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ABSTRACT 

 

The main purpose of this study is to investigate the coupled effects of the 

pulsatile blood flow in thermally significant blood vessels and the thermal relaxation 

time in living tissues on temperature distributions during thermal treatments. 

Considering the fact that propagation speed of heat transfer in solid tissues is actually 
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finite according to experiments, the traditional Pennes bioheat transfer equation 

(PBTE) was modified to a wave bioheat transfer equation (WBTE) that contains both 

wave transportation and diffusion competing with each other and characterized by the 

thermal relaxation time. The wave behavior will be more dominant when the 

relaxation time is large. WBTE together with a coupled energy transport equation for 

blood vessel flow was used to describe the temperature evolution of our current 

tumor-blood vessel system, and the equations were numerically solved by the highly 

accurate multi-block Chebyshev pseudospectral method. Numerical results showed 

that temperature evolution from WBTE was quite different from their counterparts 

from PBTE due to the dominant wave feature under large relaxation time. For 

example, larger relaxation time would preserve high temperature longer and this 

effect is even more pronounced when heating is fast. It further implies that heat is 

drained more slowly when relaxation time is large, and would make thermal lesion 

region cover the tumor tissue, the heating target, better. This phenomenon would 

therefore hint that the traditional PBTE simulations might under-estimate the thermal 

dose exerted on tumor. As to the pulsation frequency of blood flow from heart beat 

which was originally predicted to be important here, it turned out that the thermal 

behavior is quite insensitive to pulsation frequency in the current study. 

 

Keywords: pulsatile blood flow, thermal relaxation time, Pennes bioheat transfer 
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equation, wave bioheat transfer equation, multi-block Chebyshev pseudospectral 

method. 

 

1. INTRODUCTION 

 

Heat transfer in living tissues is a key issue to thermal therapies. Thermal therapy 

uses elevated temperatures to kill tumor cells for therapeutic purposes [1-3]. Thermal 

coagulation necrosis occurs when a biological tissue is heated beyond the threshold 

temperature of protein thermal denaturation for a few seconds [4-6]. Depending on 

the tissue types, the heat-induced denaturation starts when temperature is higher than 

55°C [5]. The tissue temperature can be raised by various methods, such as 

high-intensity focused ultrasound [7], radiofrequency ablation [8], microwave 

ablation [9], and laser surgery [10-11]. Furthermore, temperature distribution in a 

living tissue mainly depends on heat conduction through tissue, heat convection 

through moving fluids that is adjacent to or within the tissue such as blood flow and 

interstitial fluids, heat generation by tissue metabolism, heat sink by blood perfusion 

and heat deposition with various patterns generated by the external heating source 

during thermal treatments. The well-known Pennes bioheat transfer equation (PBTE), 

as shown in Eq. (1), originally designed for predicting heat transfer in human forearm, 
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is widely used for modeling the heat transfer in living tissues due to using a uniform 

blood perfusion term to describe heat transfer between the blood and tissue [12].  

 

    ,t
t t t t b b t a m

T
c k T W c T T Q Q

t



     


                         (1) 

 

with t  being the time, tT  the tissue temperature, t  the tissue density, tc  the 

tissue specific heat, tk  the tissue thermal conductivity, bW  the arterial blood 

perfusion rate, bc  the blood specific heat, aT  the arterial blood temperature (usually 

set to be same as the ambient human body temperature 37°C), mQ  the rate of tissue 

metabolic heat production (usually set to 0.0001 g·cal/cm·s), and Q  the external heat 

source. Pennes [12] first stated that the rate of heat transfer from blood to tissue at any 

point is proportional to the temperature difference between the arterial blood and 

tissue at that point. He also assumed the vein blood temperature to be equal to the 

tissue temperature. In this model, the rate of increase of tissue temperature is balanced 

by heat conduction through the tissue, metabolic heat generation, heating (or cooling) 

effects of the arterial blood supply [13-17], and external heat source. However, a 

fundamental criticism of Pennes model by Nelson [13] is that the treatment of blood 

flow term as a distributed heat source (or sink) mistakenly presumes that the capillary 

vasculature is the major site of heat exchange. In other words, the blood flow term is a 
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scalar property. In fact, the blood flow in a tissue usually has a direction from artery to 

vein passing through the capillary bed. Furthermore, the blood and its surrounding 

tissues are not in thermal equilibrium when the blood vessel diameter is larger than 

500 m [18-26]. This means the energy equations for tissue and blood in significantly 

large vessel must be treated individually. 

