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Abstract 

Background: It is well known that the presence of population stratification (PS) may 

cause the usual test in case-control studies to produce spurious gene-disease associations. 

However, the impact of the PS and sample selection (SS) is less known. In this paper, we 

provide a systematic study of the joint effect of PS and SS under a more general risk 

model containing genetic and environmental factors. We provide simulation results to 

show the magnitude of the bias and its impact on type I error rate of the usual chi-square 

test under a wide range of PS level and selection bias. 

Results: The biases to the estimation of main and interaction effect are quantified and 

then their bounds derived. The estimated bounds can be used to compute conservative 

p-values for the association test. If the conservative p-value is smaller than the 

significance level, we can safely claim that the association test is significant regardless of 

the presence of PS or not, or if there is any selection bias. We also identify conditions for 

the null bias. The bias depends on the allele frequencies, exposure rates, 

gene-environment odds ratios and disease risks across subpopulations and the sampling of 

the cases and controls.  

Conclusion: Our results show that the bias cannot be ignored even the case and control 

data were matched in ethnicity. A real example is given to illustrate application of the 

conservative p-value. These results are useful to the genetic association studies of main 
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and interaction effects.  

 

Background 

In the search of causative agents of human disease, both environmental and genetic risk 

factors have been identified. Overwhelming evidence indicates that there are reasons to 

believe that relative common polymorphisms in a wide spectrum of genes may modify 

the effect of environmental agents [1, 2]. Several studies also have demonstrated the 

presence of gene-gene interaction in complex human diseases [3-7]. Gene-gene 

interaction, or epistasis, is also considered as a basic genetic concept which has been 

widely used by biologists for a long time [8]. 

Many association designs have been proposed for studying gene-environment or 

gene-gene interactions. Recently, Wang and Zhao [9] found that in the study of gene-gene 

interactions, the unmatched case-control association design is more powerful than both 

the matched case-control design and case-parents design. They also found that when a 

logistic regression model is fitted for assessing gene-environment interactions based on 

case-parents sample, the approach may be susceptible to the PS bias [10]. However, 

case-control design is also well known to be susceptible to the PS bias in the study of 

genetic effect, if the gene under study shows marked variation in allele frequency across 

subgroups of the population and if these subgroups also differ in their base-line disease 
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risks [11-17]. Wang, et al. [18] recently provided numerical examples showing that when 

the correlation between genetic and environmental factors is small or the linkage 

disequilibrium is weak, and case-control data were collected according to a simple 

random sampling (SRS) scheme, that is no selection bias, the PS bias in testing null 

interaction odds ratio is also small. However, selection bias often occurs in case-control 

studies and more studies are needed in order to better understand the impact of the PS and 

SS.  

In this paper, we investigate the joint effect of population stratification and sample 

selection in testing null main or interaction effects. Under general sampling, we quantify 

the magnitude of the PS-SS bias in terms of the baseline disease risks, genotype 

frequencies, exposure rates, their odds ratios (linkage disequilibrium coefficients), and the 

effect sizes of the risk factors. Based on this result, we find that matching in ethnicity 

cannot eliminate bias in association studies. Using the bias, we are also able to derive 

important conditions under which it is null. 

The PS-SS bias cannot be estimated, since we don’t know how many subpopulations 

involved in the studied population and/or which subpopulation a person belongs to. 

Although adjusting for covariates such as principal components can be used to account 

for PS in genome wide association studies [19], however, it is not clear whether the same 

approach can be applied in the studies of interaction. Since, for example, the bias level 



5 

 

also depends on the effect size of the environmental factor. In this paper, we also derive 

useful bounds to measure the maximal impact of the bias. Sometimes, these bounds can 

be estimated so that tests robust to the joint effect of PS and SS can be derived; see Lee 

and Wang [20] for similar suggestion in studies of gene-disease association. We use 

theoretical formula and simulation results to show the general properties of the usual 

association test in the presence of PS or selection bias. We also provide a real example to 

demonstrate computation of a conservative p-value in studying interaction effect of 

maternal smoking and GSTT1 variant on the risk of orofacial cleft.  

Results 

The Magnitude of the Bias  

We begin this section with the notation that will be used throughout this work. Disease 

status is denoted as D with levels D=1, and 0, indicating the presence and absence of the 

disease, respectively. Let G=1(0) represent the presence (absence) of the genotype of 

interest. H=1(0) represents the presence (absence) of the environmental exposure or 

another genotype of interest. Although we only focus on 2x2x2 table, however, all results 

can be extended to any number of risk factors or any number of levels. We also assume 

that the population under study consists of K subpopulations and denote S as the 

stratification variable, taking values s=1,…, K. However, K is unknown and S is not 

observable in our discussion of the PS effect. 
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To quantify the PS effect, we assume that the risk model is given by 

logit ( 1 )P D = |G = g,H = h,S = s  

s
= µ +α + βg + γh+δgh′ ′ , 

where the genetic and environmental data are obtained from subpopulation s. As usual, 

we use s=1, g=0, and h=0 to represent the referent subpopulation, genotype and 

environmental exposure, respectively. For the purpose of identifiability, we define 
1α ′=0. 

