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The objective of this study was to develop a method

for measuring quality degradation in lossy wavelet

image compression. Quality degradation is due to

denoising and edge blurring effects that cause

smoothness in the compressed image. The peak

Moran z histogram ratio between the reconstructed

and original images is used as an index for degrada-

tion after image compression. The Moran test is ap-

plied to images randomly selected from each medical

modality, computerized tomography, magnetic reso-

nance imaging, and computed radiography and

compressed using the wavelet compression at vari-

ous levels. The relationship between the quality

degradation and compression ratio for each image

modality agrees with previous reports that showed a

preference for mildly compressed images. Preliminary

results show that the peak Moran z histogram ratio

can be used to quantify the quality degradation in

lossy image compression. The potential for this

method is applications for determining the optimal

compression ratio (the maximized compression

without seriously degrading image quality) of an im-

age for teleradiology.
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THE PICTURE ARCHIVING AND
COMMUNICATION SYSTEM1 (PACS)

utilizes digital technologies for the acquisition,
storage, and transmission of radiological im-
ages. One of the major difficulties in operating a
digital radiology facility is the sheer volume of
image data that must be handled. Although
recent advances in computer technology have
increased the data storage capacity and com-
munication speeds, they alone are not sufficient
to overcome this problem. Image compression
techniques can be employed to reduce the data
volume into a more manageable size without
significantly compromising image quality. Dig-

ital image compression2 is divided into two
categories defined as lossless and lossy. Lossless
techniques3 include run length encoding, Huff-
man coding, differential pulse code modulation,
and Lempel-Ziv, which enable the complete
image to be reconstructed from the compressed
data set as a perfect reproduction of the origi-
nal. Lossless compression can reduce the image
size only by a factor of 2 to 3. Much higher
compression ratios are desirable to produce a
more substantial compression impact. Lossy
techniques enable significantly higher compres-
sion levels with slight quality degradation.
Quality evaluation can be performed subjec-

tively or objectively. The receiver operating
characteristic (ROC) analysis is the dominant
technique for subjectively evaluating image
quality. In an ROC study,4 radiologists are
asked to review compressed images with or
without an abnormality and to provide a binary
decision along with their degree of certainty.
The diagnostic accuracies of these images were
then compared with the original images. The
ROC analyses are expensive and time-consum-
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ing. A typical ROC study would require eval-
uation of more than 300 images to obtain a
statistically significant result.2

Objective image quality evaluations are at-
tractive because they are easy to perform and
independent of viewing conditions and indi-
vidual observers. Recent researches used a hu-
man visual system (HVS) that incorporated a
simple model into the objective measures lead-
ing to a better correlation with the human ob-
server response.5 However, the HVS is too
complex to fully understand using present
psychophysical means. The normalized mean
squared error (NMSE) is the most commonly
used method to measure the quality changes in
compressed images.6-11 The NMSE is a measure
of the image difference that is formed by taking
the mean of the squared differences between all
corresponding pixels in the original and the
compressed images. The guidance document for
PACS requires that manufacturers report to
PDA the NMSE of their lossy compression
technique.12 The NMSE is sensitive to degra-
dation, with alterations in its value depending
on the image content and degree of degrada-
tion. However, NMSE does not provide any
information regarding the type of loss that
causes the quality deterioration, and it does not
correlate well with subjective quality measure-
ments.
The purpose of this study was to establish a

quality degradation model in lossy compression
and present a method for measuring the image
quality. Based on this model, the optimal
compression can be determined for each image
before compression is performed. In the fol-
lowing paragraphs we briefly describe the irre-
versible compression method. The method for
using the Moran I test to measure the quality
change is then introduced. The measurement
results from various medical images are then be
presented.

IRREVERSIBLE IMAGE COMPRESSION

Irreversible image compression2 involves
three processes: (i) image transformation, (ii)
quantization, and (iii) entropy encoding. Image
transformation, also referred to as decorrela-
tion, performs transformation (mostly cosine

or wavelet transform) on the image to elimi-
nate redundant information and provide a
suitable coefficient for entropy coding.13,14

Quantization is then applied to the transfor-
mation coefficients according to a predefined
quantization table. The effect of quantization is
to drive small coefficients (predominantly at
high frequencies) to zero. It achieves com-
pression by representing these coefficients with
a precision not greater than that necessary to
achieve the desired image quality. An entropy
encoding method (Huffman or arithmetic cod-
ing) is then employed to further reduce the
data volume.
Quantization is irreversible, and it is the

cause of quality loss in compressed images. As
the compression ratio increases, a greater
number of high-frequency components are re-
moved and the image becomes smoother. The
major contributing factors to the high-fre-
quency parts are statistical noise and structural
edges. The quality loss is caused by the effects of
denoising and edge blurring, and it can be
quantified by measuring the smoothness of the
compressed image.

