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Automated localisation and boundary identification of superficial femoral artery on
MRI sequences
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(Received 7 June 2011; final version received 20 November 2011)

In this paper, an automated method to localise the right superficial femoral artery (SFA) and identify its boundary on
magnetic resonance imaging (MRI) sequences without contrast medium injection is proposed. Some anatomical knowledge
combined with the mathematical morphology is used to distinguish SFA from other vessels. Afterwards, the directional
gradient, continuity and the local contrast are applied as features to identify the artery’s boundary using dynamic
programming. The accuracy analysis shows that the system has average unsigned errors 3.1 ^ 3.1% on five sequences
compared to experts’ manual tracings.

Keywords: superficial femoral artery; boundary detection; dynamic programming

1. Introduction

Arterial flow to the working musculature is the dominant

stimulus for arterial diameter through shear stress

(Langille and O’Donnell 1986). Cross-sectional studies

consistently show higher femoral diameter in endurance-

trained subjects than in untrained subjects (Schmidt-

Trucksäss et al. 2000; Huonker et al. 2003). After training

untrained men, femoral artery diameter increased signifi-

cantly compared to the control subjects (Dinenno et al.

2001; Thijssen et al. 2007). In the Trans Europe Foot Race

(TEFR) study, the effect of a multistage ultramarathon

over 4487.7 km in 64 days without 1 day rest on the

structure and function of different organ systems will be

analysed. Whether an increase in diameter is possible in

already endurance-trained subjects due to an extraordinary

stimulus has not been shown before. For this purpose, a

sub-study of TEFR09 dealing with the arterial system was

presented in this study.

The aim of the present study is to develop and validate a

novel automatic superficial femoral arterial wall detection

algorithm in magnetic resonance imaging (MRI) sequences

over several heart cycles. Data will be compared to manual

tracings in order to precisely determine femoral diastolic

and systolic diameter changes along time and the

superficial femoral artery (SFA) local compliance.

Evaluation of local compliance of the arterial wall of

SFA is possible, when the maximal systolic and diastolic

vessel diameter is combined with additional simultaneous

blood pressure data. In particular, we want to know whether

highly endurance-trained individuals adapt the diameter of

the femoral artery due to chronic increase in shear stress by

the ultra-endurance race. In order to see the changes over

time, measurements with a high accuracy and reproduci-

bility are necessary and the SFA will be examined with

native vascular MRI. Due to the natural limited compliance

of the subjects (endurance athletes), contrast media were

not usable for vascular MRI in this study.

Previous studies regarding the vessel boundary

detection include the processing of longitudinal view

(Liang et al. 2000; Tang and Acton 2004; Cheng and Jiang

2008; Cheng et al. 2010) and cross-sectional view (Zhu

et al. 2002; Kim and Park 2004; Doulaverakis et al. 2010;

Cheng et al. 2011). Without contrast medium, the

magnetic resonance angiography (MRA) and sonography

are often used to observe and quantify the artery’s

characteristics. MRI is a powerful means of non-

invasively imaging the blood vessels in the human body.

It can be used not only to visualise the vessel but also to

quantify the cross-sectional area. However, errors of the

cross-sectional area may result from intraluminal satur-

ation effects, poor resolution and signal-to-noise ratio. In

practice, the physician can tolerate relative errors less than

5%. The dependence of vessel area accuracy and precision

as a function of MRI parameters was shown previously

(Jiang et al. 2007). In addition, the study regarding the

superficial artery’s boundary detection in MRA without

contrast medium injection is reported (Law and Chung

2007). Another previous study uses the grey-level contrast

for the information in boundary detection on intravascular
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ultrasound images (Zhu et al. 2002). The present study will

also use the grey-level local contrast. However, we use it

as additional information to predict the cross-sectional

area before the boundary detection. The mathematical

model using the local contrast as information to predict the

cross-sectional area is described in the Appendix.

The significance of this study includes the following:

(1) we propose a fully automated algorithm to detect and

localise the centre of the SFA in MRI; (2) we propose a

fully automated algorithm to identify the boundary of the

SFA; and (3) we develop a mathematical model to prove

the correlation between the local contrast curve and the

area curve. Therefore, the diameter of artery can be

predicted via samplings. The second algorithm is not

specific; it can be used to identify other artery’s boundary

in MRA sequences without the contrast medium injection,

with the known centre position and its rough radius to

define a region of interest.

The rest of this paper is organised as follows. The

image sources and the MRI protocol are introduced in

Section 2.1. Section 2.2 describes how the manual tracings

are performed. In Section 2.3, we propose a method to

detect the centre position of SFA lumen. In Section 2.4, the

circle model and the grey-level local contrast is used to

guide the dynamic programming for the SFA’s boundary

identification. Afterwards, the results are given in Section

3. We then discuss the properties of the proposed scheme

in Section 4. Finally, the conclusion is given in Section 5.