The cyclic heart contraction pumps blood through vascular network and form a 

circulatory system. This periodic pumping generates pulsatile blood flow in all 

arteries [27-30]. Womersley [31] investigated the periodic-in-time velocity profile for 

pulsatile blood flow, driven by a given oscillating pressure gradient, inside a straight 

circular blood vessel. Using the dimensionless Womersley number to characterize the 

frequency of pulsatile blood flow in blood vessels, Loudon and Tordesillas [32] 

demonstrated that the flow tracks the oscillating pressure gradient tightly and the 

velocity profile exhibits a parabolic shape when the Womersley number is small. 

When the Womersley number is large, the phase lag between velocity and pressure 

gradient becomes larger and the velocity profile may display a shape of two peaks 

when oscillation amplitude of pressure is large. One of the key issues of thermal 

treatments is blood flow. Blood flow usually drains the delivered heat from the 

heating region which causes insufficient thermal dose in the targeted volume. This is 

an important factor needed to be considered carefully in thermal treatments [33-36]. 
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In fact, the differential therapeutic effect of thermal treatments between malignant and 

normal tissue may primarily depend on the vascular characteristics of the tumor [37]. 

Craciunescu and Clegg [38] solved the fully coupled Navier-Stokes and energy 

equations to obtain the temperature distribution of pulsatile blood flow within a rigid 

blood vessel. They found that the reversed flow enhances as the Womersley number 

becomes larger, which results in a smaller temperature difference between forward 

and reverse flows. Nevertheless, in their model they only focused on the temperature 

distribution in blood vessels without considering the surrounding tissue. Khanafer et 

al. [36] and Horng et al. [39] further studied the effects of pulsatile blood flow on 

temperature distributions during hyperthermia by considering both the pulsatile blood 

flow in a blood vessel and its surrounding tissue. 

The heat conduction term in PBTE is based on the classical Fourier law, which 

assumes that a temperature disturbance in any part of the materials leads to an 

instantaneous perturbation at each point of the whole. This implies that the 

propagation speed of thermal perturbation is infinite even if the intervening distance is 

very large, and causes some doubts and discussions [40-42]. Actually, non-Fourier 

heat conduction behavior has been observed in bio-materials with inhomogeneous 

inner structures [43], in biological tissues [44, 45], in canine thigh muscles [46], and 

in processed meats [47, 48]. Considering the finite propagation speed for thermal 
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disturbance, Cattaneo [49] and Vernotte [50] formulated a modified heat flux equation, 

as shown in Eq. (3) with Fourier law shown in Eq. (2) for comparison. 

 

   , , ,q r t k T r t                                     (2) 

 

 
 

 
,

, , ,
q r t

q r t k T r t
t




   


                         (3) 

 

where , , ,T q k  are temperature, heat flux, thermal conductivity and thermal 

relaxation time respectively. The thermal relaxation time for biological tissues has 

been found typically large leading to significant non-Fourier thermal behavior. Mitra 

et al. [47] measured experimentally the thermal relaxation time in a processed meat 

and reported that   could be as large as 16 seconds (s) approximately. Kaminski [43] 

reported that   ranges from 10 to 50s in his experiment for materials with 

inhomogeneous inner structures. Roetzel et al. [51] also confirmed the hyperbolic 

behavior of thermal propagation with   about 1.77s in a similar experiment. Using 

the thermal properties of tissue and blood from some literatures, Zhang [52] computed 

and argued that reasonable   should range from 0.464 to 6.825s. He further found 

that the dual-phase lag phenomenon in temperature and its gradient due to the wave 

feature is more pronounced when blood vessel is large. The literatures mentioned 
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above have motivated us to fully explore the coupled effect of pulsatile blood flow in 

large blood vessels and thermal relaxation time on the heating of tumor tissues here, 

from which we believe it can deliver significant contribution to thermal therapy of 

tumors.  