,
s

α ′ 1,..., ,s K= are the subpopulation-specific parameters representing the potential 

heterogeneity of disease risk across subpopulations. In this model, log-odds-ratio β 

measures the association between the genotype and risk of disease, log-odds-ratio γ 

measures the association between the environmental exposure (or another genotype) and 

risk of disease. The multiplicative interaction δ measures the change of the 

disease-genotype log-odds-ratios according to different levels of risk factor H. Similar 

risk models for studying genetic effect under PS can be found in Satten et al. [21] and 

Cheng and Lin [17], for examples. For subpopulation s, we use ORs to represent the 

baseline G-H odds ratio (given D=0). Define 

( 1| , 0, 0)

( 0 | , 0, 0)
s

P G S s D H
G

P G S s D H

= = = =
=

= = = =
 

as the baseline G- frequency odds and baseline H- frequency odds Hs is similarly defined. 

Also define Ds as the baseline disease frequency odds given by  

( 1| , 0, 0)
.

( 0 | , 0, 0)
s

P D S s G H
D

P D S s G H

= = = =
=

= = = =
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In the discussion of PS effect, one often assumes that case and control data are sampled 

according to the SRS design. Let P(S=s|D=1) and P(S=s|D=0) represent the 

corresponding proportions of subpopulation s in the cases and controls, respectively. 

However, in real applications, selection bias often happens and sampling may not be done 

according to the SRS scheme for various reasons. Let the true proportion of subjects in 

the cases (controls) that are from subpopulation s be denoted by P
#
(S=s|D=1) 

(P
#
(S=s|D=0)). We use DSs=

# #( | 1) ( | 0)
/

( | 1) ( | 0)

P S s D P S s D

P S s D P S s D

= = = =

= = = =
 to measure the effect of 

the sample selection for subpopulation s. If there is no selection bias, DSs=1. 

Since in the population level we only observe factors G and H, we show in the 

Methods section that given the presence of PS and general sampling, the main effects and 

interaction are given by 

D-G odds ratio = exp(β+β
*
), 

D-H odds ratio = exp(γ+γ
*
), 

G×H interaction = exp(δ+δ
*
), 

where  

(1,0)
log

(0,0)

K

K

 
=  

 

*
β ,  

(0,1)
log

(0,0)

K

K

 
=  

 

*
γ ,  

* (1,1) (0,0)
log ,

(1,0) (0,1)

K K

K K
δ

 
=  

 
  

and 
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( , )K g h =   

{ }
1

[ ( 0, 0 | , 0)
K

s

P G H S s D
=

= = = = ×∑  

{ }# ( | 0) ]g h g h

s s s s s
P S s D OR G H D DS×= = ÷  

{ }
1

[ ( 0, 0 | , 0)
K

s

P G H S s D
=

= = = = ×∑  

{ }# ( | 0) ]g h g h

s s s
P S s D OR G H×= = . 

exp(β
*
), exp(γ

*
) and exp(δ

*
) are the bias levels. We note that if DsDSs is a constant with 

respect to s, then ( , )K g h is also a constant and there is no bias of any kind. A sufficient 

condition for this to hold is when the baseline disease risk is identical across all 

subpopulations and sampling of the study follows a SRS design. Further, since 

#

#

( | 1) ( 0 | )

( | 0) ( 1| )
s s

P S s D P D S s
D DS

P S s D P D S s

= = = =
= × ×

= = = =
 

( 1| 0, ) ( 1)
,

( 0 | 0, ) ( 0)

P D G H S s P D

P D G H S s P D

= = = = =
×

= = = = =
 

therefore, if the disease prevalence P(D=1|S=s) and baseline disease risk 

P(D=1|G=H=0,S=s) are approximately equal in each subpopulation, then bias depends 

on DsDSs only through the degree of matching 
#

#

( | 1)

( | 0)

P S s D

P S s D

= =

= =
. Accordingly, if the 

case and control are matched in ethnicity, then the bias should be very small. However, 

P(D=1|S=s) ≈ P(D=1|G=H=0,S=s) for all subpopulations is often not true when 

environmental factor, such as smoking, are involved in causing the disease risk. Under 

this scenario, even the cases and controls are perfectly matched, the bias can still be large. 

This conclusion is different from that under the gene-disease association study; see for 
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example, Cheng, Lee and Chen [22]. We shall see more discussion of this issue in latter 

sections. 

Maximal bias and conditions for the null bias  

Here, we give conditions for the null bias and bounds for bias. The bias exp(β
*
) to the 

estimation of genetic main effect depends on the variation of the genotype frequencies 

measured by † max / min ,s s
ss

G G G= variation of the disease prevalence measured by 

† max / mins s
ss

D D D= and the sampling variation measured by † max / min .s s
ss

DS DS DS=  

The bias exp(δ
*
) to the estimation of interaction depends additionally on the variation of 

the baseline odds ratio, measured by † max / mins s
ss

OR OR OR=  and the variation of 

exposure rates measured by † = max / min .s s
s

s

H H H  

Note that the bias β
*
depends only on

 
( ,0).K g We first present some conditions for the 

null bias β
*
=0, when the true genetic main effect is null: (1) if the baseline genotype 

frequency is constant across subpopulations, then the bias β
*
 is zero (can be proved using 

equation (1) in the Methods section); (2) if the sample selection follows a SRS scheme 

( †
DS =1), and the disease risk is constant, then the bias is also null. (However, if the 

sampling is not SRS, the bias may be non-null; see Tables 1 and 2.); (3) if the case and 

control data are matched in ethnicity, and γ=δ=0 (both H-main effect and interaction are 

null), then the bias is null.  

