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ABSTRACT
With a new analytical method, we present a static model for quiescent solar prominences of inverse

polarity. These prominences have a plasma b slightly below unity and correspond to those located in the
lower corona. Although this static model cannot address the helmet-like features at the top of the promi-
nences, which are believed to be associated with the open-Ðeld topology and driven by outÑows, the
model may nevertheless capture several characteristic features of the solar prominences. These features
include the sheetlike gas condensation hanging above an asymptotically weak magnetic cusp, the sheared
magnetic arcades/loops, the coronal cavity, radio dark strips cospatial with the Ha Ðlaments, bright
radio ribbons located on both sides of the dense prominence sheet, and the increasing magnetic Ðeld
strength with height along the prominence sheet. In our model, the densest gas is contained within a
narrow Ðeld-free tube immediately above the prominence sheet. Thermally insulated by the surrounding
strong Ðelds, this narrow tube may be a natural site for housing the cool gas (º104 K) siphoned from
the lower solar atmosphere. We also Ðnd that there are hot spots (¹107 K) located on the sides of the
prominence loop, which might be the source of thermal X-ray emission in the quiet Sun.
Subject heading : MHD È Sun: magnetic Ðelds È Sun: prominences

1. INTRODUCTION

Quiescent prominences are long-lived, high-density gas
sheets suspended in the lower corona by magnetic Ðeld
tension (Martin 1989 ; Tandberg-Hanssen 1974, 1995 ; Tang
1987 ; Zirin 1988). The vertical gas sheets can extend hori-
zontally up to a substantial fraction of the solar radius, i.e.,
a few times 105 km, and last for up to several months. The
structure of quiescent prominences is robust, and it can
remain intact even when occasional Ñares take place in the
immediate neighborhood. Quiescent prominences may also
end by suddenly undergoing spectacular eruptions, lifting
the dense gases high (about 1 solar radius) into the solar
corona and eventually ejecting these plasmoids into inter-
planetary space (Low 1996 ; Gibson & Low 1998). Although
such intermittent mass ejection, the so-called ““ coronal mass
ejections ÏÏ (as opposed to the mass loss from the quasi-
steady solar wind) account for only a negligible fraction of
the total mass loss from the Sun, coronal mass ejection is
now thought to be the primary mechanism for removing the
magnetic helicity from the interior of the Sun (Low 1996 ;
Chiueh 1998).

On the solar disk, the quiescent prominences appear as
dark Ðlaments, because of the enhanced absorption of
photospheric light, while above the solar limb they appear
as bright Ðlaments, indicating a high-density gas associated
with the Ðlaments. In addition, high-resolution Ha obser-
vations of the solar disk show that the prominence consists
of many well-organized, short Ðbril structures, oriented in
directions branching away from the general direction of the
averaged prominence Ðlament with acute angles (Leroy
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1989). These Ðne Ha Ðbrils trace the magnetic Ðelds, which
are an important agent for the formation of the promi-
nences. The magnetic Ðeld associated with the prominence
provides the support needed to suspend the dense cool gas
up in the solar corona. The cool gas condensed in the
prominence may result from thermal instabilities of the
high-temperature corona plasma, which is radiatively
cooled by both line emissions and Bremsstrahlung pro-
cesses (Field 1965 ; Hildner 1974). The material within the
prominence could be supplied by siphoning the gas from
the lower atmosphere along some magnetic channels.

However, in the presence of solar gravity, such a promi-
nence conÐguration tends to be unstable to the Rayleigh-
Taylor instability. Since the quiescent prominence is
observed to be long lived even when it is subject to large
disturbances such as Ñares, these magnetic structures must
contain strong stabilization components against the inter-
change of Ðeld lines associated with the Rayleigh-Taylor
instability. One e†ective arrangement of Ðeld conÐguration
that resists the interchange of Ðeld lines includes magnetic
shear (Cattaneo, Chiueh, & Hughes 1990a, 1990b). In spite
of this general principle for the stabilization of the inter-
change instability, the magnetic shear must be distributed in
an appropriate way ; otherwise, the magnetic system can be
subject to another type of instability. This is because the
magnetic shear is created by electric currents, and their
presence introduces additional free energy into the system.
For example, kink instabilities are the typical consequences
of excessive current density in the magnetic systems (Chiueh
& Zweibel 1987, 1989). Thus, the longevity of prominences
must require some delicate balance that can suppress the
release of both magnetic and gravitational free energy from
the systems.

As a Ðrst step toward a good understanding of solar
prominences, our strategy is to systematically construct a
series of prominence equilibria, whose stabilities and physi-
cal properties will be examined in detail in the next stages.
In particular, through this Ðrst step it should be possible to
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investigate the essential mechanisms that might give rise to
the prominence eruption, which yields the spectacular
coronal mass ejection events.

In this work, we focus on the construction of prominence
equilibria. A new mathematical method is introduced for
the construction of a particular class of two-dimensional
prominence equilibria that possess three components of the
magnetic Ðeld, with a range of magnetic shear strengths.
The prominence sheets so constructed are found to be in
inverse polarity, conÐgurations in which the gas condenses
at the bottom of closed magnetic loops suspended in the
lower corona. This new mathematical technique is analyti-
cal, and it turns out that the resulting equation is exceed-
ingly simple. Nonetheless, it does contain sufficient freedom
to allow us to construct various equilibria by ““ cut-and-
paste ÏÏ operations whenever we needs to describe Ðeld con-
Ðgurations with sufficient complexity.