2. Materials and methods

2.1 Image acquisition

As recently described, a mobile MRI (Siemens – type

‘Avantoe’, 1.5 T, Siemens Ltd, Erlangen, Germany) was

used for image acquisition (Cheng et al. 2011). Twelve out

of 44 participants in the TEFR09 study (DFG Project GZ:

SCHU 2514/1-1, AOBJ: 565344) took part in this study

after approval of the local ethics committee of Ulm

University in accordance with the Declaration of Helsinki.

Complete MRI sequences were obtained in all subjects. To

validate the novel detection algorithm of the SFA lumen

presented in this study, several MRI sequences of the

selected subjects were randomly chosen.

A mobile 1.5 T Magnetom (Siemens – Avantoe,

Model Mob. MRI 02.05, Siemens Ltd) having a flexible

six-channel body matrix coil with six integrated low-noise

preamplifiers (Siemens Ltd) and bilateral table fixation

were used for acquisition of MRI sequences of the SFA

from subjects. The athletes were fixed in a stretched supine

position and head forward on the MR table.

To identify the axial perpendicular acquisition location

at the right SFA 10 mm beneath the bifurcation of the

common femoral artery, a biplanar coronal and sagittal

localiser (‘true fast imaging with steady state precision’;

Siemens Ltd) was used. In analogy to the common carotid

artery MR measurement (Cheng et al. 2011), change of the

SFA diameter during systole and diastole was assessed

with a T2*-weighted gradient-spoiled, gradient-echo, cine

sequence (‘fast low angle shot’, Siemens Ltd) in a 2D

cross-sectional view with the prospective 2D electro-

cardiogram (ECG) gating (cardiac triggering). Specific

sequence parameters were set to be the following: flip angle

158, echo time variable between 4 and 6 ms (depending on

heart rate), repetition time variable between 20 and 40 ms

(depending on heart rate), slice thickness 6 mm, field of

view 768 cm2, matrix size 512 £ 384, pixel size 0.625 mm

ISO, pixel bandwidth 250 and number of images per

sequence: 50 images for one RR cycle (approximately 300

heart beats per sequence). Total imaging acquisition time

was approximately 4 min 30 s to 5 min for each sequence

(Table 1).

2.2 Manual tracings

Two well-trained readers familiar with MRIs of the pelvic

region performed the manual tracings of the SFA in a

random order. Five sequences from five different subjects

were traced manually and independently. Each two

manual tracings made by different readers on the same

sequence were averaged to form a standard. Finally, the

automated results were compared to the manual tracings

and the accuracy was calculated. The manual tracings

were performed on a graphic user interface (GUI) software

designed by ourselves. It can resize the image and allow

the reader to operate it in a sub-pixel scale (Figure 6).

2.3 SFA localisation

The SFA can be seen on MRI if the blood flow speed is

relatively large. In our previous study (Cheng et al. 2011),

however, the flow speed variation in the SFA is larger than

that in the common carotid artery. Therefore, the method

described in Cheng et al. (2011) cannot be used in this

study. In Cheng et al. (2011), the carotid artery can be seen

Table 1. The average unsigned relative error on five sequences.

Sequence 1 (%) Sequence 2 (%) Sequence 3 (%) Sequence 4 (%) Sequence 5 (%) Average (%)

Mean 2.61 2.36 3.65 4.57 2.42 3.12
SD 2.82 2.94 3.86 4.00 1.99 3.12

Note: Each sequence contains 50 images.

T.-C. Huang et al.2
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on every image in the sequence, and therefore it can be

identified using a single image. However, it is very different

in the SFA’s image. Figure 1 shows two succeeding images

in an image sequence. The arteries cannot be seen in (a) but

can be seen in (b). Moreover, there are two or three vessels

near around which result in difficulties to recognise the

SFA. They have the same blood flow phase to the SFA. The

difficulties of SFA localisation are stated as follows:

(1) The SFA cannot be seen on every image. The grey

values of the SFA vary according to its blood flow

velocity. In some images, the artery boundaries are

vague and almost impossible to be detected.

(2) Some vessels are close to the SFA.

(3) The size of the SFA is normally large but not the

largest one and it is also patient dependent.

We will explore the above-described issues and propose

our strategies as follows:

(1) The arteries can be seen only when their blood flow

velocity is fast. The intravascular signal intensity is

an increasing function of the blood flow, but there

is no constant proportional dependency. If the

blood flow speed is slow, then the grey value is

small and the artery lumen appears dark. There-

fore, the artery’s boundary is vague. For example,

the grey values of the SFA in the sequence (Figure

1) range from 57 to 170, and the background near

the artery ranges from 60 to 100. Since the SFA is

not seen on every image, it is impossible to localise

the artery position in each static image. Fortu-

nately, the SFA position does not change during

the sequence. The patient movement and artefact

caused by breathing are very limited. Therefore,

we can use the whole sequence information to

localise the artery’s position.