When the interaction effect is null, some conditions for the null bias δ
*
=0 are: (1) if the 
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baseline G-H odds ratios and G(or H)- frequency odds are constant across subpopulations, 

then the bias δ
*
 is null (can be proved using equation (2) in the Methods section); (2) if 

the sample selection of the study follows SRS, and the disease risk is constant, then the 

bias δ
*
 is also null. However, see Tables 1 and 2 for the presence of bias when the SRS 

condition fails.  

Next, we present bound to measure the largest bias to the estimation of main effect. In 

the Methods section, we show that the bias exp(β
*
) can be expressed as  

*exp( )β =

{ }

{ }

1

1 1

K

s s s s

s

K K

s s s s s

s s

G D DS w

G w D DS w

=

= =

∑

∑ ∑
 

( )
( )( )

2
† † † † † †

† † † † † † † † †

1G D DS G D DS

G D DS G G D DS D DS

+
≤

+ +
  (1) 

Uβ≡ ,    

where 
s

w  are some constants satisfying 0 1
s

w≤ ≤  and 
1

1
K

s

s

w
=

=∑ . The bias is the 

greatest when the number of subpopulations is 2. The bias is also bounded below 

by 1
L Uβ β

−≡ . These bounds give the maximal impact of the bias in making inference 

about the genetic main effect. Under rare disease, the background disease rate is 

approximately equal to the background disease odds. We find that the bound under SRS 

( †
DS =1) is similar to that given by Lee and Wang [19]. However, our result is more 

general in the sense that their risk model was a special case of ours and selection bias was 
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not considered in their paper either.  

In the Methods section, we also showed that under SRS, the bias *exp( )δ  was 

bounded above by (1)
Uδ = † 2( )D  and bounded below (1)

Lδ = † 2( )D − . These are the same 

bounds derived by Wang et al. [18]. Unfortunately, these bounds are not valid when there 

is selection bias. Under the general sample selection, we showed that the bias exp(δ
*
) was 

bounded above by  

( )
( )( )

3
† †

†

† † † † † †

1G H
OR

G H G G H H

+
× ×

+ +
        

( )
( )

† † † †

(2)

2
† †

G H G H
U

G H
δ

+
≡

+

,   (2) 

and bounded below by (2) (2)1/U Lδ δ≡ . Using these bounds we can easily conclude that if 

the genetic factors are in linkage equilibrium within each subpopulation, and the variation 

of the G (or H) frequency odds is small then the bias is also expected to be small. 

True type I errors 

In case-control studies, one often expects that the type I errors of the association tests can 

be approximately controlled at some predetermined level. However, in the presence of PS 

or selection bias, the usual test statistic does not have a chi-square distribution under the 

null hypothesis. Instead, it has a non-central chi-square distribution, with non-centrality 

parameter depending on the level of the bias. Thus, the usual chi-square test tends to have 
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inflated type I errors. 

Suppose that the intended type I error rate of the chi-square test is α and let 

2

1;1 αχ − represent the 100(1-α) percentile of the chi-square distribution with one degree of 

freedom. Let 2

1 ( )χ ∆
 
represent a non-central chi-square random variable with one degree 

of freedom and non-centrality parameter ∆. In the case of testing null interaction, the 

non-centrality parameter is given by 

δ∆ = { }
2

*δ ÷ {
(1) (1) (1) (1)

11 01 10 00

1 1 1 1
( )
n n n n

+ + + + 

     
(0) (0) (0) (0)

11 01 10 00

1 1 1 1
( )
n n n n

+ + + + }, 

where ( )d

gh
n  is number of observations with outcome G=g, H=h and disease status d. 

Then the true type I error of the usual chi-square test of null interaction is given by 

2 2

1 1;1( ( ) ),Pδ δ αα χ χ −= ∆ ≥  which is always .α≥  In the case of testing null genetic main 

effect, the non-centrality parameter is given by 

{ }
2

*

(1) (1) (0) (0)

10 00 10 00

.
1 1 1 1

( )
n n n n

β

β
∆ =

+ + +

 

