 

under the curve (AUC) was 0.951 (standard error=0.024, Z=18.792, p<0.001). The 

ROC curves using DI2 and DI4 against severe OSAS (RDI>30) showed that the AUC 

was 0.942 (standard error=0.027, Z=16.3763, p<0.001) for DI2, and similarly, the 

AUC was 0.942 (standard error=0.027, Z=16.3763, p<0.001) for DI4. The DI3 was 

therefore chosen as the desaturation index in this study (Fig 2). 

 

Probability of having severe OSAS 

 

The logistic regression model showed that DI3 positively related to the possibility 
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of having severe OSAS (RDI>30) (estimated beta=0.170, p<0.001).  

The probability of having severe OSAS was: 

 

3

3

170.0627.3

170.0627.3

1
)(ˆ

DI

DI

X

X

e

e
OSASseverehavingP 




  

	

Cut-off point and model predictability 

 

The sensitivity, specificity, and PPV and NPV of DI3 in predicting severe OSAS 

are shown in Table 4.  

 

The DI3 of 30 optimized specificity (0.966) of the second-tire screening model to 

exclude as many non-severe OSAS patients as possible (Table 4). With NPV of 0.93 

(54/58) and calculated probability of 0.5, this second-tier screening model excluded as 

many patients (n=54, 54%) as possible that did not have severe OSAS. 

 

Upper panel of Table 5A (Model Predictability) shows the predicted positive and 

predicted negative values from the proposed model for the first-tier screening. It was 

calculated by plugging in the parameters in the multiple logistic regression model to 

obtain the estimated probability of having OSAS (RDI≥5). If the estimated 

probability was >0.5, it was considered a case, and vice versa. As a result, the number 

of true positive was compared with the estimated positive, and the number of true 
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negative with the estimated negative. Similarly, the predicted positive and negative 

listed in the lower panel of Table 5B were based on the proposed model for the 

second-tier screening model. A calculated probability of 0.6 included as many patients 

(n=337, 94.93%) as possible that had PPV 0.997 (306/307) for the diagnosis of OSAS 

(Table 5A).  

 

The accuracy of the presented two-tier model is confirmed by cross validation 

using the boot-strapping technique [18]. Given the probability of greater than 0.5, the 

correct prediction rates are 0.92 (minimum-maximum, 0.88-0.96), 0.91 

(minimum-maximum, 0.83-0.96) for first- and second-tier screening models, 

respectively. 
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DISCUSSION 

 

Sleep-disordered breathing (SDB) is a major quality-of-life issue. Patients with 

SDB often show increased difficulty in concentrating, learning new tasks, and 

performing repetitive tasks. Lindberg and others [3,4,19] report that OSAS patients 

have higher risk of occupational and traffic accidents. In order to reduce professional 

liability, it is important to identify patients with the highest risks of severe SDB as 

early as possible. This study attempts to develop a cost-effective screening approach 

in order to prioritize candidates for early PSG.   

 

Combined with clinical information, standard sleep quality-of-life measures are 

widely used to describe the prevalence of snoring, observed apneas, daytime 

sleepiness in the general population, and the relationships of sleep disturbances to 

health [7,20]. It is generally regarded that questionnaires alone are not sufficient to 

discriminate patients with SDB, although these may be useful in prioritizing patients 

for split-night PSG. The reported sensitivity of questionnaires varies from 72% to 

96% in predicting OSAS, but the specificity is as low as 13% to 54% [6,9,17]. The 

highest specificity of 0.77 reported from a Berlin questionnaire has been challenged 

because of underestimation using a four-channel sleep monitor as the validated gold 

standard [8].  
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Sleepiness and snoring are two major clinical symptoms in SDB patients. This 

study combines the widely circulated measurement tools, CESS and CSOS, which 

cover these two important but distinct dimensions (sleepiness and snoring) in SDB. 

Compared to other studies that use only indices or symptom scores to evaluate 

patients [9,17,20], CSOS and CESS are both well validated by our group and show 

good associations to SDB severity [12,13,21]. With CSOS >55 and CESS >9, a 

sensitivity of 0.603 and specificity of 0.729 can be attained, which is the optimal 

cut-off value that provides good positive predicted values and highest negative 

prediction.  