 

2. MATHEMATICAL MODEL AND NUMERICAL METHOD 

 

2.1 Velocity profile of pulsatile blood flow in a circular blood vessel 

 

In this study, we considered the pulsatile blood flow in thermally significant blood 

vessels (i.e., larger than 200 m in diameter) [33, 35, 39], with the assumptions that 

the blood vessel segment is straight, the vessel wall is rigid and impermeable, and the 

flow is incompressible and Newtonian. Considering the steady blood flow passing 

through a rigid vessel of inner radius 0r , the axial Hagen-Poiseuille parabolic velocity 

profile can be expressed as: 

 

2 2

0

1
( ) ( ) ,

4

dp
w r r r

dz
                                                 (4) 

 

where   is the dynamic viscosity, 
dp

dz  the constant pressure gradient along the 
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axial (z) direction. Since the blood flow in the cardiovascular system is periodic, the 

pressure gradient can not remain to be a constant any more. Here, it is modified to 

have an additional sinusoidal component in time shown as follows 

 

0 1

i tp
c c e

z


 


,                  (5) 

 

where   is the angular frequency and the associated period of time is denoted as 

2
T




 . The real part of sinusoidal component above will describe the realistic 

oscillatory driving pressure gradient as  1 cosc t , and likewise the imaginary part 

will describe the realistic oscillatory pressure gradient as  1 sinc t . Then the 

corresponding axial velocity profile ( , )W r t
 can be expressed as  

 

1( , ) ( ) ( ) i tW r t w r w r e   ,                                    (6) 

 

in which 
2 2

0 0

1
( ) ( )

4
w r r r c


   . Here, 0c  can be related to average volume flow 

rate over the time period T
~

 as follows: 
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The average velocity can be further deduced from above 

 

2

0 0

2

0 8

avgQ c r
w

r 
   ,                                                   (8) 

 

and then ( , )W r t  can then be expressed as 

 

2
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0

( , ) 2 (1 ) ( ) i tr
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r
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1w  can be further derived from the Navier-Stokes equations, and express ( , )W r t  as 

follows [29], 

 

3
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                          (10) 

 

where 0r
 

 denotes the Womersley number describing the competition between 

the inertia and viscous forces;   denotes the kinematic viscosity of blood; 0J  is the 

Bessel function of the first kind of order zero. If oscillatory driving pressure gradient 
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is  1 cosc t , the corresponding velocity will then be the real part of Eq. (10). If  

oscillatory driving pressure gradient is  1 sinc t , the corresponding velocity will 

then be the imaginary part of Eq. (10). Here we also 

define
1 0 1 2

0

8  w
fac c c c

r

 
   

 
 and use it to characterize the relative intensity of 

pulsation in the blood flow. 0.5fac   would be mostly used in current study. When 

the Womersley number   is large, the effect of viscosity cannot propagate far from 

the vessel wall, and the blood flow in the central part of a vessel acts like an inviscid 

flow and can be chiefly determined by the balance between the inertia force and the 

pressure gradient. Under this situation, the velocity profile of oscillatory component 

has a rather flat-top shape at certain phases compared with parabolic profile of 

Poiseuille flow. When the Womersley number   is large enough, the velocity profile 

of oscillatory component may even display two peaks at certain phases [39, 53]. Some 

examples of the diameters of thermally significant blood vessels and their associated 

average velocities are listed in Table 1 [39]. Taking the largest blood vessel 

considered in Table 1 (diameter2mm), and varying heart beat frequency from 1 to 

3Hz suggested by [54], the velocity profiles of oscillatory component are respectively 

shown in Fig. 1 at selected time phases. It can be observed that, as the Womersley 

number increases with increasing beating frequency, the velocity profile exhibits 

flat-top and even two-peak behaviors. 
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2.2 Temperature governing equations 

 

In this study, a simplified annular perfused tissue, consisting of tumor and normal 

parts, surrounding a coaxial blood vessel with pulsatile blood passing through is 

considered. The tumor segment surrounds part of the blood vessel and is itself 

surrounded by the otherwise normal tissue. The whole axis-symmetric computational 

domain  , described by cylindrical coordinates, is bounded by max ,  0,r r z   and 

maxz z ; the blood vessel is bounded by 0 0 max (with ),  0,r r r r z    and maxz z ; 

the heating target (tumor and a part of the blood vessel) is bounded by 

1 0 1 max 1 (with < ),  ,r r r r r z z    and 2 1 2 max (with 0< < < )z z z z z . All the geometric 

configurations mentioned above are shown in Fig. 2. 