Cut-and-paste is possible for our equilibrium construc-
tion because we demand that the gas along each Ðeld line is
always in pressure balance with a corresponding Ðducial
atmosphere, and that di†erent Ðeld lines match the Ðducial
atmospheres of di†erent pressures. With this mathematical
technique, the solution can always be truncated at any Ñux
surface, and it can always be in pressure balance with the
background atmosphere, which is also one of the family of
Ðducial atmospheres. In addition, guided by observations,
whenever an additional magnetic structure of a di†erent
shape is required, one can simply insert a new magnetic
structure into the existing system, together with a volume of
magnetized background gas in between the geometrically
di†erent magnetic structures. The inserted magnetized gas
can serve as a pressure blanket between these magnetic
structures, and by construction this gas blanket can be
easily adjusted to be in pressure balance with the existing
magnetic structures. From the physical point of view, the
matching of magnetic structures through the introduction
of a magnetized background gas is reasonable, since the
di†erent magnetic structures can represent the magnetic
Ñux either emerging to the solar surface at di†erent epochs
or having undergone drastic changes in the Ðeld-line topol-
ogy ; therefore, the magnetic Ñux can be enclosed by, or
enclosing, a volume of background plasma already present
in the solar atmosphere. From the technical point of view,
this cut-and-paste procedure allows one to construct a
variety of Ðeld shapes according to the requirements from
the observations. The advantage of this freedom is unprece-
dented, as compared to the conventional method that
directly solves the nonlinear Grad-Shafranov equation ;
solution construction through the Grad-Shafranov equa-
tion usually has little control over the shapes of the mag-
netic structures obtained. The present method also has a
great advantage over the conventional self-similar analyses,
which allow only for one type of self-similar solution over
the entire domain, as opposed to the coexistence of several
types of self-similar solutions presented here (Blandford &
Payne 1982 ; Li, Chiueh, & Begelman 1992). Unfortunately,
the present method is limited to the investigation of static
plasmas, and therefore cannot faithfully describe the physics
outside the magnetic loops and arches in the open atmo-
sphere, which is dominated by coronal streamers. To obtain
the pressure of the open atmosphere required to conÐne
prominence loops and arches, we adopt a static atmosphere
with a simple Ðeld conÐguration. Hence, our results for the
open atmosphere should be interpreted with caution.

This paper is organized as follows. Section 2 contains the
mathematical formulation of this analytical approach.
Section 3 gives examples of the detailed solutions. Dis-
cussions and conclusions are given in ° 4.

2. MATHEMATICAL FORMULATION OF THE

QUASIÈSELF-SIMILAR MAGNETIC STRUCTURES

As in any physical system, a scale-invariant, self-similar
nonlinear solution can be constructed whenever the rele-
vant dynamics has no characteristic length scale. In the
context of the solar atmosphere, the magnetic pressure scale
height in the corona is about 105 km, and the typical promi-
nence transition thickness is about a few] 102 km; any
nonlinear object with a length scale in between these two
disparate scales is likely to assume a scale-invariant form.

A self-similar system usually possesses a dimensional
scaling variable, the availability of which is often deter-
mined by whether the physical system contains no more
than two independent dimensional constants (Sedov 1959).
However, in many situations self-similarity is a bad assump-
tion. An equilibrium conÐguration can be established
through di†erent stages of evolution, and the timescales,
initial conditions, and boundary conditions involved may
introduce some characteristic length scales even though the
original dynamical equations contain no characteristic
length. The length scale introduced in such an indirect way
can often appear in the course of the analysis as additional
dimensional constants. For example, the explosive energy in
SedovÏs self-similar solutions for blast waves is a dimension-
al constant. With the presence of these additional constants,
the scale-invariant symmetry in a seemingly scale-invariant
system may be broken.

The quasiÈself-similar solutions introduced in the present
work are devised to circumvent the aforementioned
problem. SpeciÐcally, we hope to paste di†erent families of
self-similar solutions together to construct a global solu-
tion, in which each family of the self-similar solution corre-
sponds to a particular physical condition under which the
local system forms. However, di†erent families of self-
similar solutions can have their own characteristic shapes.
Hence, matching di†erent families of self-similar solutions
together is by no means an obvious task. For example, it is
impossible to match a family of self-similar triangles
enclosed by a family of self-similar rectangles. Although one
side of the outermost triangle can be pasted onto one side of
the innermost rectangle, other parts of the triangle usually
cannot be matched onto the rectangle, thus leaving a
““ vacuum ÏÏ in between the two families of solutions.

The resolution to the problem of matching di†erent fam-
ilies of solutions has already been hinted at in the above
example. One needs only to Ðll in the vacuum with a third,
““ easy ÏÏ solution that can match onto these di†erent self-
similar solutions. In the present context, the third solution
consists of a volume of background gas permeated by hori-
zontal Ðelds. The background Ðelds tend to be geometri-
cally simple, and we assume that they contain straight Ðeld
lines ; this simpliÐcation allows us to treat the background
Ðelds as scalar Ðelds that provide only pressure force in the
force balance. Such a background magnetized gas can be
made to be in pressure balance with the di†erent classes of
self-similar magnetic structures with relative ease. Since the
background gas is gravitationally stratiÐed, the pressures
on di†erent matching boundaries can be rather di†erent. In
order to meet our goal, the self-similar magnetic structures
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must possess a special property that permits such pressure
matching. In this section we present an analysis describing
how such a useful property of magnetic structures can be
implemented.