The corresponding true type I error of the chi-square test is given by 

2 2

1 1;1( ( ) ),Pβ β αα χ χ −= ∆ ≥
 
which is also .α≥   

Conservative p-values 

In most practical applications, one often does not know the true value of the 

non-centrality parameter and therefore it is difficult to calculate the true p-value of the 
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chi-square test when the PS is present and/or there is selection bias. However, we are able 

to develop a bound for the non-centrality parameter, and the latter may be estimable in 

many cases. Define *

δ∆  ( *

β∆ ) as δ∆ ( β∆ ) but with δ
* 

(β
*
) replaced by its upper bound 

(2)logUδ  (logUβ). Let 2

δχ  ( 2

βχ ) be the usual statistic for testing null interaction (main 

effect). Then following Cheng, Lee and Chen [22], a conservative p-value of the 

chi-square test is given by 2 2

1( ( ) )P δ δχ χ∗∆ ≥  ( 2 2

1( ( ) )P β βχ χ∗∆ ≥ ). We note that by using 

the property of non-central chi-square distribution, the test based on using conservative 

p-value always have true type I error rate smaller than or equal to the significance level 

and the latter is always smaller than or equal to the true type I error rate of the usual 

chi-square test. If a test has conservative p-value less than or equal to the designated 

significance level, it is significant even there is PS or selection bias.  

Examples of true biases and type I error rates  

Tables 1 and 2 show some values of the biases β
*
 and δ

*
 and true type I error 

rates βα and δα of the usual chi-square tests when the significance level is 0.05. We 

assumed that there are two subpopulations (K=2), β=δ=0, γ=0 or 1. G (H-) frequency of 

the first subpopulation was given by P(G=1|S=1)=0.51 (P(H=1|S=1)=0.19), the first 

subpopulation disease risk was P(D=1|S=1)=0.05, the proportion of subpopulation 1 in 

the overall population was 0.7, and case and control sample sizes both equaled to n=500. 

We defined LDs=(LD1, LD2) where LDs was the linkage disequilibrium coefficient 
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between loci G and H in subpopulation s, and considered linkage disequilibrium 

coefficient LDs=0 or 0.05. We also assumed that the sampling proportions of the cases 

followed SRS but those of the controls might not. The rest of the parameter values were 

determined from the values for the variations †
G , †H , †D and †

DS given in the tables with 

the assumption that subpopulation 2 has the maximal baseline G (or H) frequency odds, 

disease risk, and sampling deviation (this implies that P
#
(S=2|D=0) ranges from 0.0585 to 

o.7163). Finally, we note that in computing the non-centrality parameters, the sample 

frequencies d

gh
n

 
were replaced by n×P(G=g, H=h|D=d). The simulation results for 

†
G =5 were given in Tables 1 and 2, and those for †

G =3 can be found from Tables S1 

and S2 in Additional file 1. 

According to the results in Table 1, the true type I error αβ ranges from 0.05 to 0.9998 

under linkage equilibrium. If the SRS condition holds and γ=0, the true type I error αβ 

ranges from 0.05 to 0.9602 with mean 0.4377 and standard error 0.3298. Under the same 

conditions but γ=1, the corresponding range becomes (0.05, 0.9326) with mean 0.3822 

and standard error 0.2969. On the other hand, if the sampling is not SRS ( †
DS =3 or 5) 

and γ=0, the range of αβ is (0.05, 0.9998) with mean 0.6871 and standard error 0.317. 

Under non-SRS but γ=1, the corresponding range becomes (0.05, 0.9992) with mean 

0.6291 and standard error 0.3117. These results indicate that the bias can be quite large 

and its level may be modified by the sample selection and the level of H-main effect. We 
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also observe that the bias β
*
 may be nonzero under perfect matching. For example, if 

matching is perfect and H-main effect γ=1, the largest true type I error is 0.1064, which 

occurs at the case with †
G = †H = †D =5. This is contrary to our usual belief that matching 

between cases and controls in ethnicity can eliminate the PS bias. However, except in 

some special cases, the bias under perfect matching design are smaller than those under 

other sampling designs. 

Wang et al. [18] suggested that the bias δ
*
 to the interaction effect is small when the 

linkage disequilibrium coefficient is small and the sampling is SRS. Our Table 1 also 

shows that under the same condition, the true type I error αδ in testing null interaction 

ranges from 0.05 to 0.0659. This agrees with their finding. However, if there is selection 

bias ( †
DS =3 or 5), the true type I error rate αδ has range (0.05, 0.2656), mean 0.101, and 

standard error 0.056 when γ=0, and range (0.05, 0.2750), mean 0.1053, and standard error 

0.0597 when γ=1. The means and standard errors given here and later were computed 

based on the results shown in Tables 1 and 2, and Tables S1 and S2 in Additional file 1. 

These results indicate that PS and SS also can cause serious bias problem in case-control 

study of gene-gene interactions even when the two genes are in linkage equilibrium. 