MORAN I TEST

The Moran I test15,16 has been employed to
evaluate the spatial autocorrelation of mapped
data. In this study, it was used to measure the
smoothness in an image. The Moran coefficient
I for a pixel is calculated as:

I ¼

Pr�c

j¼1

Pr�c

i¼1
dijðfi � �ff Þðfj � �ffÞ=S0

Pr�c

i¼1
ðfi � �ffÞ2=N

; ð1Þ

where fi is the gray level of pixel i, �ff is the mean
gray level inside a r · c window centered on
that pixel, dij = 1 if pixels i and j are adjacent,
and 0 otherwise. Further, S0 = 4rc ) 2r ) 2c,
is the number of contiguous pairs inside the
window, and N (= r · c) is the total number of
pixels. If the pixels inside the window are ran-
domly distributed, the variable I can be ap-
proximated using a normal distribution (when
N is large enough) with mean and variance
given by
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m ¼ �1=ðN� 1Þ ð2Þ

and

whereK¼N
P

ð fi� �ffÞ4=½
P

ðfi� �ffÞ2�2,S1 = 2S0,
and S2 = 8(8rc ) 7r ) 7c+4). For a smooth re-
gion, the gray levels of adjacent pixels aremore or
less the same and the calculated I is larger. Note
that I = 1 when all pixels have the same gray
levels. The standardized normal statistic

z ¼ I�m

r
ð4Þ

is the smoothness measurement around a pixel.
Thus, the Moran I test can be used to detect the
quality change in a compressed image caused by
the smoothing effects.

Z-HISTOGRAM AND PEAK RATIO

The variation around a pixel is measured by
calculating the Moran z value for a 9 · 9 win-
dow centered on that pixel. The window size is
selected such that the result is statistically
meaningful, and yet it is small enough to reflect
local variation. The histogram of the z values
for all pixels in the image can be used to rep-
resent the quality of the image. Figure 1 shows
the z-histogram of a typical magnetic resonance

imaging (MRI) head image. There are two
peaks in the histogram. The lower z peak cor-
responds to the areas outside the skull that are
predominantly noise. The high z peaks at about
z = 9 (equivalent to I = 0.8) representing
most pixels of the image are uniformly distrib-
uted structures. In general, the quality evalua-
tion of an image is performed on regions of
interest and, in this case, inside the skull. Thus,
we use only pixels inside the skull for head
image studies. Figure 2 shows the z-histogram
of the same MRI image for various degrees of
compression. As the compression ratio in-
creases, the image becomes smoother and the
histogram curve shifts toward higher z regions
and its peak value increases correspondingly.
The peak ratio is defined as the ratio of peak
values of the z-histogram between the com-
pressed and original images. The peak ratio
increases with compression ratio and can serve
as an indication of image degradation in lossy
compression. The peak ratio is selected over
other parameters like histogram mean ( �ZZ) for
its higher sensitivity to the change of compres-
sion ratio.

Fig 1. The z-histogram of a typical MRI head image. Fig 2. The z-histogram of the same MRI image shown in

Figure 1 (for pixels inside the skull only) at various degrees of

compression. The peak ratio is defined as the ratio of peak

height between the compressed and original images.

r2 ¼ N½ðN2 � 3Nþ 3ÞS1 �NS2 þ 3S20� � K½NðN� 1ÞS1 � 2NS2 þ 6S20�
ðN� 1ÞðN� 2ÞðN� 3ÞS20

�m2; ð3Þ
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IMAGE DATA

Numerous images for each digital modality
(body CT, head MRI T1 weighted (T1W), head
MRI T2W, and chest CR) were randomly se-
lected from different patients for this study. All
images were compressed using wavelet compres-
sion software ‘‘Apollo’’ (Pegasus Imaging Cor-
poration, Tampa, FL). The Pegasus wavelet
encoding is similar to that used in the JPEG 2000
standard. All measurements were performed for
images with compression ratios of 59, 49, 35, 30,
25, 23, 20, 18, 16, 14, 12, 10, 8, 7, and 5.

RESULTS

A CT image was used first to test the edge
blurring and denoising effect on the peak ratio.