The absorbed power densities for the blood and tissue are assumed to be equal to 

the heating power densities. Traditionally, the governing equations for the temperature 

evolution are PBTE shown in Eq. (11) for solid tissue and energy transport equation 

shown in Eq. (12) for blood flow in terms of cylindrical coordinate under 

axis-symmetric situation [39]:  

 

   
2

2

1
, ,t t t

t t t b b t a t

T T T
c k r W c T T Q r z t

t r r r z


     
      
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,                (11) 
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with symbol of notations same as before and the subscript t denoting the tissue and b 

the blood. Notice that in this study the tissue metabolic heat production mQ  was 

neglected compared with heating power. The heat sink  b b t aW c T T   in Eq. (11) is 

used to describe the perfusion effect by the microvascular network of blood flow (i.e., 

blood vessels with diameter generally less than 200 m), while the heat transfer due 

to the thermally significant large blood vessel has to be separately described by Eq. 

(12). 

By taking into account the finite thermal propagation speed in living solid tissues, 

we modified Eq. (11) by heat flux formula in Eq. (3), and obtained a wave bioheat 

transfer equation (WBTE) as shown in Eq. (13) to replace Eq. (11): 

 

2 2

2 2

1
( ) ( ),t t t t t t

t t t t b b a t t t b b

T T T T T Q
c k r W c T T Q W c

t t r r r z t t
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          
            

          

(13) 

in which the terms in left hand side represent heat wave and heat diffusion 

respectively. They are competing with each other with the thermal relaxation time 
t  
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characterizing the strength of wave feature compared with diffusion. When 0,t   

WBTE (Eq. (13)) will reduce to PBTE (Eq. (12)). The external heating power density 

tQ  in Eq. (13) and bQ  in Eq. (12) are designated as follows 
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( , , ) 2

0, ( , , ) otherwise,

t h

t h
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Q r r r z z z t t
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b h
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   
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


                 (14) 

 

where tQ  and bQ  are the time average of tQ  and bQ  respectively, and ht  is the 

duration of time of heating. In current study, we let t bQ Q Q  . Five heating 

schemes consisting of various combinations of Q  and ht  are shown in Table 2,  

and were employed here to study the effect of Q  and ht . It basically features 

different heating speed. 

The initial conditions for the blood vessel and the tissue are 

 

    370,,0,,  zrTzrT bt °C,  and  , ,0 0tT
r z

t





°C/s.                    (15) 

 

At the interface    0 max,  0r r z z    between the blood vessel and tissue, 
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temperature and heat flux continuity conditions are imposed. 

 

t bT T  at  ,                                                      (16) 

 

t b
t b

T T
k k

n n

 


 
 at  ,                                               (17) 

 

where n  denotes the direction normal to  .  At 0r  , the pole condition was 

applied for the blood vessel: 

 

0bT

r





.                                                          (18) 

 

The boundary conditions at max ,  0,r r z   and maxz z  are all set to 

 

37 bt TT °C,                                                     (19) 

 

except that the convective boundary condition is employed for the blood vessel part at 

maxz z : 

 

0









z

T
W

t

T bb ,  at maxz z .                                        (20) 



 17 

 

Eqs. (12, 13, 15-20) form a well-posed partial differential initial/boundary value 

problem, and were solved numerically by the multi-block Chebyshev pseudospectral 

method shown below. 

 

2.3 Numerical method 

 

Eqs. (12, 13, 15-20) are computed here under the framework of method of lines 

(MOL). We first semi-discretize Eqs. (12, 13, 15-20) in space only, and form a system 

of ordinary differential and algebraic equations (ODAE) that can be further integrated 

in time by many well-developed ODAE solvers. Here, we spatially discretize Eqs. (12, 

13, 15-20) by the highly accurate multi-block Chebyshev pseudospectral method, and 

then integrate the resultant ODAE system by an efficient MATLAB index-1 ODAE 

solver ode15s. The ordinary differential equations in the resultant semi-discrete 

system are from the spatial discretization of Eqs. (12, 13, 20) which are time 

dependent, and the algebraic equations are from the rest boundary and interface 

conditions which are time-independent. Ode15s is an explicit variable-order and 

variable-step-size (VSVO) ODAE solver. It can adjust the step size and order of 

scheme automatically during integration to meet the specified error tolerance, and 
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numerical time-stability is also automatically assured. 