 

By using the regression model, the probability of having disease can be easily 

calculated by this formula. For example, a 50-year-old male with BMI of 30, CESS 

score 12, and CSOS 50 will have a predicted probability 0.97 of having OSAS. 

Physicians then have to make clinical judgment for the second-tier screening based on 

this calculation. After the second-tier screening with similar calculations, patients will 

be prioritized for further examination (PSG) if the risks of having severe disease is 

high as identified by the algorithm we developed.   

 

The AUC of the ROC curve reaches the level of 0.88, which is compatible with 

the reported data of 0.55-0.83 from similar studies in literatures [7,9,22,23]. With a 

calculated probability of 0.6, as many patients (94.93%) as possible can be included 
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that probably have OSAS. Excluded subjects (estimated RDI<5) are “least likely” to 

have the disease and their chances of having even very mild sleep respiratory 

disturbance is very low. Using this algorithm, 17 patients will be exempted from PSG 

because their risks of having OSAS are so low and only one (out of 355 patients) with 

true OSAS will be missed (Table 5A). 

 

Pulse oximetry is another frequently used tool for screening OSAS with great 

economical benefit [10,11]. The report from the Technology Assessment Task Force 

of the Society of Critical Care Medicine in 1993 indicate that pulse oximetry is a 

non-invasive tool to measure oxygen saturation with a high degree of accuracy over a 

range of 80-100% saturation [11]. The 1995 British Thoracic Society Report 

concludes that pulse oximetry criteria is highly specific when positive (specificity 

100%), but may miss patients with hypopneic arousal without significant oxygen 

desaturation (sensitivity 31%) [23]. In the second-tier screening, the strategy is to 

increase the screening specificity. Even though the differences among DI2, DI3, and 

DI4 are small, the highest AUC of 0.951 indicates that DI3 is the ideal threshold 

against RDI≧30.  

 

The desaturation index of 3% used in the second-tier screening yields a 

sensitivity of 0.57 and a specificity of 0.96, which are comparable to those reported 

by Golpe et al. (for RDI>40.5, specificity 97%) [24]. With a calculated probability of 
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0.5, 60% of patients who are not likely to have severe OSAS can be identified, while 

the excluded patients need not to be prioritized for PSG. Using this algorithm, 36 (out 

of 100) patients will definitely need early PSG because of high risks of having severe 

OSAS, while four patients will be recruited for unnecessary sleep study (Table 5B).  

 

Since neither quality-of-life measures nor pulse oximeter is individually ideal, 

some authors advocate the usefulness of pulse oximetry to establish the diagnosis of 

OSAS and highlight the value of clinical scoring to improve the sensitivity of 

screening tools [5]. This study sought to optimize the prediction algorithms by 

developing a stepwise, two-tiered screening model. Using CESS and CSOS, the study 

can exclude 4.8% (18 out of 355, including one false negative) of patients from PSG 

testing in the first-tier screening since their risks of having OSAS is low. Using pulse 

oximetry, 40% (40 out of 100, including 4 false alarm) of patients can be prioritized 

for early PSG testing since their risks of having severe OSAS are high. These 

cost-effective data are equivalent to those reported by Keenan et al. [25] and 

Gurubhagavatula et al. [22]. 

 

However, the cost-effectiveness is highly dependent on the prevalence of OSAS 

in the study population. When the two-tier model is applied to the general population, 

rather than to this validation population, more targeted patients will be identified to 

achieve screening objectives (excluding low-risk patients and prioritizing high-risk 
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patients with greater cost-effectiveness ratio).  

 
 

CONCLUSION 

 

In conclusion, the two-tier screening model can jointly exclude 4.8% of innocent 

subjects from sleep studies and can prioritize up to 40% of severe OSAS patients to 

receive complete in-laboratory PSG with 0.603 sensitivity for OSAS and 0.966 

specificity for severe OSAS. Even though this model may not identify other causes of 

sleep disorders, the prediction algorithm is sufficiently accurate for community or 

occupational SDB screening. Quality-of-life and pulse oximetry information can help 

clinicians identify patients who need early PSG diagnosis. 
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LEGENDS 

 

Fig 1. Receiver operating characteristic curve using gender, age, BMI, CSOS, and 

CESS against OSAS (RDI≧5). (Area under curve 0.88, standard error 0.026, Z 14.62, 

p＜0.001) 

 

Fig 2. Receiver operating characteristic curve using DI3（        ） against severe 