Under this scenario, the best way of reducing the bias is to match cases and controls in 

ethnicity. We note that under perfect matching and linkage equilibrium, the range of αδ is 

only between 0.05, and 0.0541. 
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Linkage disequilibrium between two genes or correlation between genetic and 

environmental factors play important role in determining the bias level in the studies of 

interaction. According to results presented in Table 2, we find that the bias to the 

estimation of the genetic main effect becomes smaller when the linkage disequilibrium 

coefficient increases from 0 to 0.05. When γ=0, the mean of αβ is 0.3377 under SRS and 

0.5514 under non-SRS (selection bias), and when γ=1 the mean becomes 0.2716 and 

0.4597, under SRS and non-SRS, respectively. On the contrary, the bias to the estimation 

of the interaction effect increases when the linkage disequilibrium coefficient increases 

from 0 to 0.05. Our results show that when γ=0, the mean of αδ is 0.1642 under SRS and 

0.5512 under non-SRS. When γ=1, the mean becomes 0.1706 and 0.5555, under SRS and 

non-SRS, respectively. In all, bias δ
*
 seems to become larger when linkage disequilibrium 

coefficient gets larger. Under stronger linkage disequilibrium, the true type I error αδ can 

be as large as 0.1101 even the cases and control were perfectly matched.  

An application 

Shi et al. [23] studied the interaction effects of maternal smoking and maternal or fetal 

pharmacogenetic variants on the risk of orofacial cleft based on 1244 subjects from 

Demark and Iowa, USA with facial clefting and 4183 parents, siblings or unrelated 

population controls. We considered the combined Denmark and Iowa case-control data 

with H=1if maternal smoking was yes (0 if no) and G=1if GSTT1 genotype was null (0, if 
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genotype was not-null); see Table A6 of [23]. Based on these data, we found that G×H 

interaction was 3.2499 and chi-square test had p-value equal to 5.5676x10
-4

, indicating 

strong interaction effect. Also, from [24] we found that GSTT1 genotype frequencies of 

the Caucasian populations were between 0.129 and 0.276, giving the variation of the 

genotype frequencies †
G =4.8762. The range of maternal smoking rate was between 0.101 

and 0.244 (see [25-27]), giving the variation of exposure rates †H =1.968. Since maternal 

smoking and GSTT1 were independent in the unrelated control population (p-values of 

the independence test for the Demark data and Iowa data were respectively equal to 

0.0942 and 0.0976), our upper bound for the bias exp(δ
*
) (see equation 2) equals to 

1.6149, leading to the conservative p-value equal to 2.0353x10
-2

. This suggests that the 

maternal smoking effect on the cleft risk can be modified by the GSTT1 genotype even 

the population stratification and selection bias are both present in the study. 

Discussion   

The impact of population stratification is considered by many to be important in 

case-control studies of gene-disease association. Many authors have suggested 

quantitative methods to control type I errors of the usual association test. The most 

popular treatments include the “genomic control” method [28-33] and the “structured 

association” method [34-37]. Each of the proposed methods requires typing extra 

polymorphic markers to generate an estimate of PS which can be used to adjust the test 
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statistic. The impact of PS in case-control studies of gene-gene (environment) interaction 

is considered to be less important, when the genes under studied are in linkage 

equilibrium or when the gene-environment correlation is weak [18, 38]. However, this 

conclusion holds only when the sampling of the case and control data follow a SRS 

design, that is no selection bias. Unfortunately, there is no formal method for testing the 

validity of the SRS condition when the PS is present. 

In practical applications, the selection bias is not unusual. For examples, when the 

hospital-based cases (controls) are used in the study and they are not representative of the 

population-based cases (controls) or when many non-response of the cases or/and 

controls occur in the study or there are self-selections, then the SRS condition may fail. In 

this paper, we show that under slight selection bias ( †
DS =3), the bias to the estimation of 

main or interaction effect may become unacceptable. Our suggestion is that the bias 

should be treated seriously, even when the genetic factors are in linkage equilibrium or 

the genetic and environmental factors are uncorrelated. Large correlation or strong 

linkage disequilibrium could make the bias become even larger. Also, small variation in 

disease risk cannot guarantee small bias, unless there is also small selection bias. In 

applications, it is important to be able to measure the impact of the bias. In this paper, we 

drive some bounds for the bias. If these bounds are estimable, then they can be used to 

make conservative inference. We show one real example that a conservative p-value for 
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testing null interaction can be computed and significance conclusion can be reached even 

there is bias. Genotype frequencies of the SNPs and their LDs are readily available from 

international HapMap project. Further, disease prevalence is also available from many 

nations or from World Health Organization, for example. This information allows us to 

easily compute bounds and then conservative p-values.  

We note that matching in ethnicity between cases and controls has been suggested by 

epidemiologists as an affective method to control the PS bias in case-control gene-disease 

association study. However, in a more complicated risk model such as the one discussed 

here, bias (β
*
) (see equation 1) to the genetic main effect also depends on the effect size 

of other risk factor. We found that if γ=δ=0 then the residual bias after matching is small. 

However, if γ=1, and δ=0, the residual bias after matching is still quite substantial. A 

sufficient condition to assure bias β
*
=0 under perfect matching is γ=δ=0. Tables 1 and 2 

also show that matching cannot remove bias to the estimation of the interaction effect.  

Since the presence of PS and selection bias may cause unacceptable bias to the usual 

interaction analysis, it is of importance to have an efficient method to control the bias.  