(2) Some arteries and veins are very close to the SFA.

Especially the blood flow phases of arteries are

also very similar so that the images are similar.

They become light and dark together. During the

low blood flow phase, the boundaries of all arteries

are almost invisible. In Figure 1(b), we can see that

the wall of the SFA and the branches of the

common femoral vein are attached together, but

can still be distinguished by their shapes. The

shape of artery is near round and the shape of vein

might be very different.

(3) The cross-sectional area of the SFA is relatively

large compared to the other arteries nearby. It is

normally the largest artery; however, there are

exceptions. Their size can be one of the special

features but not the unique factor. The relative

position may be another factor.

Based on the analysis of the above three issues, we develop

a strategy to localise the SFA. Due to the fact that the artery

blood flow velocity is not consistent, it appears sometimes

light and sometimes dark. On the contrary, the blood flow

velocity in veins does not change significantly. The

variance or standard deviation of grey value changes in

time, and can be an effective feature to distinguish arteries

from other tissues such as veins and muscles. To do this, all

50 images are loaded and put them in a 3D matrix.

Thereafter, the standard deviation of grey value along

different images of each pixel on image is calculated

[Figure 2(a)]. These values reveal variance in the blood

flow velocity. Larger variance represents larger flow

velocity variance. It can be observed that the arteries have

larger intensities, and hence the variance image becomes

easier to be segmented from other tissues than the original

images. Let Inðx; yÞ be the grey value at (x, y) on raw image

number n. The variance image can be calculated by

Vðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N 2 1

XN
n¼1

Inðx; yÞ2 �Iðx; yÞ
� �2

vuut :

So far we have resolved the first issue. The next task is to

distinguish the SFA among all vessels. In order to speed up

Figure 1. SFA on MRA raw images for (a) slow blood flow speed and (b) fast blood flow speed for the same patient in different flood
flow phase.

Computer Methods in Biomechanics and Biomedical Engineering 3
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the computation time and to reduce the noise effect, an

region of interest (ROI) is set. Since we are interested in the

right SFA (left-hand side on the image), only possible area

is selected. The upper and the lower bound of the ROI are

set to be 15% and 45% of the image height. The left and the

right bound are set to be 10% and 50% of the image width

[Figure 2(a)]. The rectangle in Figure 2(a) is an example of

the ROI. The SFA is included in this ROI. Let RV denote the

sub-image (ROI) extracted from the variance image V. The

following process is applied only on RV.

The top-hat technique (Dougherty 1992) is applied to

remove the uneven background. Top-hat transform is an

operation that extracts small elements and details from the

given images in mathematical morphology. It is defined as

follows:

R1 ¼ Tðf Þ ¼ f 2 ðf +sÞ; ð1Þ

where f ¼ RV is the image to be transformed, s is the

structural element (with a radius 15 pixels and a disc shape

in this study) and ‘+’ is the opening operation in

mathematical morphology. The uneven background is

resulted from the nonhomogeneous magnetic field. They

are usually distributed in the middle part of the body where

full of interstitial fluid. After the top-hat transform, the

ROI is homogeneous and thus Otsu’s threshold technique

(Otsu 1979) is applied to get a threshold value (T). This

threshold is used to transform R1 into a binary image R2 as

follows:

R2ðx; yÞ ¼
1 if R1ðx; yÞ . T

0 otherwise
for all ðx; yÞ inR1

(
ð2Þ

The rest of the binary image R2 contains many vessels, and

the SFA is among them. To extract the SFA in the first step,

the binary opening operation is applied to remove the

salt-and-pepper noises. This opening operation can cut off

some possible connected parts into separated parts, such as

two vessels that are located closely. The structural element

(s2) used here is having a radius of 2 pixels with a disc

shape (a 5 £ 5 matrix). The opening operation is defined to

be R3 ¼ ðR2+s2Þ. The second step is to label each

connected region, count area of each label and find the

central locations (coordinates) of all labelled vessels. This

step is applied on R3.

Here, we use three features to discriminate SFA from

all vessels: axes ratio, area ratio and distance. They are

defined as follows. The ratio of ith axes is defined as

raxisðiÞ ¼
llong axisðiÞ

lshort axisðiÞ
2 1; ð3Þ

where llong axis is the length of the long axis and lshort axis is

the length of the short axis after principal component

analysis (PCA) (Jolliffe 1986; Gorban and Zinoyyev 2009)

on each artery’s cross-sectional area [Figure 2(b)]. The

feature raxis . 0 indicates the shape of the vessel. A smaller

value denotes that the vessel has a circular boundary, which

is usually an artery. A larger value represents that the cross-

sectional view is oval or elliptic, which is usually a vein.

Before the area ratio is computed, areas less than 40

pixels are removed. The diameter of SFA is about

6.7 ^ 0.3 (range 5.9–8.2) mm (Radegran and Saltin 2000).