Consider a three-component magnetic Ðeld B, with its
strength depending on x and z, where z is the direction
against the gravity. Let where is the com-B \ B

h
yü ] B

p
, B

pponent that is perpendicular to the invariant direction y
and satisÐes t being the Ñux function. ThisB

p
\ yü Â $t,

representation of warrants (We let the back-B
p

$ Æ B
p
\ 0.

ground horizontal Ðeld be oriented in the y direction.) For
an equilibrium conÐguration, the balanced force in the y
direction reads : and it follows thatyü Â $t Æ $B

h
\ 0, B

hmust be a function of t, i.e., So far, this has beenB
h
\ B

h
(t).

a standard approach to tackling two-dimensional equi-
libria.

We now assume the following self-similar scaling rela-
tions : z\ tag, x \ tam(g), T \ tat(g), andB

h
\ t1~ab,

o \ t2~3aq(g), where T and o are the temperature and
plasma density, respectively, and b is a constant. The scaled
quantities, such as m, t, and q, are expressed in terms of the
self-similar variable g, which measures the height of the
reference Ðeld line, assuming t\ 1. Let

m(g)
g

\ f (g) ,

or, equivalently,

g \ f ~1
Am(g)

g
B

, (1)

where f ~1 is the inverse of the yet-to-be-determined func-
tion f. The geometric meaning of m/g is simply the arc-
tangent of the angle from the z-axis, and in equation (1) we
attempt to express the angle in terms of the height g. To
trace the Ðeld-line trajectory we then use the relations
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With the chain rules,
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we now obtain

B
z
\ t1~a

a(m [ gm5 )
, (4)

where Likewise, one can follow similar steps tom5 4 dm/dg.
obtain

B
x
\ t1~am5

a(m [ gm5 )
. (5)

This yields which indeed traces the trajectory ofB
x
/B

z
\ m5 ,

the reference Ðeld line. Equations (4) and (5) represent the

magnetic Ðeld in terms of a nonorthogonal coordinate, (t,
g).

This representation has been discussed previously and
applied to the study of self-similar magnetohydrodynamic
(MHD) jets emanating from accretion disks for both non-
relativistic (Blandford & Payne 1982) and relativistic (Li et
al. 1992) cases. Unlike these previous works, which consider
the entirely scale-free, self-similar solutions, the present
work employs a new method, which we call the quasiÈself-
similar method. This method permits the coexistence of dif-
ferent classes of truncated self-similar solutions in the same
space. It is possible because we give up an a priori assump-
tion of the equation of state, since the energy transport in
the solar atmosphere is a problem that is yet to be settled ;
this degree of freedom is replaced by the requirement that
di†erent classes of self-similar structures must be pressure-
matched onto the same background atmosphere. Without
this essential step, solution matching among di†erent
classes of self-similar solutions is generally impossible, and
this is why the conventional self-similar solution admits
only one type of self-similarity over the entire solution
domain.

We now consider the force balance along the poloidal
Ðeld line. Let where s is the distance alongB

p
Æ $4 B

p
d/ds,

the poloidal Ðeld line and B
p
4 ta~1(1 ] m5 2)1@2/a(m[ gm5 ).

The forces along the Ðeld line satisfy

d
ds

(oT )] gozü Æ B
p

B
p

\ 0 , (6)

which can be formally integrated to become

q(g)t(g)\ p0 e~g g dg@t(g)4 p0F(g) , (7)

where is the unit vector opposite to gravity and is anzü p0integration constant. Thus, q and t are not independent and
are related by equation (7).

Next, we consider the force balance across the Ñux
surface :

[ tü Æ $[(B
p
2] B

h
2)/2 ] p0F(g)t2~2a] ;

] tü Æ (B
p

Æ $B
p
)[ gotü Æ zü \ 0 , (8)

where is the unit vector perpendicular to the magnetictü
Ñux pointing toward the direction of increasing t. We need
four preparatory steps before equation (8) can be evaluated.
First, from equations (4)tü Æ zü \ $t Æ zü /B

p
\ m5 (1 ] m5 2)~1@2,

and (5). Second, where i is the localtü Æ (B
p

Æ $B
p
)\iB

p
2,

curvature of the poloidal Ðeld line, given by

i\ m� (1 ] m5 2)~3@2t~a , (9)

which assumes a positive value when the Ðeld lines curve
away from the origin (m \ g \ 0). Third, tü Æ $\ B

p
(L/Lt)

and] tü Æ $g(L/Lg),

tü Æ $g \ t~a
C g ] mm5
(1 ] m5 2)1@2(m [ gm5 )

D
. (10)

The expressions for equations (9) and (10) can be straight-
forwardly derived by chain rules similar to those used to
obtain equations (4) and (5).

The Ðnal step before evaluating equation (8) involves a
new method that permits solution matching in the presence
of di†erent families of self-similar solutions. We demand
that the total pressure always remain the same as the total
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pressure of a Ðducial magnetized gas :

B
p
2] B

h
2

2
] p0F(g)t2~2a \ p

e0 e~g@L0t2~2a , (11)

where the right-hand side is the total pressure of the Ðducial
gas, is its pressure scale height, and is the ÐducialL 0 p

e0pressure evaluated at g \ 0 and t\ 1. The magnetic Ðeld
of the Ðducial gas is assumed to be along the direction andyü
hence can be treated as a scalar Ðeld. In fact, we do not need
to assume that the total pressure of the Ðducial magnetized
gas obeys an exponential form, as expressed on the right-
hand side of equation (11). However, the exponential form
conventionally represents a stratiÐed isothermal atmo-
sphere, and so we follow this convention, with the under-
standing that should be regarded as the local scaleL 0height. (In fact, we could have assumed the Ðducial pressure
to be any arbitrary function of height without introducing
any complication to the following analysis.)