OSAS (RDI≧30). (Area under curve 0.951, standard error＝0.024, Z＝18.792, p＜

0.001). For DI2（ ） and DI4（        ）, the AUC are identical (0.942, with 

standard error＝0.027, Z＝16.3763, p＜0.001). 
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Table 1. Correlations between RDI and patients’ demographics 

Variable Mean±SD  *γ(p value) 

Age (years-old) 44.7±11.3 0.14(.008) 

BMI (kg/m2) 27.4±4.1 0.309(＜.001) 

CSOS 44.9±15.3 -0.362(＜.001) 

CESS 10.9±5.2 0.248(＜.001) 

*Spearman’s correlation coefficient.  
CESS： Chinese version of Epworth Sleepiness Scale;  
CSOS： Chinese version of Snore Outcomes Survey 

Note: The mean RDI is 23.31±32.19 episodes/hr of female and 40.21±29.28 
episodes/hr of male, the p value of t-statistic from 2-sample t-test is less than 0.0001. 
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Table 2. Multiple logistic regression model to predict the probability of having 
OSAS (RDI≥5) in the 1st-tier screening 

Variables  Estimated β Odds Ratio 

(OR) 

95% CI for OR P-value* 

Gender Male 1.096 2.99 1.05-8.55 0.041 

 Female  1   

Age  0.064 1.07 1.03-1.11 0.001 

BMI  0.264 1.30 1.15-1.47 <0.001 

CESS  0.039 1.04 0.96-1.13 0.34 

CSOS  -0.062 0.94 0.92-0.97 <0.001 

Note: the intercept was -5.935 in this multiple logistic regression. 
*Adjusted p value indicates the significance of the parameters by multiple logistic 
regression. 
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Table 3. Relative discriminatory powers of CESS and CSOS 

Surveys’ Scores Sensitivity Specificity PPV% NPV% 

CESS≧9, CSOS≦40 0.381 0.833 93.60% 17.39% 

CESS≧9, CSOS≦45 0.495 0.792 93.83% 19.69% 

CESS≧9, CSOS≦50 0.541 0.75 93.26% 20.34% 

CESS≧9, CSOS≦55 0.603 0.729 93.43% 22.29% 

CESS≧10, CSOS≦40 0.358 0.917 96.49% 18.26% 

CESS≧10, CSOS≦45 0.453 0.875 95.86% 20.00% 

CESS≧10, CSOS≦50 0.498 0.833 95.00% 20.51% 

CESS≧10, CSOS≦55 0.538 0.813 94.83% 21.55% 

CESS≧11, CSOS≦40 0.326 0.917 96.15% 17.53% 

CESS≧11, CSOS≦45 0.407 0.896 96.15% 19.11% 

CESS≧11, CSOS≦50 0.437 0.854 95.04% 19.16% 

CESS≧11, CSOS≦55 0.472 0.833 94.77% 19.80% 

CESS≧12, CSOS≦40 0.296 0.958 97.85% 17.56% 

CESS≧12, CSOS≦45 0.375 0.938 97.46% 18.99% 

CESS≧12, CSOS≦50 0.401 0.917 96.85% 19.30% 

CESS≧12, CSOS≦55 0.437 0.896 96.40% 19.91% 

CESS, Chinese version of Epworth Sleepiness Scale;  

CSOS, Chinese version of Snore Outcomes Survey 
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Table 4. Relative discriminatory powers of DI3 for severe OSAS (RDI≧30) 

DI3 (episodes/hr) Sensitivity Specificity PPV% NPV% 

5 0.976 0.448 75.93% 97.83% 

10 0.976 0.655 78.43% 95.92% 

20 0.905 0.914 81.63% 96.08% 

30 0.571 0.966 82.98% 94.34% 

40 0.357 0.983 84.78% 94.44% 

50 0.075 0.994 86.67% 94.55% 

DI3: Desaturation index 3, desaturation more than 3% per hours 
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Table 5A. Model predictability for first-tier screening  

N=355 Predicted Positive Predicted Negative 

True Positive (n=307) hit 306 miss 1 

True Negative (n=48) false alarm 31 hit 17 

 

 

Table 5B. Model predictability for second-tier screening 

N=100 Predicted Positive Predicted Negative 

True Positive (n=42) hit 36 miss 6 

True Negative (n=58) false alarm 4 hit 54 

 