The pixel size is 0.625 mm in our MRA images. Therefore,

the radius of SFA in our images should be larger than 4

pixels, which represents an area size of 50 pixels. For safety

we reduce the threshold from 50 ( ¼ 42p) to 40 pixels. This

is to remove the rest noise and some small vessels so that

the SFA can be easily identified. The area ratio is defined as

follows:

rareaðiÞ ¼
Amin

Ai

; ð4Þ

Figure 2. (a) The variance image and the ROI (RV: denoted by the rectangle). (b) After the PCA process, the long axis and short axis is
computed and their length ratio is used to be one of the features.

T.-C. Huang et al.4
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where Amin is the smallest area among all vessels and

rarea(i) denotes the ith area ratio, 0 , rarea # 1. Since the

SFA is one of the largest arteries, smaller value denotes a

larger possibility and larger values represent smaller

vessels.

We shall now discuss the distance feature. It is a

normalised distance between each vessel centre and the

centre of all the vessels’ centres. It is defined as follows:

d0i ¼ kkvi 2 �vk; di ¼
d0i

maxid
0
i

; ð5Þ

where kvi denotes the ith artery centre, �v is the mean of all

kvi, k·k is the Euclidean distance and 0 , di # 1 is the

normalised distance feature. The reason for using the

distance feature is that, we have observed in most cases,

the SFA is located in the middle-upside of all detected

vessels. The smaller value of di is expected to represent the

SFA. Through the above features, we are able to detect the

position of the SFA with the following cost function:

c* ¼ miniraxisðiÞrareaðiÞ þ adi; ð6Þ

where a is a weighting factor and c is the cost value. The

optimal solution (i*) is the one having the minimum value

in Equation (6). After the SFA’s centre is determined, its

radius can be measured simply by:

raidus ¼ int
llong axisði*Þ

2
;

where llong axis denotes its major axis length in the detected

region in R3. The ‘int(·)’ function denotes the round-off

mode. This radius is only for an ROI chosen in the

following dynamic programming procedure.

Summary of the algorithm:

Step 1: Input all images of an image sequence. Build

the variance image.

Step 2: Cut off the ROI to be RV (Figure 2).

Step 3: Apply top-hat filter on RV to remove the uneven

background and output R1 [Equation (1)].

Step 4: Transform R1 to a binary image R2 using Otsu’s

thresholding technique [Equation (2)].

Step 5: Apply opening operation on R2 and output R3.

Step 6: Remove spots whose area is less than 40 pixels

(Figure 3).

Step 7: Label the rest spots; calculate the three features

for all spots: raxis, rarea, and di [Equation (3)–(5)].

Step 8: Output the centre (cx, cy) and the radius of the

spot having the minimal cost value in Equation (6).

2.4 SFA boundary identification

The round shaped feature of artery is important. It is used

to avoid possible errors caused by local noises. These

errors include the heterogeneous gradient obtained in the

artery lumen and at the boundary. To alleviate this

problem, we have proposed a circle model to guide the

dynamic programming (Cheng et al. 2011). However, the

method in Cheng et al. (2011) cannot be applied directly.

This is because the method in Cheng et al. (2011) is to

detect the carotid artery wall. The blood flow speed in the

carotid artery is faster than the flow speed in the SFA. In

some MRA images containing the SFA, the SFA wall is

very hard to be recognised compared with the images

containing the carotid artery. We have modified it and

added more information in the cost function. Dynamic

programming is a method of solving complex problems

by breaking them down into simpler steps commonly

used in mathematics and computer science (Dasgupta

et al. 2008). It is applicable in image processing to solve

optimal problems such as finding a minimum (or

maximum) with some given constraints (Cheng and

Jiang 2008; Cheng et al. 2010). However, the limitation

of this technique in images is that it cannot solve the

closed form contour. One solution is to transform the

image from Cartesian coordinate to polar coordinate

(Domı́nguez and Nandi 2007) and then apply the dynamic

Figure 3. Results of Section 2.3. (a) The sub-image (R1) after the top-hat transform from the variance image. (b) The binary image (R2)
after Otsu’s thresholding technique. (c) The results (R3) after the morphologic opening operation. (d,e) All arteries are labelled and their
centres are calculated. (f) After the features are calculated, the SFA can be identified and its centre position and radius are calculated.

Computer Methods in Biomechanics and Biomedical Engineering 5
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programming on the polar coordinate. Note that this

procedure applies only on an ROI. However, two

preconditions have to be satisfied: (1) the rough centre

position of the object to be detected is known; (2) the

sampling lines radiated from the object centre can at most

sample one boundary point. Our problem meets these two

preconditions.

The dynamic programming is issued in details as

follows. We define the ROI extracted from R3 to be Rs. The

centre of Rs is the SFA centre detected in Section 2.3. Let

M denote the number of rows and columns of Rs, where M

¼ int(1.5·radius). In Cheng et al. (2011), we have

developed the directional gradient. Apply directional

gradient on Rs and output another matrix Re Normalisation

is applied on Re, so that values range from 21 to 1, i.e.