Note that with the addition of the magnetic pressure, the
length scale is actually larger than that of a Ðeld-free gas.L 0For example, take the Ðducial gas to be the background gas
in the corona. At a corona temperature of about a
few ] 106 K, the pressure scale height of an unmagnetized
gas is about several] 104 km, but the scale height of the
total pressure can be as large as 105 km.L 0Equation (11) also allows one to truncate the self-similar
solution anywhere one wishes and match it to the Ðducial
gas solution. With equation (11) in place, the Ðrst term of
equation (8) may attain a simple expression at the cost of
the third term becoming complicated. Note from equation
(7) that dF(g)/dg \ [gF(g)/t(g), and hence the quantity gq
in the last term of equation (8) becomes

gq\ [p0
dF
dg

\ d
dg
C 1 ] m5 2
2a2(m [ gm5 )2

D
] p

e0
L 0

e~g@L0 , (12)

by virtue of equations (4), (5), and (11).
After all these building blocks have been implemented,

the Ðnal equation can be straightforwardly obtained from
equation (8), and it takes an exceedingly simple form:

m� ] ce~g(c1[ g)
C(m [ gm5 )2

m
D

\ 0 , (13)

where and g and m havec4 a2p
e0 L02/t02, c14 2(1 [ 1/a),

been normalized to the pressure scale height of the Ðdu-L 0cial magnetized gas. We emphasize that although equation
(13) is derived with all physical quantities evaluated at the
reference Ñux surface this equation remains validt\ t0,for all Ñux surfaces as well, because of self-similarity. As will
be shown later, all valid solutions always have a large c. To
understand what this means, we can rearrange c as

where is the characteristica2[p
e0/(t02/Lb02 )][L 0/L b0]2, L

b0length of the poloidal magnetic structures on the reference
Ðeld line The Ðrst square bracket is of order unityt\ t0.because of the pressure balance, and therefore the magni-
tude of c is largely determined by the squared ratio of the
background pressure scale height to the typical lengthL 0of the poloidal magnetic structures. The large value of cL
b0simply implies small magnetic structures as compared to

the large-scale background Ðelds in the corona, i.e., L 0?
That is, we are limited to solutions for the low-lyingL

b0.prominences of a height of about 2 ] 104 km.
The resulting equation, equation (13), traces the trajec-

tory of the reference Ðeld line and has a singularity at m \ 0.

By varying c and we can obtain Ðeld lines of di†erentc1,shapes. Note that equation (13) is invariant to rescaling of m.
That is, the solution of a thin magnetic loop can always be
transformed to that of a fat loop by rescaling m. However,
there is a caveat regarding such a scale transformation,
since other considerations must be taken into account in
order to prevent false solutions. In fact, solutions obtained
by such a scale transformation have very di†erent physical
properties from the original ones, and some may even
become unphysical in giving negative densities, as will be
discussed in ° 3.

3. PROMINENCE SOLUTIONS

Two di†erent types of solutions can be constructed from
equation (13). When the solution m(g) is of convexg \ c1,shape with a negative curvature, as viewed from the origin
(m \ g \ 0) ; when on the other hand, the solutiong [ c1,m(g) has a positive curvature. The former can give a closed-
Ðeld conÐguration and the latter an open-Ðeld conÐgu-
ration. It turns out that the latter always yields negative
background pressure well above the photosphere. This is in
part because the open Ðeld line region can no longer remain
in static equilibrium, and our assumption of a static equi-
librium only leads to false solutions. Hence, from now on
we will discard these positive-curvature solutions in our
pursuit of static equilibria.

Only within a range of parameters can the negative-
curvature solutions yield positive-density solutions. The
Ðeld line, starting its trajectory at the top (on the g axis with
g [ 0), may smoothly reach the negative g axis at the
bottom to form a closed magnetic loop. However, at the
very bottom of the loop, the Ðeld line is always not of ag

b
,

parabolic shape, but of a shape that can be described by
where 0 \ k \ 1. Thus, a magnetic cuspg [ g

b
P m1`k,

exists at the loop bottom, where the dense prominence Ðla-
ment is expected to hang. For the prominence loops to be
entirely visible above the photosphere, they must be located
at a level above the photosphere, i.e., z\ gta º zph\

On the other hand, for those loops that have tgphta.
values violating the above condition, the loop bottoms are
located beneath the photosphere, and these loops are then
viewed as the magnetic arcades. The above qualitative
descriptions will be elaborated further in this section.

In principle, the closed-loop solution and the arcade solu-
tion can coexist, represented by two di†erent families of
self-similar solutions. One can insert layers of magnetized
gas in between the loop and the arcade to Ðll up the space.
In this work, we present two types of solutions, the Ðrst
being simple magnetic loops immersed in a common mag-
netized background gas, the other being interacting loop/
arcade systems that consist of di†erent families of
self-similar solutions, also immersed in a magnetized back-
ground gas. When the observed prominences exhibit con-
Ðgurations more complicated than the example given in this
work, one can always increase the structural complexity by
inserting more arcades or loops of di†erent families of solu-
tions into the simpler solutions.

3.1. Simple Magnetic L oop Solution
We now present the solution of a single self-similar loop.

Equation (13) can be integrated starting from the top of the
reference magnetic loop, which is located at m \ 0 and g \

Since m \ 0 is a singularity of equation (3), we cang
t
.

expand the solution around the loop top. When we require
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that the Ðeld-line shape be parabolic at the top, we get the
near-axis solution : where a is the ampli-m \ a(g

t
[ g)1@2,

tude of the solution. Because of the invariance in rescaling m
for equation (13), the quantity a can, at this point, be
regarded as a free parameter. (However, the quantity a
should eventually be constrained within a certain range, as
shown below.) Inserting the near-axis solution into equa-
tion (13), we obtain a condition for g

t
:

g
t
3 [ c1 g

t
2] egt

c
\ 0 . (14)

For positive c and there are only two positive roots toc1,equation (14), and where Hence, thereg
t`

g
t~, g

t`
[g

t~.
are two di†erent initial heights from which integration of
equation (13) can be started, and they yield two di†erent
Ðeld line trajectories.