Owing to the heterogeneity of imposed governing equations, thermal properties, 

and heating, the computational domain is decomposed to 9 blocks (with meshes 

described below) as shown in Fig. 3. Blocks 1, 2, 3 are the blood vessel; block 5 is 

tumor; the others are normal tissue. Heating zones are blocks 2 and 5. We then 

spatially discretize the governing equations with the associated boundary/interface 

conditions in each block by the Chebyshev pesudospectral method [55-57], and the 

main work is to approximate the spatial derivatives of tT  and bT  at specially 

designed mesh points (called collocation points) by the Chebyshev pseudospectral 

method. To illustrate this, here we take a single-variable function ( ), 1 1,f x x    

as an example. ( )f x  can be approximated by a N-th degree interpolation polynomial 

with exponential order of accuracy through 

 

0

( ) ( ) ( ) ( )
N

N j j

j

f x f x f x l x


  ,                                         (21) 

 

where ( )jl x  is the N-th degree Lagrange interpolation polynomial and 

cos( / ), 0,1, , ,jx j N j N  are specialized interpolation nodes  called the 

Chebyshev-Gauss-Lobatto (CGL) collocation points. CGL collocation points are the 

roots of the polynomial 
2( ) (1 ) ( )NL x x T x   with ( )NT x  denoting the N-th order 
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Chebyshev polynomial. ( )jl x  can then be explicitly expressed as 

 

 
     

 jj

N

j

j
xxNc

xTx
xl








2

21
  11

,                                          (22) 

 

with 
2, 0, ,

1, 1, , 1,
j

j N
c

j N


 

   

 

such that  
1 , ,

( )
0, .

j i ij

i j
l x

i j



  

  

 

Therefore, 
( )idf x

dx
 can be approximated by 

 

         



N

j

jij

N

j

ijj
iNi xfDxlxf

dx

xdf

dx

xdf

00

  ,                          (23) 

 

where ( )ij j iD l x is the associated collocation derivative matrix expressed as 
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2

2

2

( 1)
, ,

, 1 1,
2(1 )

2 1
, 0,

6

2 1
, .

6

i j

i

j i j

j

j
ij

c
i j

c x x

x
i j N

x
D

N
i j

N
i j N

 





    
 

 
 

 

 
  


                                    (24) 

 

Similarly, higher derivatives 
( )k

i

k

d f x

dx
can be approximated by 

 

 
0

( ) ( )
( ).

k k N
ki N i

jk k ij
j

d f x d f x
D f x

dx dx 

                                    (25) 

 

For a multi-variable function ( , ),  -1 , 1,f x y x y   it can be similarly approximated 

by 

 

,

0 0

( , ) ( , ) ( , ) ( ) ( ),  
yx

x y

NN

N N j k j k

j k

f x y f x y f x y l x l y
 

                           (26)                          

 

which is merely a tensor-product extension of Eq. (21) with xN -degree interpolation 

polynomial in x  direction, and yN -degree interpolation polynomial in y  direction 

respectively. Following Eq. (25), the m -th partial derivative in x  direction can then 

be approximated by 
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 
0

( , )( , )
( , ),

x
x y

x

mm N
N N i ji j m

N k jm m ik
k

f x yf x y
D f x y

x x 


 

 
                        (27) 

 

where 
xND  is basically D  in Eq. (24) with xN N .  

Likewise, the m -th partial derivative in y  direction can be approximated by 

 

 
0

( , )( , )
( , ),

y

x y

y

mm N
N N i ji j m

N i km m
jk

k

f x yf x y
D f x y

y y 


 

 
                        (28) 

 

where 
yND  is D  in Eq. (24) with yN N  similarly.  

 

CGL collocation points are clustered more densely near boundary, and this makes 

our current computational mesh more densely distributed near boundaries and 

interfaces as shown in Fig. 3, which is more advantageous than uniform meshes since 

CGL collocation points resolve boundary/interface layers more efficiently. Actually, 

quite economic grids were used here due to this boundary/interface layers resolving 

advantage and intrinsic high accuracy in the Chebyshev pseudospectral method, and 

therefore the computation efficiency is very high. A typical set of numbers of grids 

used here are  10,10,10rN  for blocks along r -direction and  30,10,50zN   
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for blocks along z -direction, and the numerical results based on this shown in next 

section are all confirmed to be grid-independent ones with error of convergence 

generally less than 410 . 

 

3. RESULTS AND DISCUSSIONS 

 

Here we study how the thermal relaxation time t , characterizing the strength of 

wave feature in WBTE (Eq. (13)), affect the thermal treatment. Numerical 

experiments were conducted under exhausted combinations of heating speed (as listed 

in Table 2), thermal relaxation time ( 0,  0.464, 1.756, and 6.825t  s as suggested in 

[52]), and pulsation frequency of blood flow (1 and 2Hz). Here we only consider the 

case of blood vessel diameter being 2mm in Table 1, since larger blood vessels have 

been proved to be more thermally significant with sensitivity to heating speed [39]. 