21 # Re # 1. Since the centre of Re is the artery centre,

we transform Re to the polar representation and denote it as

Rp, Rp [ R (2Mþ1) £ int(2pM). The x-axis of Rp represents

angle (0 # u # 2p) and the y-axis represents the distance

to the centre point in Re. Notably, u ¼ 2p represents the

start point copied to the end of the matrix Rp to convince

the continuity between the start and end point. The

dynamic programming is then searching a curve from left

to right in Rp, which represents the artery boundary. Some

features are taken into consideration in the design of the

cost function. For convenience, we redefine the size of

matrix Rp to be M £ N.

(1) Curve continuity: A variable for continuity is

considered. Let dr denote the maximal range that

nodes in column x 2 1 are allowed to jump onto the

next column x in either up or down directions.

Therefore, each node has maximum (2dr þ 1) possible

link paths to its previous column. If dr is set larger, both

the curve’s roughness and the computation time are

increased. The smoothness of the curve is quantified

by the cost function.

(2) Circle model: The circle model having a known radius

is embedded into the structure to guide the dynamic

programming. This is based on the fact that the artery

boundary is near round and the radius is estimated by

the method described in Section 2.3. A Gaussian

model is used to generate the strength how strong the

dynamic programming is guided by the circle model.

Let r denote the known circle radius, the strength is

formulated as

2
1

s
exp 2

ðy2 rÞ2

2s2

� �
;

where s is a variable controlling the strength of the

guide. For small s, the Gaussian has a thin but a

sharp shape and the circle model has a larger effect

on the result, i.e. it is more a circle-like boundary.

For large s, the Gaussian term vanishes and it

works like a normal dynamic programming without

the circle model. Since y and r are both integers, a

look-up table can be set to reduce the computation

time.

(3) Directional gradient: The directional gradients are

the basic information to detect the artery boundary

accurately. Negative gradients denote the artery

boundary, while the positive gradients denote other

boundary and are treated as noises.

(4) Local contrast: The first issue described in Section 2.3

is that the SFA has less contrast to its surrounding

neighbourhood. In the worst case, even a medical

expert cannot tell the exact boundary location. To

solve this problem, we have to use the sequential

image information and the local contrast. The

sequential image information works like a memory

to remember the boundary that has large local

contrast. We observed that the local contrast curve

and the area curve are correlated. Therefore, they can

be used as a feature to guide the boundary

identification. The local contrast is defined by

calculating the grey-level variance in the sub-image

Rs. Thus, each image has a local contrast value. The

local contrast is normalised to be in the range [0.01–

1]. The value of s used in the circle model is

determined by s ¼ 2 þ contrast(i), where ‘contrast’

denotes the local contrast and ‘i’ denotes the ith

image.

Thus, the boundary detection problem is then transformed

to an optimisation problem, which searches an optimal

contour:

p*
1p

*
2p

*
3 . . . p

*
N ¼ arg min

XN
i¼1

RpðpiÞjp1p2p3 . . . pn

( )

subject to some constraints;

ð7Þ

where pi is the point on the ith column in the matrix Rp, and

pk and pkþ1 are the neighbourhoods. This optimisation

function can be reformulated to be suitable for implement-

ing dynamic programming with respect to an iterative cost

function formulated as follows:

Cðx; yÞ ¼ minj[ð2dr ;drÞCðx2 1; yþ jÞ þ Rpðx; yÞ

þ bjjj2
g

s
exp 2

ðy2 rÞ2

2s2

� �

subject to 2 # x # N; 1 # y # M;

ð8Þ

where b and g are the weighting factors. The C(x, y) is a 2D

cost map. The global optimisation problem is the same to its

sub-problem C(x 2 1, y), C(x 2 2, y), and vice versa. The

radius r is a composition of the prediction calculated by the

T.-C. Huang et al.6
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local contrast method shown in the Appendix and the

previous radius, i.e.

ri ¼
r̂þ ri21

2
:

We set C(1, y) ¼ Rp(1, y) to be a boundary condition. If

dr ¼ 1, the optimal index j* can be determined by the

following equation:

j* ¼ arg minj[ð21;0;1ÞCðx; yþ jÞ: ð9Þ

Therefore, the index can be stored in the coordinate matrix

X(x, y) ¼ y þ j*. In this construction, small cost values

indicate higher likely boundary information. The position

with the minimum cost value in the cost map C(x, y) is

searched. With a backward search from N to 1 in matrix X,

the complete coordinates ( p1p2p3 . . . pN) of the artery

boundary can be determined, which is the optimal solution

to this problem.

Summary of the algorithm:

Step 1: Input the 1st image.