For a closed loop, the integration will encounter another
point m \ 0 at the loop bottom. To investigate how the Ðeld
lines look at the bottom, we now solve for a moreg

b
,

general near-axis solution. Equation (13) near m \ 0
becomes

mm�
(m5 )2\ ce~gb(g

b
[ c1)gb

24 [k , (15)

where is the level of the loop bottom. A straightfor-g
b
(\0)

ward integration of equation (15) shows that

m D (g [ g
b
)1@(1`k) . (16)

When k \ 1, we recover the parabolic shape, and the condi-
tion for k \ 1 has been given in equation (14). However, for
the prominence gas to be highly condensed at the bottom of
the loop, it is desirable that the loop bottom should have a
V -shaped cusp Ðeld whose tension force balances the weight
of the dense gases. Thus, we look for solutions in which

0 \ k \ 1 (17)

at the loop bottom. Note that since dg/dm D mk, the slope of
the Ðeld line is not Ðnite but zero for 0\ k \ 1. Hence, such
a magnetic cusp is actually an asymptotically weak cusp,
which has a local curvature that diverges as i D mk~1.

Integration of equation (13) employs a second-order
Runge-Kutta scheme to avoid errors near the singularity at

The integration shows that for all positive cÏs, the solu-g
b
.

tions at the loop bottom always satisfy equation (17),g
bwhether we begin the integration from or fromg

t`
g
t~,

indicating that the cusp Ðeld at the loop bottom should be a
generic feature of the self-similar equilibria. We further Ðnd
that the solutions starting from always have higher loopg

t`bottoms than the solutions starting from As a result ofg
t~.

the dependence of k on (see eq. [15]), it follows that theg
bformer has a smaller value of k, i.e., a sharper cusp, than the

latter. These two seemingly plausible trajectories starting
from di†erent heights turn out to yield not always physical
solutions. In particular, the solutions starting from g

t`always fail to yield positive density throughout the entire
loop, and hence should be discarded. A positive value of the
gas density thus imposes a strong constraint in limiting the
valid ranges of c, and the amplitude a for the trajectoriesc1,starting from g

t~.
The gas density q at the reference Ðeld line (for which

has been given in equation (12). Together witht\ t0\ 1)

equation (13), it is simpliÐed to become:

q\ c
g
A
1 [ c1

2
B2

e~g
C
1 [ (c1[ g)

g ] mm5
m(m [ gm5 )

D
. (18)

Having determined m(g) from the integration of equation
(13), we can, at the same time, determine the density q from
equation (18). The region of gas density that is most likely
to become negative is located where the magnetic loop
turns halfway around, with the Ðeld-line direction pointing
in the vertical direction and meanwhile, the value ofm5 ] 0 ;
g is always positive at this location. This observation sug-
gests that the strategy for seeking the parameter regime of
the physical solutions should be simply to search for the
regime boundaries of c, and a such that the gas densityc1,at is barely positive.m5 \ 0

Among these parameters, the most sensitive one is c1,which, according to our numerical results, must lie in the
range

0 \ c1\ 0.765 (19)

in order to yield positive-density solutions. When c1assumes values near the lower limits, the quantity c must
approach inÐnity, and when is near the upper limit, cc1assumes a value of about 332. Within this parameter
domain, there always exists a range of amplitude a such that
the density can be made positive and deÐnite. However,
near the upper limit, the range of a shrinks to a point atc11.12. The range of physical solutions in the (c, phasec1)space is plotted in Figure 1 ; it lies to the right of the bound-
ary curve marked by circles.

Since it is expected that the gas should condense at the
magnetic cusp, we now give an analysis of the gas density
near the loop bottom, where a magnetic cusp exists. Substi-
tuting the solution given in equation (16) into equation (18),
we Ðnd that

q(g ] g
b
)D (g [ g

b
)1~*2@(1`k)+D mk~1 , (20)

where the second relation is from equation (16). Since
0 \ k \ 1 (see eq. [17]), we indeed Ðnd that q] O as

Although the gas density diverges at the loopg ] g
b
.

bottom, it still contains a negligible mass near this location,
since This result is consistent/ qdm D (g [ g

b
)2k@(1`k)] 0.

with the fact that the magnetic cusp is an asymptotically

FIG. 1.ÈRegime of positive-density solutions in the (c, phase space,c1)which lies to the right of the boundary curve marked by the circles.
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weak cusp, for which the local tension force also diverges as
mk~1, in agreement with the local gravity, gq.

To end this section, we also examine the positivity of the
gas pressure, which is expressed as

p0F(g)\ p
e0 e~g [ b2

2
[ 1 ] m5 2

2a2(m [ gm5 )2 (21)

on the reference Ðeld line. Although the pressure given in
equation (21) is derived in quite a di†erent way from the
density, it turns out from our numerical results that in the
parameter regime where the gas density is positive, the gas
pressure can always be positive for a sufficiently small mag-
netic pressure, b2/2, of the y-component Ðeld. The gas pres-
sure is rather uniform along the poloidal Ðeld line, and
hence there always exist hot spots at the density minima on
the two sides of a magnetic loop. This feature deserves more
attention, and will be discussed further in ° 4.