Unfortunately, so far there exists no effective method. The major difficulty is that the 

level of the bias depends on the effect size of other related factor which is in general 

unknown or not estimable under the PS. However, under some special cases, for example, 

when the genetic main effects are null (or weak) and testing gene-gene interaction is the 
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main focus, one may follow the idea of genomic control to type extra pairs of null 

markers and apply the computed interaction levels to control the bias. In principle, if the 

candidate markers are in linkage equilibrium, the selected pairs of null markers also need 

to be in linkage equilibrium so that the important characteristics of the bias can be 

captured. On the other hand, if the candidate markers are in linkage disequilibrium, the 

paired null markers also need to be correlated. We are currently working to solve this 

important problem. Another approach for reducing bias is to match the cases and controls 

in ethnicity. According to our simulations, we find that under perfect matching and weak 

linkage disequilibrium, the bias to the estimation of the interaction effect is small. 

However, more study is needed in order to understand the impact of the residual bias 

when the matching is not perfect. 

Conclusions 

In this paper, the biases to the estimation of genetic main and interaction effects are 

quantified and their bounds are derived. We find that if there is environmental effect or 

interaction, the bias to the genetic main effect cannot be ignored even cases and controls 

were matched in ethnicity. The bias to the estimation of interaction effect also has the 

same problem. The estimated bound can be used to compute conservative p-value for the 

association test. The computation of conservative p-value does not require the knowledge 

on the number of subpopulations involved in the study or the membership of each study 
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subject. In real applications, it is usually not clear that if there is PS or selection bias or 

both. However, if appropriate information such as the variation of genotype frequencies is 

known, we always can compute the conservative p-value. If the conservative p-value is 

smaller than the designated significance level, we can safely claim that the test is 

significant regardless of the presence of PS/ non-SRS.  

 

Methods 

Following the usual Bayesian argument, the disease-risk model implies that  

( )Pr , | , 1G g H h S s D= = = = ÷   

( )Pr , | , 0G g H h S s D= = = =   

( )exp ,s g γh ghµ α β δ′= + + + +  

where ( ) ( ){ }log Pr 0, Pr 1,
s s

D S s D S sα α ′= + = = = = , s=2,…, k. As a consequence,  

( )

( )

Pr , | 1

exp

G g H h D

g γh ghµ β δ

= = =

′= + + + ×
 

( )
1

[Pr , | , 0
k

s

G g H h S s D
=

= = = = ×∑  

( ) ( )#P | 1 exp ].sS s D α= =  

On the other hand, the joint frequency distribution of G and H in the control population is 

given by 

( )

( )
1

Pr , | 0

Pr , | , 0
k

s

G g H h D

G g H h S s D
=

= = =

= = = = = ×∑
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( )#P | 0 .S s D= =  

Thus their ratio is given by 

( )Pr , | , 1G g H h S s D= = = = ÷   

( )Pr , | , 0G g H h S s D= = = =  

( ) ( )*exp ,g γh gh K g hµ β δ′= + + +
 

( ) ( )* *exp{ gµ µ β β′= + + + +
 

( ) ( )* * }γ γ h ghδ δ+ + +  

Here, we define ( ){ }* log 0,0Kµ = � ,
( )

( )
*

1,0
log

0,0

K

K
β

  
=  

  

�

�
,

( )

( )
*

0,1
log

0,0

K
γ

K

  
=  

  

�

�
and 

( ) ( )

( ) ( )
*

1,1 0,0
log

0,1 1,0

K K

K K
δ

  
=  

  

� �

� �
, where ( )

( 0)
, ( , ) .

( 1)

P D
K g h K g h

P D

=
= ×

=

�  Note that the above 

results are derived using the expression of  

( )
( 0 | 1, )

exp
( 0 | 0, )

s

P G H D S s

P G H D S s
α

= = = =
=

= = = =  

( 1| 0, )

( 0 | 0, )

P D G H S s

P D G H S s

= = = =
= ×

= = = =
 

( | 0)

( | 1)

P S s D

P S s D

= =

= =

( 0)
.

( 1)

P D

P D

=
×

=
 

 Also note that we can express 

*exp( )β =

{ }

{ }

1

1 1

k

s s s s

s

k k

s s s s s

s s

G D DS w

G w D DS w

=

= =

∑

∑ ∑
,   (1) 

where * *

1

/
K

s s s

s

w w w
=

= ∑ and 
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* ( 0, 0 | , 0)
s

w P G H S s D= = = = = ×  

# ( | 0)P S s D= =  

Define  

( )M

m
U w = (1 )

M M M m m m
wG D DS w G D DS+ −  

and  

( ) (1 )m

M M m
V w wG w G= + − . 

Simple algebra shows that there exists some constant *
w such that the bias is bounded 

above by 

*

* *

( )

( ) ( )

m

M

m m

M M

U w

U w V w×
 

0 1

( )
max

( ) ( )

m

M

m m
w

M M

U w

U w V w≤ ≤
≤

×
 

( )
( )( )

2
† † † † † †

† † † † † † † † †

1
.

G D DS G D DS

G D DS G G D DS D DS

+
=

+ +
 

Here 
M

G (
m

G ) is the largest value of
s

G .
M

D ,
m

D ,
M

DS , and
m

DS are similarly defined. 