Step 2: Use the centre (cx, cy) and the radius to define an

ROI on the input image as Rs. Apply the directional

gradient onRs, outputRe (Cheng et al. 2011). Normalise

Re, 21 # Re # 1. Calculate the local contrast of Rs.

Predict the radius using the local contrast (Appendix).

Step 3: Transform Re to polar coordinate, output Rp.

Step 4: Apply the dynamic programming with the circle

model and embed the predicted radius and the local

contrast (Appendix) to the cost function [Equation (8)].

Output the SFA boundary coordinates. Transform the

coordinates from polar to Cartesian coordinates. Use

the elliptic fitting to smooth the boundary.

Step 5: Calculate the centre (cx, cy) and the radius of the

boundary.

Step 6: Check if there is next image. If yes, input next

image and go to Step 2. If no, stop the algorithm.

2.5 Accuracy analysis

The proposed system is applied and the SFA cross-

sectional lumen area of each image is calculated for the

following comparison. The comparison is performed by

calculating their relative unsigned errors as follows:

1i ¼
AManualðiÞ2 AAutomatedðiÞj j

AManualðiÞ
£ 100%; ð10Þ

where Aautomated(i) and AManual(i) are the areas calculated

by the automated and the manual drawing on the image

number i, respectively. The averaged errors (on 50 images)

and its standard deviations can be calculated.

3. Results

We first demonstrate the results of each step described in

Sections 2.3 and 2.4. Then the results of accuracy and

stability analysis are shown. Figure 3 shows the results

described in Section 2.3. Figure 3(a) is the result after

the top-hat transform on the sub-image extracted from

the variance image. Figure 3(b) is its binarisation using the

Otsu’s method. Since it contains some noises, the

following opening operation [Figure 3(c)] is applied to

remove the unexpected noises and cut off possible

connection between two vessels. All vessels are detected

and their centres, long and short axes lengths, are

calculated [Figure 3(d)]. Any vessel area which is smaller

than a given threshold is deleted. This is to convince that

all the smaller vessels will not be included so that the risk

of missing identification can be decreased. Three features

are calculated. The values from 1 to 3 [labelled in Figure

3(e)] are 2.13, 2.04 and 2.84, with the weighting factor

a ¼ 2. Finally, the SFA is identified in Figure 3(f) which

has the least cost value in Equation (6).

Figure 4 shows the results of the method described in

Section 2.4. Figure 4(a) is the matrix Rp, which is the polar

Figure 4. Results of Section 2.4. (a) The directional gradient Rp of the ROI sub-image Re. (b) The curve found by the dynamic
programming. (c) The detected curve is transformed from the polar coordinates to the Cartesian coordinates that represents the artery’s
boundary. (d) Another example that has less contrast on the boundary.

Computer Methods in Biomechanics and Biomedical Engineering 7
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transform of Re. Figure 4(b) is the resultant curve of

dynamic programming superimposed on Rp. The curve is

transformed from the polar coordinates to the Cartesian

coordinates, which represents the boundary of the SFA

[Figure 4(c)]. Figure 4(d) shows another example having a

less local contrast.

Figure 5 shows the results of nine sequential images

and their corresponding detected boundaries. They are

organised in a 3 £ 3 matrix. In each element of the matrix,

the upper image is the raw sub-image and the lower image

has its result superimposed on it. From the results, we can

see that the first seven images in the artery’s boundaries

are vague. Even for a medical expert, it is very difficult to

define their boundaries. Our algorithm can overcome this

difficulty by using the local contrast as a guide to predict

the area in these vague images. Therefore, the dynamic

programming has the prior knowledge about the boundary

location. All detected boundaries by the dynamic

programming have been processed by an ellipse fitting

(Fitzgibbon et al. 1999).

Figure 6 shows the GUI of this system. The fully

automated algorithm and manual tracing function are

embedded together. The manual tracing function offers the

sub-pixel possibilities in tracing the boundary for the

experts.

Figures 7 and 8 provide the Bland–Altman plots of

two sequences. The results of the automated detection of

the cross-sectional area of each image in a sequence

are compared to that of the manual tracings. Most of them

are within two standard deviations. The average relative

unsigned errors for sequences 1 and 2 are 2.6 ^ 2.8% and

2.4 ^ 2.9%, respectively. The results demonstrate the

system’s ability to replace the expert’s manual work.

Figure 9 illustrates the result of sequence 1. Notably,

the system is able to detect the decrease in artery’s area

(around image number 6), which is a physiological

phenomenon. This is the most difficult issue because the

artery’s boundary in this phase is unclear and it has the

least image contrast. Sometimes even experts cannot tell

exactly where the boundary is.

The computer system has Intelw Coree 2 CPU T5600,

1.83 GHz, with 2 GB RAM. All programs are designed

based on the Matlab platform (The MathWorks, Natick,

MA, USA, 2008). The computation time for each image is

around 0.5 s.