3.2. Multiple Simple Prominence Solutions
The e†ective pressure and density along[p0 F(g)] b2/2]

the reference Ðeld lines are plotted in Figure 2 as functions
of g ; the solid lines represent the large loop and the dashed
line the small loop of Figure 3. In Figures 3a and 3b, we
depict the Ðeld lines and gas density of two nearby promi-
nences. In between the two prominences, the space is Ðlled
by an isothermally stratiÐed magnetized gas. The promi-
nence on the left is constructed with the parameters c1\

and c\ 450, and the one on the right with0.33 c1\ 0.67
and c\ 1330. The amplitude a for each is chosen in such a

FIG. 2.È(a) Density proÐles and (b) e†ective pressure proÐles along the
reference Ðeld lines for the large (solid lines) and small (dashed line) loops of
Fig. 3.

FIG. 3.ÈEquilibrium conÐguration of two adjacent, noninteracting
prominences. Shown are contour plots of (a) the poloidal magnetic Ñux, (b)

and (c) and respectively. The adjacent con-log10 (o), log10 (T ), log10 (o)
tours di†er by a constant value of 0.157, and those for di†er bylog10 (T )
0.14.

way that it minimizes the ratio of the density at the loop top
to the minimum density on the two sides of the magnetic
loop. The values of a are 1.265 and 0.834 for the large and
small loops, respectively. Apart from their slight di†erences
in shape, both prominence loops share similar physical
properties, in that they are hot on the sides and dense at the
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bottoms of the closed loops. Note that most areas enclosing
the dense sheets in the loop have low densities ; we can
identify them to be the coronal cavities. We choose the
quantity b such that the temperatures at the loop tops are
the same as the local ambient plasma; the temperature
proÐle of this composite system is shown in Figure 3c. The
ratio for the two loops is shown in Figure 4, whereo b

p
(g)/b o

the solid line represents the large loop and dashed line the
small loop ; this Ðgure shows that the magnetic Ðelds in the
loops are sheared.

Each of the two magnetic loops is constructed according
to the procedure described in ° 3.1. In constructing the two
loops, the centers of self-similarity, (g \ 0, m \ 0), have been
placed at di†erent heights, such that the bottoms of both
loops are located at levels with the same background pres-
sure, i.e., at the photosphere. Such a condition can be
expressed as

A c
a2
B K

1
t12~2a1 egb1 \

A c
a2
B K

2
t22~2a2 egb2 , (22)

where the index 1 or 2 refers to the outermost Ñux surface of
each individual loop. Moreover, when matching the two-
loop system, one also needs to ensure that the loops are
matched to the background plasma of the same scale
height. The scale-height condition demands that

t1a1 \ t2a2 . (23)

Equations (22) and (23) can be solved for the two unknowns
and That is, with given sets of parameters (c, itt1 t2. c1, a),

is only some particular Ñux surfaces that can be matched to
the ambient plasma when more than one loop is present in
the solar atmosphere.

The characteristic features of the prominence as seen
above the solar limb during the solar eclipse are a helmet-
like structure lying on the top of the bright prominence and
a dark cavity immediately surrounding the bright promi-
nence (Saito & Tandberg-Hanssen 1973). The helmet-like
structure is caused by an outgoing Ñow that breaks open
the magnetic loop/arcade, and cannot be described by our
solutions, which address only the static MHD atmosphere ;
but the cavity associated with the prominence Ðlament loop
is clearly illustrated in Figure 3b. Taking the temperature of

FIG. 4.ÈRatios along the reference Ðeld lines for the largeo b
p
(g)/b o

(solid line) and small (dashed line) loops of Fig. 3, and the arch (dot-dashed
line) shown in Fig. 5.

the lower corona to be about 106 K and the local back-
ground plasma density at the prominence height (¹2 ] 104
km) to be about 109 cm~3, the internal energy density is
about 0.2 ergs cm~3. If we further take the background Ðeld
to be one-half of the prominence Ðeld, whose average value
has been measured by the Hanle e†ect (Leroy 1989) to be
about 6 G in the quiescent region, the background magnetic
pressure will turn out to be about 0.35 ergs cm~3, only
somewhat larger than the equipartition value. Hence, we let
the background plasma b \ 1 for evaluating the plasma
density displayed in Figure 3b. Of course, with a lower
plasma b in the background corona, the plasma density will
be correspondingly lower. At any rate, the background
open atmosphere should have contained plasmas in motion,
a condition that cannot be treated within the present frame-
work ; therefore, one needs to interpret the present result for
the open atmosphere with caution.

Finally, we should mention that the cores of the two
self-similar loops are singular. To avoid unphysical singu-
larities, we have removed the magnetic Ðelds in the cores
and Ðlled the space with cool unmagnetized plasmas. These
cores may be the gas channels that serve to house the cool
gases siphoned from the lower atmosphere ; this issue will be
discussed further in ° 4.

3.3. Complex-Prominence Solutions
High-resolution observations show that there are Ðne

structures above the coronal cavities (Saito & Tandberg-
Hanssen 1973). The primary features of the Ðne structures
appear to be arches above the coronal cavity. These arches
contain gases of di†erent densities, which appear above the
limb as discrete bands in the line-emission intensity. In this
section, we attempt to insert a magnetic structure from a
di†erent family of self-similar solutions above the smaller
prominence loop of Figure 3 in order to represent an
overlying magnetic arch, which appears as a dark band. We
let the top of the outermost Ðeld line of the prominence loop
touch on the top of the innermost Ðeld line of the overlying
arch. This mimics the squeezing of Ðeld lines onto a preex-
isting magnetic arch by the prominence loop when it rises
from beneath the photosphere. This additional condition
requires that

(g
t1[ g

b1)t1a1 \ (g
t2 [ g

b2)t2a2 , (24)

where the indices 1 and 2 refer to the two barely touching
Ðeld lines in question.