Also note that under SRS, DSs=1 and therefore according to the definition of *exp( )δ we 

easily show that it is bounded above by † 2( )D  and bounded below by † 2( ) .D −  However, 

under general sampling design, the bias is expressed as  
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* 1

1 1

exp( )

K

s s s s

s

K K

s s s s

s s

OR G H w

G w H w

δ =

= =

′

=
′ ′

∑

∑ ∑
    

1 1

1
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K K

s s s s

s s
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s s s s
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G w H w

OR G H w
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where 
#

#

1

( | 0)

( | 0)

s s
s k

s s

s

D DS P S s D
w

D DS P S s D′ ′

′=

= =
′ =

′= =∑
and 

#

#

1

( | 0)

( | 0)
s k

s

P S s D
w

P S s D
′=

= =
′′ =

′= =∑
. By applying the 

same approach for deriving bounds for *exp( )β , we also can derive bounds for *exp( )δ .  
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Table 1. Biases and the true type I errors of the chi-square tests when †
G =5 and 

LD=(0,0)  

   
Bias 

(γ=0) 

type I error 

(γ=0) 
 

Bias 

(γ=1) 

type I error 

(γ=1) 

†H  
†D  

†
DS  

*| |β  
*| |δ  βα  

δα   
*| |β  

*| |δ  βα  
δα  

1 1 1 0.0000 0.0000 0.0500 0.0500  0.0000 0.0000 0.0500 0.0500 

  3 0.2365 0.0000 0.3815 0.0500  0.2365 0.0000 0.3412 0.0500 

  5 0.2975 0.0000 0.5513 0.0500  0.2975 0.0000 0.4970 0.0500 

  PM 0.0000 0.0000 0.0500 0.0500  0.0000 0.0000 0.0500 0.0500 

 3 1 0.3725 0.0000 0.7134 0.0500  0.3725 0.0000 0.6530 0.0500 

  3 0.5953 0.0000 0.9823 0.0500  0.5953 0.0000 0.9661 0.0500 

  5 0.6518 0.0000 0.9937 0.0500  0.6518 0.0000 0.9857 0.0500 

  PM 0.0000 0.0000 0.0500 0.0500  0.0000 0.0000 0.0500 0.0500 

 5 1 0.5573 0.0000 0.9602 0.0500  0.5573 0.0000 0.9326 0.0500 

  3 0.7679 0.0000 0.9993 0.0500  0.7679 0.0000 0.9977 0.0500 

  5 0.8205 0.0000 0.9998 0.0500  0.8205 0.0000 0.9992 0.0500 

  PM 0.0000 0.0000 0.0500 0.0500  0.0000 0.0000 0.0500 0.0500 

            

3 1 1 0.0000 0.0000 0.0500 0.0500  0.0000 0.0000 0.0500 0.0500 

  3 0.1916 0.1548 0.2583 0.0796  0.1916 0.1548 0.2232 0.0830 

  5 0.2383 0.2157 0.3729 0.1074  0.2383 0.2157 0.3201 0.1139 

  PM 0.0000 0.0000 0.0500 0.0500  0.0660 0.0285 0.0688 0.0511 

 3 1 0.3342 0.0762 0.5794 0.0572  0.3310 0.0796 0.4827 0.0584 

  3 0.5134 0.2312 0.9209 0.1163  0.5071 0.2345 0.8439 0.1232 

  5 0.5564 0.2892 0.9559 0.1538  0.5493 0.2918 0.8971 0.1632 

  PM 0.0000 0.0000 0.0500 0.0500  0.0930 0.0073 0.0812 0.0501 

 5 1 0.5129 0.0683 0.8997 0.0557  0.5058 0.0776 0.8083 0.0577 

  3 0.6812 0.2225 0.9918 0.1104  0.6687 0.2311 0.9657 0.1187 

  5 0.7210 0.2779 0.9962 0.1442  0.7071 0.2852 0.9796 0.1546 

  PM 0.0000 0.0000 0.0500 0.0500  0.0957 0.0222 0.0799 0.0506 

            

5 1 1 0.0000 0.0000 0.0500 0.0500  0.0000 0.0000 0.0500 0.0500 

  3 0.1608 0.2158 0.1912 0.1113  0.1608 0.2158 0.1639 0.1164 

  5 0.1986 0.3042 0.2693 0.1720  0.1986 0.3042 0.2270 0.1816 

  PM 0.0000 0.0000 0.0500 0.0500  0.0884 0.0532 0.0815 0.0541 

 3 1 0.3005 0.1007 0.4697 0.0635  0.2951 0.1081 0.3676 0.0659 

  3 0.4501 0.3178 0.8213 0.1855  0.4405 0.3252 0.6897 0.1942 

  5 0.4848 0.4026 0.8762 0.2656  0.4741 0.4085 0.7551 0.2750 

  PM 0.0000 0.0000 0.0500 0.0500  0.1325 0.0192 0.1063 0.0505 

 5 1 0.4702 0.0892 0.8176 0.0605  0.4574 0.1089 0.6735 0.0655 

  3 0.6101 0.3062 0.9661 0.1738  0.5901 0.3249 0.8820 0.1880 

  5 0.6423 0.3875 0.9794 0.2470  0.6203 0.4034 0.9122 0.2609 

  PM 0.0000 0.0000 0.0500 0.0500  0.1409 0.0474 0.1064 0.0529 

PM means that perfect matching # #( | 1) ( | 0)P S s D P S s D= = = = = is satisfied. 
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Table 2. Biases and true type I errors of the chi-square tests when †
G =5 and 