4. Discussions

To resolve the first issue described in Section 2.3, we used

a local contrast to guide the boundary identification based

on our observed fact that the contrast curve reveals the

area-changing curve. The curve of the local contrast is

very similar to the curve of artery’s cross-sectional area.

Especially it reveals the area dropped down around the

image number 6, as shown in Figure 8.

In order to increase the accuracy, we used the standard

image resize algorithm to increase the image and a scale

factor of 2. Therefore, the dynamic programming can

identify the boundary in the sub-pixel accuracy.

The proposed algorithm has two phases. The first phase

is to localise and specify the centre of the SFA. The second

phase is to identify the boundary of the SFA. It can be

used to detect any boundary of arteries in MRI sequences

with the prerequisite having the artery’s centre position

and its rough radius to define an ROI. Contribution of this

study includes the proposed algorithm that not only can

localise the centre of SFA but also can identify the

boundary with a high accuracy even when the boundaries

are vague in some images as shown in Figure 5.

Our MRA image sequences have been acquired using

the gating technique: i.e. the ECG was used as a trigger to

separate a heart cycle to 50 time gates. The danger of

inconsistent solutions from frame to frame has been

somehow alleviated by calculating the local contrast to

predict the SFA cross-sectional area size and embed the

Figure 5. Results of Section 2.4. Nine sequential results are
shown here. The boundaries are vague in the first seven images.
They are hard to tell the exact boundaries. However, based on
the help of the local contrast, we are able to predict the radii of the
lumen of artery and guide the dynamic programming to detect the
boundary.

T.-C. Huang et al.8
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predicted radius into the cost function used in the dynamic

programming. However, we also observed that in an

extreme situation when the human being cannot recognise

the boundary, the radius prediction might also fail.

In comparison to the boundary detection of the carotid

artery in MRI sequences (Cheng et al. 2011), the proposed

algorithm of this study has the robustness against noises.

This is because the SFA has lower contrasts to its

background in some images when the blood flow velocity is

slow. Under this situation, the boundary is vague and almost

impossible to be defined and detected. Based on the

observed data, we found that the local contrast can offer

Figure 6. The GUI is developed to operate the system easily. It is based on the Matlab platform. The manual drawing function is also
provided for the experts to trace the artery boundaries for comparison with the automated results.

Bland-Altman Plot (Sequence 1)
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Figure 7. The Bland–Altman plot of sequence 1. The averaged
relative unsigned error is 2.2 ^ 2.8%.

Bland-Altman Plot (Sequence 2)
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Figure 8. The Bland–Altman plot of sequence 2. The averaged
relative unsigned error is 1.8 ^ 2.2%.

Computer Methods in Biomechanics and Biomedical Engineering 9

D
ow

nl
oa

de
d 

by
 [

C
hi

na
 M

ed
ic

al
 U

ni
ve

rs
ity

],
 [

D
a-

C
hu

an
 C

he
ng

] 
at

 1
7:

14
 0

9 
Ja

nu
ar

y 
20

12
 



important information to predict the area changes during

the whole sequence. The mathematical model was

developed in this study to show the correlation between

the contrast and the cross-sectional area (see Appendix).

In this study, we used the observed information to guide the

dynamic programming to detect the boundary in a high

accuracy.

The parameter b in Equation (8) controls the continuity

of the boundary. If b is increased, then a smoother contour

is obtained. Here b is fixed to be 1. The parameter g is

the weighting factor, which controls the strength effect of

the radius prediction on the final contour resulted from the

dynamic programming minimisation process. The value of

g is determined by an equation related to the local contrast

as follows: gðiÞ ¼ 1 þ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
contrastðiÞ

p
, where contrast(i)

denotes the normalised ith image local contrast calculated

from Rs. If the local contrast is larger, it means that the

boundary is visible so that the radius prediction is reliable.

On the contrary, if the local contrast is smaller, it means

that the boundary is vague and the radius prediction is not

so reliable. However, the radius r used in Equation (8) is

a composition of the prediction and the previous radius.

Therefore, we still have a control on the radius so that

the risk of inconsistent solution from frame to frame is

limited.

A long acquisition time is necessary to ensure the high-

resolution image quality. This is a precondition for the

accurate vessel boundary detection. In the MRI acquisition

process, the subjects were fixed with their lower

extremities on a table. The compliance could be excellently

seen throughout all examinations. Since all subjects refuse

the injection of contrast media, the intraluminal signal

intensity depends only on the inflow effect. This

flow-dependent signal provides the critical factor for the

border detection in the end-diastolic phase.

Moreover, the subjects in this study are healthy

sporters. Therefore, there are no abnormal phenomena

such as plaques attached on the SFA wall or lipid

deposition. This is the reason we applied the elliptic model

on the wall boundary in the last step of the second

algorithm. However, this algorithm is available to deal with

the abnormal cases. In such cases, the algorithm has to be

minor modified. For example, the circle model and the

elliptic model should be removed, since the artery wall is no

more elliptic or round on the cross-sectional view in the

MRA images.