Since the overlying arch has a low plasma pressure, it is
natural to choose its c to be as small as possible. In addi-
tion, since the magnetic Ðelds are relatively strong, the mag-
netic arch must be relatively rigid, with a relatively small
Ðeld-line curvature. We therefore let the top part of the loop
represent the arch and the bottom part be buried under-
neath the photosphere. Integration of equation (13) shows
that smaller values of also give rise to geometricallyc1larger loops, consistent with what has been shown in Figure
3. We thus again choose With a smaller value of cc1\ 0.33.
than used for the larger loop in Figure 3, the density of the
arcade can quickly decrease to become negative on the sides
of the loop. Nonetheless, the amplitude a can be adjusted in
order to control the rate at which the density decreases with
depth. In Figure 5, we choose a \ 1.47, which gives a rate
sufficiently slow that the density, although low, still remains
positive at the feet of the arch.
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FIG. 5.ÈEquilibrium conÐguration of an overlying magnetic arcade in contact with a newly emerged prominence loop. Panels are as in Fig. 3. The
adjacent contours di†er by 0.13, and those for di†er by 0.1.log10 (o) log10 (T )

To match the two solutions, we need to know not only
what and ought to be, but also at what level the feett1 t2of the arcade, are located. This can be obtained fromg

b1,equation (24), together with equations (22) and (23). Di†er-
ing from the case discussed in ° 3.1, we may have two di†er-
ent background temperatures, one in the open region and
the other in the closed region in between the two magnetic
structures. In Figure 5, we let the two temperatures be the
same, and we also let the feet of the arch assume the back-
ground temperature (D106 K). This choice can yield a rela-
tively cool overlying arch of relatively low density. Finally,
the outermost Ðeld line of the overlying arch can be located
anywhere. Once its value of t is chosen, the temperature of
the background solar atmosphere is then Ðxed. The dot-

dashed line in Figure 4 shows the ratio of theo b
p
(g)/b o

overlying arcade Ðeld. Figure 5 shows various aspects of
such a composite-prominence complex.

4. DISCUSSIONS AND CONCLUSIONS

From the results of this analysis, we Ðnd that the high-
density, low-temperature gas sheet suspended at the bottom
of the closed magnetic loop pertains to an asymptotically
weak magnetic cusp arising from the singularity of equation
(13) at m \ 0. Such a conÐguration has traditionally been
termed the inverse polarity (Kuperus & Raadu 1974). The
weak cusp is also consistent with the magnetic Ðeld obser-
vations, in which the prominence Ðeld is almost horizontal
and the angle discontinuity across the gas sheet is small
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(Bommier, Leroy, & Sahal-Brechot 1986). For valid self-
similar solutions, we Ðnd that the loop heights are always
relatively small, less than 30% of the (gas ] magnetic) pres-
sure scale height of the Ðducial gas, When the ÐducialL 0.gas is taken to be the background magnetized coronal
plasma, can be as large as 105 km, and our quiescentL 0prominence solutions always correspond to the low-lying
prominences.

Let us begin the discussion of our prominence solutions
by Ðrst examining their gross features. From the contour
plots of Figures 3c and 5c, the temperature assumes the
highest value on the sides of the prominence loop and the
lowest value at the prominence sheet. From these results,
their temperature ratio is generally about several hundred.
Since the temperatures of the hot spots are 3È8 times higher
than that of the background coronal temperature of about
106 K, the prominence temperature is therefore on the order
of 104 K. Figures 3b and 5b also show that the density is
highest at the core of the prominence loop and lowest on
the loop sides. Their ratio also amounts to several hundred.
Since the lowest density spots have a density about 10 times
lower than that of the background coronal plasma, the loop
core is therefore several tens denser than the background. If
one takes the local density of the background lower corona
to be 109 cm~3, the dense core will have a density of
several] 1010 cm~3, and the low-density hot spots a
density of 108 cm~3. A better measure of the prominence
density is the column density across the prominence sheet.
Taking the width of the prominence sheet to be about 1/10
of the loop width, or 4] 103 km, together with the above
quoted prominence density, we Ðnd the maximum column
mass density to be about 5] 10~5 g. The scaling of the
column density along the prominence sheet is proportional
to or, and according to the scaling relations immediately
preceding equation (1), the column density decreases with
vertical distance from the loop core as whereo z o~c1, c14

These predictions are not in disagreement with2(1[ 1/a).
the general results obtained by observations.

We proceed to discuss the details of our solutions. The
physics behind a prominence conÐguration can generally be
pictured as follows. Under the force of gravity, the light
magnetized gas is subject to a buoyancy force, which lifts up
the overall magnetic loops. Although the plasma is trapped
within each individual loop, it can nevertheless move along
the Ðeld lines and gravitationally condense at the bottom of
each loop, thereby helping to yield a coronal cavity, and the
concentration of gases at the bottom of a magnetic loop will
inevitably lead to an upward-curved magnetic cusp, whose
tension force balances the gravity. However, observations
show that the total mass of the gas condensed within the
prominence sheet is substantially greater than that of the
gas originally occupying the coronal cavity (Tandberg-
Hanssen 1974). Hence, additional gas must be supplied
from the lower atmosphere by some means. Although early
limb observations indicated that the overall Ñows in promi-
nences are directed downward (Engvold 1976), more recent
Ha and He I observations of the solar disk show that
upward and horizontal Ñows also occur (Schmieder et al.
1984 ; Simon et al. 1986 ; Engvold & Keil 1986), and they
may be related to the siphoned gas. The siphon mechanism
has been suggested to be operative in extracting additional
photospheric gases into the prominence (Saito & Hyder
1968 ; Saito & Tandberg-Hanssen 1973 ; Lites et al. 1995). If
this is indeed so, the suction force for siphoning is likely to