The image was filtered using an average filter to
simulate the edge blurring effects. The filter
window sizes can be adjusted to produce images
with various degrees of edge blurring. The peak
ratios of the z histogram and NMSE between
each filtered images and original image were
calculated. Figure 3 plots the peak ratio and
NMSE as a function of the window size. The
peak ratio was demonstrated to increase with
the increasing degree of edge blurring. This is
highly consistent with NMSE.
Because noise occupies the least significant

bit planes, we can simulate the denoising effect
by nullifying those bits. When a greater number

Fig 3. The peak ratio (s) and NMSE (·) versus window size

of the average filter to simulate the effect of edge blurring.

Fig 4. The peak ratio (s) and NMSE (·) versus number of

bits removed to simulate the effect of denoising.

Fig 5. The peak ratio of the body CT images as a function of

compression ratio.

Fig 6. The peak ratio of the head MRI T1W images (for

pixels inside the skull only) as a function of compression

ratio.
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of least significant bit planes is zeroed, more
noise is smoothed out. We gradually increase
the number of bit planes to be nullified and
perform the Moran test on these denoised im-
ages. Figure 4 shows the peak ratios as a
function of number of bit planes nullified. The
peak ratio decreases as the number of bits in-
creases; ie, the peak ratio decreases with the
degree of denoising. Note that the change in
peak ratio in denoising the bit planes is much
smaller than the blurring effects from the av-
eraging filter. The NMSEs of the denoising
images are also plotted in Figure 4. The NMSE
increases with the number of bit planes nulli-
fied. The NMSE only calculates the sum of er-
rors between corresponding pixels. It does not
provide any information regarding the type of
loss that causes the quality deterioration. The
Moran peak ratio shows different trends for the
effects of smoothing or denoising.
Figures 5-8 show the peak ratio for the CT,

MRT1, MRT2, and CR images, respectively, as
a function of the compression ratio. Note that
at a low compression ratio, all of the peak ratio
curves are nearly constant and they actually
appear hollow for all images except CT. It has
been reported17,18 that radiologists prefer im-
ages processed with low levels of compression.
This preference can be attributed to the ‘‘de-
noising’’ effect of the compression algorithm at
low levels. At high compression ratios, the im-
age qualities deteriorate mainly because of the
blurring and the curves ascend linearly with the
compression ratio.

DISCUSSION AND CONCLUSIONS

For lossy compression in medical imaging, it
is natural to question whether any clinically
important information has been compromised.
To solve this, a reliable way to quantify the
quality degradation in compression is neces-
sary. The image compression affects image
quality through edge blurring and denoising.
Both effects cause changes in the image
smoothness. The Moran test is a measurement
of the spatial correlation and is a good indica-
tion of quality smoothness. We used the peak
Moran test ratio to measure the quality changes
resulting from compression. The results were in
good agreement with the ROC study. It is
concluded that the Moran I test is a powerful
tool for measuring quality degradation in image
compression.
Note that the shapes of the peak ratio curves

from different modalities are similar. This
means that the compression effects on images
are the same for all modalities. However, the
degree of blurring caused by compression is
dependent on the contrast of the original image;
the blurring effects are less obvious for images
with higher contrast. The CR images are
formed using x-ray projection. X-ray contrasts
are smaller than tomographic images. The CT
body contrast is not as good as that for head
MRI. As a result, the CR images have the
highest slopes, followed by CT and MRI.
For CR chest images, an increasing number

of reports have suggested that compression

Fig 7. The peak ratio of the head MRI T2W images (for pixels

inside the skull only) as a function of compression ratio.
Fig 8. The peak ratio of the chest CR images as a function

of compression ratio.
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levels as high as 20 can be used before signifi-
cantly compromising the diagnostic efficacy of
the image.2 The question is, what level of
compression is acceptable19-23 or, what is the
optimal compression ratio for an image? The
optimal compression is useful for teleradiology
or PACS (picture archiving and communication
systems) applications. The optimal compression
achieves the maximum compression ratio
without downgrading the image quality; ie, the
quality degradation caused by compression is
less than or equal to the inherent noise in the
original image. From Figures 5-8, each modal-
ity is so coherent that the peak ratio curves go
downward and then upward in response to the
compression ratio, indicating the existence of
optimal compression. The beginning point of
the peak ratio curve is a good approximation of
the inherent noise for each image modality. By
drawing a horizontal line from that point, the
optimal compression ratio can be estimated
from the intersection of the curve with the line.
From this, we can reason that the optimal
compression ratios are around 15 for most
modalities. This result is close to the previous
results of a study.2
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