5. Conclusion

We have developed a fully automated system that is able

to detect the centre position of SFA and then identify its

boundary. Regarding the accuracy, the average relative

unsigned error is 3.1 ^ 3.1% in five sequences compared

to the manual tracings. The system proposed in this study

is reliable with repeatable results that has the potential of

replacing the expert’s manual work.
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Cheng DC, Schmidt-Trucksäss A, Liu CH, Liu SH. 2010.
Automated detection of the arterial inner Walls of the
common carotid artery based on dynamic B-mode signals.
Sensors. 10(12):10601–10619.

Dasgupta S, Papadimitriou CH, Vazirani UV. 2008. Algorithms.
McGraw-Hill.

Dinenno FA, Tanaka H, Monahan KD, Clevenger CM, Eskurza I,
DeSouza CA, Seals DR. 2001. Regular endurance exercise

Sequence 1
P

ix
el

 n
um

be
r

Image number

0 5 10 15 20 25 30 35 40 45 50

280

260

240

220

200

180

160

Blue: Automated
Red: Smoothed
Black: Manual tracing

Figure 9. The cross-sectional area of artery changing with
respect to time (sequence 1). The unit in the y-axis is pixel (pixel
size ¼ 0.3906 mm2). The x-axis unit is the image number. The
curves denoted by ‘*’, ‘D’ and ‘o’ are the automated result,
smoothed automated result and the manual tracing gold standard.

T.-C. Huang et al.10

D
ow

nl
oa

de
d 

by
 [

C
hi

na
 M

ed
ic

al
 U

ni
ve

rs
ity

],
 [

D
a-

C
hu

an
 C

he
ng

] 
at

 1
7:

14
 0

9 
Ja

nu
ar

y 
20

12
 



induces expansive arterial remodelling in the trained limbs of
healthy men. J Physiol. 534(Pt 1):287–295.

Domı́nguez AR, Nandi AK. 2007. Improved dynamic program-
ming based algorithms for segmentation of masses in
mammograms. Med Phys. 34(11):4256–4269.

Dougherty ER. 1992. An introduction to morphological image
processing. SPIE-International Society for Optical Engine:
Bellingham, Washington, USA.

Doulaverakis C, Papadogiorgaki M, Mezaris V, Billis A, Parissi
E, Kompatsiaris I. 2010. IVUS image processing and
semantic analysis for cardiovascular diseases risk prediction.
Int J Biomed Eng Technol. 3(3/4):349–374.

Fitzgibbon A, Pilu M, Fisher RB. 1999. Direct least square fitting
of ellipse. IEEE Trans Pattern Anal Mach Intell. 21(5):
476–480.

Gorban AN, Zinoyyev AY. 2009. Principal graphs and
manifolds. In: Olivas ES, editor. Handbook of research on
machine learning applications and trends: algorithms,
methods and techniques. Hershey: Information Science
Reference, IGI, Global.

Huonker M, Schmidt A, Schmidt-Trucksäss A, Grathwohl D,
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Appendix

The reason that the local contrast reveals the information of
arterial cross-sectional area is described as follows. The local
contrast is defined to be the total variance of the ROI extracted
from the MRA image. We define three areas (Figure 10). The
relationship between the total variance and the variances of the
three areas can be formulated as follows:

s 2 ¼
1

N

XN
i

ðgi 2 GÞ2

¼
1

N

X
gi[V1

ðgi 2 GÞ2 þ
X
gi[V2

ðgi 2 GÞ2 þ
X
gi[V3

ðgi 2 GÞ2

" #
:

ð11Þ

Since the exact boundary locates in the sub-region V2, using the
right-hand side of equation cannot compute the cross-sectional
area. Similarly, we assume the artery’s radius to be r, where
r1 , r , r2. To solve this problem, we use sampling to replace gi
in each sub-region. The formula can be rewritten as follows:

s 2 ¼
1

N

XN
i

ðgi 2 GÞ2

ø
1

N
pr 2ðĝ1 2 GÞ2 þ ðN 2 pr 2Þðĝ2 2 GÞ2 þ 10
� �

; ð12Þ

where the samplings ĝ1 and ĝ2 are the mean grey values of region
V1 and V2, respectively; G is the mean grey value of the whole
region and e is the error. Therefore, the area can be estimated by

pr 2 ø
Nðs 2 2 ðĝ2 2 GÞ2Þ

ðĝ1 2 GÞ2 2 ðĝ2 2 GÞ2
þ 1: ð13Þ

Through this formula the radius of the artery can be predicted
before the boundary detection. This prediction is embedded into
the cost function of the dynamic programming to guide the
boundary identification as shown in Equation (8).

Figure 10. The model used to calculate the local contrast and
predict the cross-sectional area of the SFA.
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