originate from a location at which the magnetic Ðeld is
locally weak and the magnetic pressure low. To Ðnd such a
site, we have suggested that one choose the central core
immediately above the prominence sheet to be cut o† from
the singular self-similar solution and replaced by a Ðeld-free
gas, as shown in Figures 3 and 5. The surrounding strong
magnetic Ðelds can physically serve to thermally insulate
the dense cool gas from the surrounding hot plasmas.

This existence of a high-density gas tube at the top of the
gas sheet is further supported by the density measurements.
From the Ha observations on the solar disk, the projection
of solar prominences often shows that the darkest region, or
the highest density light-absorbing region, appears to be
located at the top of the prominence sheet. The gas density
sharply decreases immediately above this darkest strip, but
decreases slowly beneath it (see, e.g., Malherbe 1989). Such a
tendency is consistent with our gray-scale density plots
given in Figure 6. Related magnetic-Ðeld measurements
show that the Ðeld strength at the prominence sheet
increases with height (Leroy, Bommier, & Sahal-Brechot
1983). They further support the picture of our prominence
solutions in which the Ðeld strength increases toward the
core of the prominence loop from below.

The eclipse white-light and emission-line observations
above the solar limb also show the association of the high-
density prominence sheet with coronal Ðne structures,
which include, notably, a low-density cavity and discrete
bands of brightness contrast (Saito & Tandberg-Hanssen
1973). These features can also be found in our model solu-
tion shown in Figure 6b. The discrete dark bands are prob-
ably associated with the overlying magnetic arcades, the
gases of which have been squeezed out when a new promi-
nence loop emerges from the subphotospheric level. The
bright bands may be the regions of enhanced plasma
density immediately above the highest density gas core.
These correspond to the broadly distributed regions of
density enhancement surrounding the prominence sheets
(see Fig. 6), which has a lower temperature than the back-
ground coronal plasma (see Figs. 3c and 5c). These regions
may efficiently absorb thermal radio emission from the
lower corona, thereby yielding a broader radio dark band
cospatial with the narrower Ha dark Ðlament when viewed
on the disk. Both centimeter and millimeter radio obser-
vations indeed show such a feature of radio dark bands, and
these radio dark bands are usually several times larger than
the Ha dark Ðlament in the projected area (Hiei et al. 1986 ;
Kundu 1986).

Our solution also gives another interesting feature, in
that the plasma temperature becomes high on the sides of
the prominence loop (see Figs. 3c and 5c). In our model, this
feature arises as a consequence of diminishing plasma
density at Ðnite plasma pressure in those locations. The fact
that the plasma density is locally low on the sides of the
magnetic loop is the result of the vanishingly small vertical
magnetic force. For the plasma to be supported against
gravity, it locally relies solely on the gas pressure, which has
a large scale height km) ; hence, only a small(L 0D 105
amount of gas is allowed to be present. In addition, the loop
plasma has a plasma b on the order of unity, and to be
pressure balanced with the surrounding plasma, it is neces-
sary that the pressure be rather uniform along the Ðeld lines,
yielding a locally high temperature. This hot feature should
therefore be generic for any MHD equilibrium of the low-
lying solar prominences. In fact, the VLA radio continuum



FIG. 6a

FIG. 6b

FIG. 6.ÈGray-scale plots of for (a) the multisimple loops and (b) the complex loops shown in Figs. 3 and 5, respectivelylog10 (o)
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(15 GHz) observations show that two bright ribbons of
width about 7000 km are located on both sides of the
prominence sheet (Gary 1986). The radio continuum may
be emitted from the hot spots located on the two sides of the
prominence loop. (Note that the radio continuum arises
from the Rayleigh-Jeans tail of the thermal emission, whose
intensity is proportional to the temperature and indepen-
dent of the plasma density.) Since our prominence loop
generally has a height of about a few ] 104 km, the fact that
the bright ribbons have a width of about 7000 km does
seem to be a reasonable value when our solutions for the
hot spots are compared (see Figs. 3c and 5c). Note that the
energy balance has not been considered in the present
analysis. What if the plasma cannot be heated to a tem-
perature as high as 107 K? If this is indeed the case, the only
logical possibility is that the plasma b in the magnetic loop
would be much smaller than unity, so that the gas pressure
is dropped from the consideration of force balance. If this
occurs, whether there can ever exist a prominence in such a
low-b loop would be highly questionable. At any rate, these

hot spots have a sufficiently high temperature to be the soft
X-ray source in the quiet Sun. High-resolution X-ray
imaging should be able to test this prediction.

In sum, the present analytical model does provide a fair
picture for the prominence equilibria based on the balance
of magnetic, gravitational and pressure forces. Although the
thermodynamic state is not considered, the solutions
obtained in this work nonetheless are in several respects in
qualitative agreement with the observations, and they may
serve as a good starting point in understanding the physics
of quiescent prominences. In particular, because of the sim-
plicity of the governing equation (eq. [13]), these analytical
solutions can be obtained with sufficient precision for the
numerical simulation to set up an accurate initial equi-
librium for investigating its MHD stability and long-term
evolution.
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