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a b s t r a c t

Over the past few years, my group has been investigating the effects of different param-

eters of electrical stimulation on nerve regeneration of a 10-mm gap of rat sciatic nerve

created between the proximal and distal nerve stumps, which were sutured into silicone

rubber chambers. In this review, I will introduce our work and share our experience with

investigators who are interested in the fields of nerve regeneration and biomedical

engineering.

Copyright ª 2011, China Medical University. Published by Elsevier Taiwan LLC. All rights

reserved.

1. Introduction

End-to-end and fascicular suture repair techniques are rec-

ommended for short nerve injury. However, in cases of

extensive nerve injury, i.e., defects involving an irreducible

gap between the injured proximal and distal stumps, a nerve

graft or a nerve bridge is preferred. Donor nerves for grafting

are often difficult to acquire; therefore, considerable research

has been conducted on peripheral nerve repair using the

nerve bridge technique [1e3]. A nerve bridge technique

involves placing both ends of the injured nerve stumps into

a tubular chamber, which helps guide growing nerve fibers

along appropriate paths and enhances the precision of stump

approximation. Regeneration of longer gaps can be achieved

by prefilling the guidance chamber with chemical adjuncts

such as neurite-promoting factors and neurotrophic factors,

which can promote early peripheral nerve regeneration [4e6].

In addition to chemical adjuncts, physical adjuncts such as

electrical stimulation (ES) have been used to recover lost

function of injured nerve pathways in the peripheral nervous

system.

Studies have demonstrated that a weak electric field can

enhance neurite outgrowth in vitro [7,8] and in vivo [9,10].

Other studies, however, have reported that electric fields have

no effect and in some cases a negative effect on nerve

regeneration [11,12]. Similarly, discrepant findings have also

been noted between studies that have adopted different

stimulation frequencies and intensities. For example, Cheng

et al found that pulse ES at 100 Hz could induce a relatively

higher regenerated axonal density than electrical stimulation

at 50 Hz [13]. However, Agnew et al found a positive correla-

tion between the frequency of ES applied to a peripheral nerve

and the severity of stimulation-induced neural damage [14]. In

addition, the ideal duration that ES should be applied in

patients with and in animal models of nerve injury has not

been established. Furthermore, all of the aforementioned
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studies that investigated the effect of ES on nerve regenera-

tion in animal models focused on short nerve gaps. The

inherent regenerative capacity of the nerve in animals could

be so efficient over shorter gaps that the effects of ES may not

be fully revealed. Therefore, animal models of nerve injury

involving longer nerve gaps are needed to better understand

the effects of ES on damaged nerves.

This review will introduce the effects of different

frequencies, current intensities, and durations of ES on the

regeneration of transected rat sciatic nerves that were

reconnected using a silicone rubber nerve tube with a 10-mm

gap.

2. Effects of ES frequency on sciatic nerve
regeneration

It has been reported that ES can enhance peripheral nerve

regeneration [15,16]. Based on the results of those studies, we

are confident that ES produces bio-effects on nerve tissues.

However, contradictory results have also been reported.

Therefore, a dramatic and reproducible model with well-

controlled experimental variations is necessary to clarify the

role that electrical treatment plays on nerve regeneration.

The nature of the experiments, such as the type of ES used

(DC or AC; constant or pulsed), the stimulation parameters,

the sites for the placement of electrodes, and most impor-

tantly the length of the nerve gap, all affect the efficacy of ES

on nerve regeneration. Considerable research has been con-

ducted on nerve repair across a wide gap using entubulation

techniques [17]; however, to the best of our knowledge, Cheng

et al are the only researchers to have used conduit prostheses

to investigate the influence of different ES frequencies on

nerve regeneration [13]. In their study, histomorphometric

evaluation revealed that ES frequency affected nerve fiber

density. Unfortunately, the small nerve defect (7 mm in

length) and the lack of electrophysiologic data hindered their

ability to make a solid conclusion.

In a recent study, we used a silicone rubber conduit to

repair a rat sciatic nerve defect measuring 10 mm in length

and then stimulated the nerve with different electrical

frequencies. Histological and electrophysiological techniques

were used to determine whether ES could stimulate the

regeneration of nerves. We found that ES significantly sup-

pressed the formation of nerve cables across the nerve gap in

the silicone rubber chamber in a dose-dependentmanner. Our

data showed that a frequency of 2 Hz resulted in generation of

nerve cables across the gap in 86% of the subjects, that

a frequency of 20 Hz stimulated nerve regeneration in 71% of

the animals, and that 200 Hz resulted in regeneration of nerve

cables across the gap in only 57% of the test subjects. In

contrast, bridging cables were noted in all of the animals in

the control group as well as in the ES group that received ES at

a frequency of 1 Hz. These findings show that electrical

treatment may interfere with the process of nerve regenera-

tion. However, examination of muscle action potentials

(MAPs) and morphology revealed that ES seems to exert

a growth-promoting effect on regenerated nerves. Morpho-

metric studies revealed that the regenerated nerves that

received electrical treatment at a frequency of 2 Hz had

a significantly shorter latency, a longer duration, a faster

nerve conductive velocity (NCV), a smaller cross-sectional

area, a larger axonal density, and a larger ratio of blood

vessel area to total nerve than controls. Those findings indi-

cate that electrical treatment can accelerate thematuration of

regenerated nerves [18].

These results raise a number of questions. For example,

how can the discrepant results be explained? In addition, how

should “successful nerve regeneration” within a guidance

tube be defined? We believe that both the percentage of

regenerated nerves that successfully cross the gap as well as

the maturity of nerve microstructure must be considered

when assessing the recovery of regenerated nerves.