Time evolution of maximum temperature and thermal dose are particularly chosen 

here to demonstrate the effect of thermal relaxation time. First we found that the 

difference of oscillation frequency in blood flow made tiny difference both in the 

maximum temperature evolution and thermal dose for all heating speeds and t . We 

can then conclude that the thermal behavior is quite insensitive to pulsation frequency 

of blood flow in current study. The wave feature in WBTE (Eq. (13)) with large t  is 
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found to be most pronounced when heating speed is fast. In Figs. 4 and 5, we compare 

the temperature evolution for 0 and 6.825t  s under the case of fastest heating 

speed (heating scheme I in Table 2). Non-smooth temperature distribution in space is 

clearly observed during time evolution, featuring strong wave propagating behavior, 

in Fig. 5 for 6.825s,t   while only smooth temperature distribution is observed all 

the time, featuring parabolicity of PBTE (Eq. (11)), in Fig. 4 for 0s.t   

 

Time evolution of maximum temperature in space 
( , )
max
r z

T


 can particularly 

demonstrate the effect of thermal relaxation time under different heating speeds as 

shown in Fig. 6. Generally, this maximum temperature happens near the center of 

zone 5 (tumor tissue) in Fig. 2. For 0t  , we can see 
( , )
max
r z

T


 always reaches its 

maximum in time right at end of heating as expected, while 
( , )
max
r z

T


 generally 

exhibits plateau in time after end of heating for non-zero t ’s, which is more 

pronounced as t  is large and heating speed is fast as comparing sub-figures in Fig. 

6. This can be easily understood by the fact that heat transfer is slower (takes more 

time to relax) at large t  and high temperature tends to accumulate and preserve in 

time at tumor zone when heating is fast (less time for tumor to respond and relax 

thermally). However, for slow heating in Fig. 6(d, e), no plateau is observed and this 

may be due to the reason that heating is so slow that tumor has enough time to 
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respond and relax thermally. In this case, we can also observe non-zero t ’s even lead 

0t   to reach maximum in time for 
( , )
max
r z

T


. Besides, 
( , )
max
r z

T


 reaches its 

maximum in time with larger maximum when t  is larger. 

 

The accumulated thermal dose to tissue is a function of heating duration and the 

temperature level. The estimate of tissue damage is based on the thermal dose of 

which the formula was proposed by Sapareto and Dewey [61]. The thermal dose or 

equivalent minutes at 43 °C ( 43EM ) is shown as follows: 

 

43

43
0

EM (in min.)= ,
ft

TR dt

                                             (29) 

 

where 2R   for 43T  °C, 4R   for 37 °C T  43 °C, and ft =60s in current 

study. The threshold dose for necrosis is 43EM 240 min for muscle tissue, and the 

region encircled by the level curve 43EM 240 min is taken as the thermal lesion 

region. Covering tumor tissue but not normal tissue by thermal lesion region as full as 

possible is most desired in the thermal treatment. From Fig. 7, we can observe tumor 

tissue is generally covered better by thermal lesion region based on 43EM 240 min 

level curve when heating is fast, and this effect is further enhanced when t  is large. 

Some even cover a small part of normal tissue near the downstream junction of blood 
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vessel, tumor and normal tissue as shown in Fig. 7(a, b), which is actually not desired 

in thermal treatment. The phenomenon above is comprehensible from the fact that 

high temperature is preserved longer and heat is drained more slowly when heating is 

fast and t  is large as demonstrated in Fig. 6. The traditional simulations based on 

PBTE may under-estimate thermal lesion region since thermal relaxation time t  is 

actually non-trivial in living tissues. 