LD=(0,0.05)  

   
Bias 

(γ=0) 

type I error 

(γ=0) 
 

Bias 

(γ=1) 

type I error 

(γ=1) 

†H  
†D  

†
DS  

*| |β  
*| |δ  βα  

δα   
*| |β  

*| |δ  βα  
δα  

1 1 1 0.0000 0.0000 0.0500 0.0500  0.0000 0.0000 0.0500 0.0500 

  3 0.1862 0.3173 0.2456 0.1731  0.1862 0.3173 0.2116 0.1886 

  5 0.2313 0.4242 0.3535 0.2709  0.2313 0.4242 0.3021 0.2976 

  PM 0.0000 0.0000 0.0500 0.0500  0.0710 0.0871 0.0715 0.0598 

 3 1 0.3288 0.3309 0.5611 0.1735  0.3281 0.3208 0.4722 0.1791 

  3 0.5028 0.6401 0.9076 0.5019  0.5014 0.6166 0.8324 0.5127 

  5 0.5443 0.7413 0.9463 0.6209  0.5427 0.7122 0.8873 0.6299 

  PM 0.0000 0.0000 0.0500 0.0500  0.0972 0.0634 0.0837 0.0543 

 5 1 0.5062 0.4591 0.8883 0.2776  0.5046 0.4356 0.8052 0.2784 

  3 0.6695 0.7603 0.9894 0.6206  0.6667 0.7132 0.9643 0.6110 

  5 0.7080 0.8563 0.9948 0.7207  0.7048 0.8001 0.9787 0.7072 

  PM 0.0000 0.0000 0.0500 0.0500  0.0971 0.0486 0.0806 0.0523 

            

3 1 1 0.0000 0.0000 0.0500 0.0500  0.0000 0.0000 0.0500 0.0500 

  3 0.1365 0.4049 0.1484 0.2659  0.1365 0.4049 0.1278 0.2821 

  5 0.1677 0.5542 0.2022 0.4417  0.1677 0.5542 0.1700 0.4669 

  PM 0.0000 0.0000 0.0500 0.0500  0.0961 0.1592 0.0851 0.0842 

 3 1 0.2693 0.3457 0.3779 0.1993  0.2634 0.3503 0.2862 0.2072 

  3 0.3958 0.7451 0.6991 0.6654  0.3859 0.7440 0.5461 0.6719 

  5 0.4244 0.8876 0.7629 0.8067  0.4135 0.8823 0.6072 0.8083 

  PM 0.0000 0.0000 0.0500 0.0500  0.1517 0.0739 0.1175 0.0561 

 5 1 0.4286 0.4464 0.7192 0.2912  0.4138 0.4620 0.5509 0.3090 

  3 0.5465 0.8394 0.9110 0.7501  0.5248 0.8442 0.7650 0.7536 

  5 0.5730 0.9756 0.9361 0.8607  0.5495 0.9731 0.8041 0.8575 

  PM 0.0000 0.0000 0.0500 0.0500  0.1656 0.0311 0.1203 0.0510 

            

5 1 1 0.0000 0.0000 0.0500 0.0500  0.0000 0.0000 0.0500 0.0500 

  3 0.1034 0.4594 0.1039 0.3341  0.1034 0.4594 0.0917 0.3479 

  5 0.1262 0.6322 0.1325 0.5520  0.1262 0.6322 0.1135 0.5712 

  PM 0.0000 0.0000 0.0500 0.0500  0.0942 0.2098 0.0812 0.1101 

 3 1 0.2198 0.3865 0.2562 0.2424  0.2106 0.4008 0.1850 0.2529 

  3 0.3151 0.8406 0.4848 0.7777  0.3007 0.8531 0.3371 0.7791 

  5 0.3360 1.0059 0.5407 0.8992  0.3203 1.0147 0.3769 0.8962 

  PM 0.0000 0.0000 0.0500 0.0500  0.1623 0.0942 0.1176 0.0597 

 5 1 0.3590 0.4966 0.5345 0.3548  0.3343 0.5395 0.3535 0.3893 

  3 0.4474 0.9442 0.7431 0.8503  0.4139 0.9825 0.5114 0.8572 

  5 0.4667 1.1027 0.7822 0.9352  0.4310 1.1341 0.5467 0.9344 

  PM 0.0000 0.0000 0.0500 0.0500  0.1859 0.0365 0.1256 0.0513 

PM means that perfect matching # #( | 1) ( | 0)P S s D P S s D= = = = = is satisfied. 
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Additional file 1 

Title: Biases and the true type I errors of the chi-square tests. 

Description: The file contains two tables showing the biases and true type I errors of 

the chi-square tests when †
G =3 and LD= (0,0) or LD=(0,0.5).  
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