3. Effects of ES current intensity on sciatic
nerve regeneration

Several investigators have tried to explain how application of

cathode distal current enhances the regeneration of periph-

eral nerves. Sisken et al reported that direct current resulted

in an increased number of neurotrophic factor receptors in

chick embryos [19]. It has also been reported that

proteoglycan-mediated adhesion of regenerating axons,

which is necessary for neuronal cell growth, could be

manipulated by direct current [20]. In addition, some studies

showed that treatment with ES led to an increase in the

expression of injury/regeneration-associated genes (growth-

associated protein 43 and Ta1 tubulin) as well as neurotrophin

brain-derived neurotrophic factor and its receptor trkB,

factors that play important roles in the regeneration of nerve

tissues [15,16].

We also found that animals exposed to ES had a larger

mean number of axons, endoneurial area, total nerve area,

blood vessel number, and blood vessel area than control

animals, which indicates that ES accelerates the maturation

of regenerated nerves [21]. In addition, regenerated nerves

treated with ES, especially in the group that received 1 mA of

direct current, had relatively shorter latency periods, larger

amplitudes, largerMAP areas, faster NCVs, andmore evidence

of reinnervation of muscle fibers than controls. These results

indicate that the transected nerves that received ES under-

went adequate regeneration. We also found that the ability of

ES to improve the function of regenerated nerves decreased as

the current intensity increased. For example, animals that

received ES at 4 mA had a significantly higher error rate than

controls while crossing the grid runway in the kinematic gait

analysis, a test that assesses individual limb motor functions

[22]. Our results indicate, therefore, that excessive ES can

hinder the functional recovery of regenerated nerves.

4. Effects of ES timing on sciatic nerve
regeneration

It is generally assumed that ES should be applied shortly after

nerve injury because ES-induced recovery can be facilitated by

the body’s immune response to injury [23,24]. In addition,

studies have shown that ES can also accelerate upregulation

of brain-derived neurotrophic factor (BDNF) and trkB mRNA,
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factors that support the development, maintenance, and

plasticity of peripheral neurons [15,16]. Accordingly, delayed

onset of ES should be less effective in promoting the recovery

of regenerated nerves. However, those studies assessed ES

only over a short gap. We wondered whether more severely

injured animals require more time before ES can increase

neuroplasticity. In one of our current studies [25], we found

that the number of axons was significantly greater in rats that

received ES at a frequency of 2 Hz and an intensity of 1 mA on

Day 8 following nerve repair than in rats that did not receive

ES. This result confirms that ES accelerates the maturation of

regenerated nerves that successfully cross the gap and leads

to improved sensorimotor function after peripheral nerve

injury. In addition, we also found that application of a delayed

ES could dramatically improve the recovery of regenerated

nerve function. This beneficial effect was not seen when the

same stimulation protocol was applied immediately after

nerve repair. Specifically, we found that a delay of 7 days

before the onset of ES significantly enhanced the formation of

nerve cables across a wide nerve gap in the silicone rubber

chamber. Seventy percent of the animals in that group had

cables that grew across the gap whereas only 30% of the

animals in the group that received ES on post-injury Day (PID)

1 exhibited such bridging cables. Nerve recovery after

a delayed onset of ES was a surprising finding, as most studies

have shown that early application of ES is effective at accel-

erating axonal regeneration, mainly by up-regulating the

expression of growth-promoting factors such as BDNF [10,26].

However, in those studies the nerve gap was much shorter

than that in our study. Therefore, we do not know whether

more severely injured animals require more time after nerve

repair before ES can increase neuroplasticity. In addition,

when considering the onset of ES following nerve repair, it has

to be kept in mind that early application of ES might result in

side effects, such as exacerbation of the size of the lesion [27].

For example, Griesbach et al found that BDNF levels signifi-

cantly increased in rats with a mild fluid-percussion injury

(FPI) that were exercised from PID 14 to 20. In rats with

moderate FPI, however, significant increases in BDNF were

evident only in animals that were exercised from PID 30 to 36

[28]. Those results indicate that the time window for exercise-

induced increases in BDNF is dependent on injury severity.

Since both ES and exercise share some common mechanisms

of action (i.e. increased expression of neurotrophin BDNF and

its receptor trkB) [29], it is reasonable to assume that delayed

ES should be more effective than immediate ES in promoting

nerve regeneration across a large gap. Interestingly, we only

found significant improvement in the rate of successful

regeneration when ES was started after a delay of 7 days, but

not when performed betweenDays 15 and 29 post-injury. This

result again indicates the importance of the timing phenom-

enon for the effect of ES on growth-promoting factors [30].

It is also important to note that delayed ES not only

increased the rate of successful regeneration, but also

enhanced maturity of the neural components within the

nerve cable [25]. Specifically, the number of myelinated axons

that successfully grew across the 10-mm gap was twofold

greater in the groups that received delayed ES than in the

group that received immediate ES. In addition, the number of

regenerated blood vessels was greater and the nerve areas

were larger in the groups that received delayed ES than in the

group that received immediate ES. Although we cannot

explain the increased number of regenerated axons and blood

vessels, our results indicate that delayed application of ES

affects axonal and capillary growth in the regenerated nerves.

Our findings substantiate that the time course of ES is of

importance for the final recovery after peripheral nerve

injuries. A short delay in the onset of ES to injured nerves can

significantly accelerate axonal regrowth and functional

restoration, which are important factors for successful nerve

regeneration.

5. Conclusion

This review demonstrates that ES has a dual effect: it can

hinder the growth of regenerating nerves as well as promote

their recovery. Safe stimulus protocols, therefore, are neces-

sary. Otherwise, improper ES can irreversibly damage nerve

tissue, retarding the process of nerve regeneration.
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