  

4. CONCLUSION 

 

A coupling model of thermal wave bioheat transfer in solid tissues and pulsatile 

blood flow in thermal significant blood vessels has been developed and studied with 

various combinations of heating speed, thermal relaxation time, and pulsation 

frequency of blood flow. Though the pulsation frequency from heart beat would affect 

the velocity profile of blood flow largely and exhibit flat-top and two-peak shapes in 

oscillatory component of velocity profile when frequency is large, it seems that the 

thermal behavior is quite insensitive to pulsation frequency here. Nevertheless, the 

thermal behavior is found to be very sensitive to the heating speed and thermal 

relaxation time in the current study. Heat drains more slowly and tumor tissue 

preserves high temperature longer when heating is fast and thermal relaxation time is 
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large. This is all due to the wave feature characterized by large thermal relaxation 

time, and would cause the thermal lesion region based on 43EM 240 min level 

curve to cover the tumor region better. It implies that the traditional simulations based 

on PBTE may under-estimate thermal dose since thermal relaxation time is actually 

non-trivial in living tissues. 
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Table and figure captions 

 

Table 1 

Some typical examples of blood vessel diameter and the associated average blood 

flow velocity 

 

Table 2 
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Parameters of the five different heating schemes featuring different heating speeds 

used in current study. 

 

Figure 1 

Effect of Womersley number   on the oscillatory component of velocity profile for 

blood flow with blood vessel diameter being 2mm. The velocity profile is shown at 

several selected phases between 0 and 2  for (a) 1f  Hz, 1.2843  , (b) 

2f  Hz, 1.8162  , and (c) 3f  Hz, 2.2244  . Flat-top and two-peak 

features can be observed when   is large as shown in (c). The Womersley number is 

calculated based on the density of blood 1,050   kg/m
3
, and dynamic viscosity of 

blood 34 10  Pa s    .  

 

Figure 2 

Geometric configuration of coaxial tissue and blood vessel. The velocity profile of the 

blood vessel of radius 0r  is pulsatile as indicated. The treatment target (i.e., the 

heating target) is specified as 21 zzz  , 10 rr  . This heating target includes the 

tumor and part of blood vessel. Here 1 5mm,z 
 2 15mm,z 

 max 100mm,z 
 

0 1mm,r 
 1 5mm,r 

 max 10mm.r    

Figure 3 
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The overall computational domain is decomposed into 9 rectangular blocks in r z  

coordinates. Notice that blocks 1-3 are for the blood vessel, and blocks 4-9 are for the 

tissue with block 5 being the tumor and the others being the normal tissue. Heating 

zone indicated in Fig. 1 would be blocks 2 and 5. Grids are clustered more densely 

near boundary/interface in each block due to the property of 

Chebyshev-Gauss-Lobatto mesh.  

 

Figure 4 

Time development of temperature distribution in space for 0t  s under heating 

scheme I in Table 2 is shown at (a) 1t s, (b) 7.5t  s, (c) 10t  s, (d) 12t  s, (e) 

14.5t  s, (f) 19.5t  s. The blood vessel diameter is 2 mm with the pulsation 

frequency being 2Hz and amplitude factor 0.5.fac   

 

Figure 5 

Time development of temperature distribution in space for 6.825t  s under heating 

scheme I in Table 2 is shown at (a) 1t s, (b) 7.5t  s, (c) 10t  s, (d) 12t  s, (e) 

14.5t  s, (f) 19.5t  s. The blood vessel diameter is 2 mm with the pulsation 

frequency being 2Hz and amplitude factor 0.5.fac   

 

Figure 6 
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Maximum temperature in space 
( , )
max
r z

T


 versus time with heating schemes I-V in 

Table 2 shown in (a)-(e) respectively. 0,  0.464,  1.756 and 6.825st   are 

represented by blue, green, red, and black curves respectively. The blood vessel 

diameter is 2mm with the pulsation frequency being 2Hz and amplitude factor 

0.5.fac   

 

Figure 7 

Thermal lesion region represented by 43EM 240 min contour with heating schemes 

I-V in Table 2 shown in (a)-(e) respectively. 0,  0.464,  1.756 and 6.825st   are 

represented by blue, green, red, and black curves respectively. The region surrounded 

by blue dash line is tumor tissue (zone 5 in Fig. 2), and the one surrounded by red 

dash line is blood vessel. The blood vessel diameter is 2mm with the pulsation 

frequency being 2Hz and amplitude factor 0.5.fac   

 

 

 

 

 

 

 

 

Table 1. Some typical blood vessel parameters [39]. 

Diameter (mm) Average blood flow velocity in blood vessel ( w ) (mm/s
 
) 

1.0 8 

1.4 10.5 

2.0 20 
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Table 2. Parameters of five different heating schemes used in simulations. 

Heating case I II III IV V 

Time-average heating power density Q (W/cm
3
) 100 50 25 10 5 

Heating duration ht  (s) 1 2 4 10 20 

Total heated energy density (J /cm
3
) 100 100 100 100 100 

 

 

Nomenclature 

 

bc  specific heat of blood [J kg
-1 

K
-1

], bc =3,770 J kg
-1 

K
-1

 

tc  specific heat of solid tissue [J kg
-1 

K
-1

], tc = 3,770 J kg
-1 

K
-1

 

0c  coefficient in Eq.(5), 
2

0

0

8

r

w
c


  

1c  coefficient in Eq.(5) 

jc  coefficient in Eq.(22) 

d  diameter of blood vessel [mm], 0 2 rd 
 

D
 
collocation derivative matrix, referring to Eq.(24),  ijij xlD 

 

43EM  thermal dose or equivalent minutes at 43 °C
 

)(xf  single-variable function, referring to Eq. (21) 

)(xfN  N-th degree interpolation polynomial approximating )(xf  in Eq. (21) 

fac  coefficient of relative intensity of pulsation in a blood vessel, 
0

1

c

c
fac   

0J  the Bessel function of the first kind of order zero, referring to Eq. (10) 

k  thermal conductivity [W m
-1 

K
-1

], referring to Eqs. (2) and (3) 

bk  thermal conductivity of blood [W m
-1 

K
-1

], bk = 0.5 W m
-1 

K
-1
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tk  thermal conductivity of tissue [W m
-1 

K
-1

], tk = 0.5 W m
-1 

K
-1

 

 xl j  Lagrange interpolation polynomial, referring to Eq.(22) 

N  degree of interpolation polynomial, referring to Eq. (21) 

xN  degree of interpolation polynomial in x direction, referring to Eq. (26) 

yN  degree of interpolation polynomial in y direction, referring to Eq. (26) 

p  pressure [kg m
-2

] 

q  heat flux [W m
-2

] 

r  radial component of cylindrical coordinates [mm] 

r  position vector 

0r  radius of blood vessels [mm], 0 1mmr 
 
here  

1r  boundary limit of tumor in r direction [mm], 1 5mmr 
 
here 

maxr  boundary limit of computational domain in r direction [mm], max 10mmr 
 
here 

R  factor in Eq. (29) 

t   time [s] 

ht  heating duration [s] 

ft  upper limit of integral in Eq. (29) [s] 

Q  time-average heating power density listed in Table 2 [W cm
-3

] 

avgQ  average volume flow rate of blood flow [mm
3
 s

-1
]  

bQ  heating power density in blood vessel [W cm
-3

] 

bQ  time average of bQ  [W cm
-3

] 

mQ
 
rate of tissue metabolic heat generation [W cm

-3
] 

tQ  heating power density in tumor [W cm
-3

] 

tQ  time average of tQ  [W cm
-3

] 

T  temperature [K] 
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T
~

 period of time of heart beat [s] 

aT  temperature of arterial blood and ambient temperature [K], 310aT K  

bT  temperature of blood flow [K] 

NT  N-th order Chebyshev polynomial 

tT  temperature of solid tissue [K] 

w  steady component of axial velocity [mm s
-1

], referring to Eqs. (4) and (6) 

w  averaged velocity [mm s
-1

], referring to Eq. (8) and Table 1 

1w  coefficient in Eq. (6) 

W  axial velocity [mm s
-1

], referring to Eq. (6) 

bW  blood perfusion rate [kg m
-3

 s
-1

], 5.0bW kg m
-3

 s
-1 

jx  Chebyshev-Gauss-Lobatto collocation points, referring to Eq.(21) 

z  axial component of cylindrical coordinates [mm] 

1z  lower boundary limit of tumor in z direction [mm], 1 5mmz   here 

2z  upper boundary limit of tumor in z direction [mm], 2 15mmz   here 

maxz  upper boundary limit of the computational domain in z direction [mm], 

max 100mmz   here 

 

Greek symbols 

  Womersley number, 



v

r0  

  dynamic viscosity of blood [ Pa s =kg m
-1

 s
-1

],
 

34 10  Pa s     

b  density of blood [kg m
-3

], b =1,050 kg m
-3

 

t  density of solid tissue [kg m
-3

], t =1,050 kg m
-3

 

  kinematic viscosity of blood [m
2
 s

-1
], 62.8571 10    

  thermal relaxation time [s] 

  angular frequency of heart beat [s
-1

] 
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  computational domain 

  interface between blood vessel and tissue, referring to Eqs. (16) and (17) 

 

Subscripts 

b  blood 

t  tissue 

 

 


