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Abstract 

  This study utilizes the comprehensive traditional Chinese medicine database 

TCM Database@Taiwan (http://tcm.cmu.edu.tw/) in conjunction with structure-based 

and ligand-based drug design to identify multi-function Src inhibitors. The three 

potential TCM candidates identified as having suitable docking conformations and 

bioactivity profiles were angeliferulate, 

(3R)-2'-hydroxy-3',4'-dimethoxyisoflavan-7-O-beta-D-glucoside(HMID) and 

3-[2',6-dihydroxy-5'-(2-propenyl)[1,1'-biphenyl]3-yl]-(E)-2-propenoic acid(3PA). 

Molecular dynamics (MD) simulation demonstrated that the TCM candidates have 

more stable interactions with the cleft and in complex with Src kinase compared to 

Saracatinib. Angeliferulate and HMID, both originated from Angelica sinensis, not 

only interact with Lys298 and amino acids from different loops in the cleft, but with 

Asp407 located on the activation loop. These interactions are important to reduce the 

opening of the activation loop due to phosphorylation, hence stabilize the Src kinase 

cleft structure and inhibit activation. The TCM candidates also exhibited high affinity 

to other cancer-related target proteins (EGFR, HER2, HSP90). Our observations 

suggest that the TCM candidates might have multi-targeting effects in hypertension 

and cancer. 

 

Keywords: cancer; Src; traditional Chinese medicine (TCM); docking; QSAR; 

molecular dynamics (MD)  
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Introduction 1 

Src-family protein kinases are proto-oncogenes that participate in important 2 

physiological functions such as cellular differentiation, mobility, and proliferation. 3 

Src, a member of the Src-family protein kinases, functions as a signal protein and is 4 

implicated in various diseases. Src is ubiquitously expressed within the body, but 5 

distribution levels vary depending on individual tissue and organs (1,2). The role of 6 

Src in cancer was initially established by its overexpression in colon (3-7) and 7 

breast cancer (8-20) and is now well established. Figure 1 illustrates the major 8 

cancer types in which Src plays a significant role, and important substrates and 9 

factors involved in each pathway (21-39). The critical role of Src in cancer makes it 10 

an attractive target for designing novel cancer therapy.  11 

The carboxyl terminal of the Src kinase (CSK) is important in regulating 12 

conformation and activity of Src. Under normal inactive conditions, the Src protein 13 

is locked as an inward-folding conformation through binding between the 14 

phosphorylated Tyr527 and the SH2 domain. However, in mitotic cells, Src 15 

becomes activated due to thedephosphorylation of Tyr527 and phosphorylation of 16 

Tyr419. 17 

From N-terminal to C-terminal, Src is composed of a smaller amino-terminal 18 

lobe (residues 270-340) which binds ATP, and a larger carboxyl-terminal lobe 19 

(residues 345-523) which binds with substrates. The ATP binding site is also 20 

partially located in the larger lobe. By regulating the structure of the alpha-helix, the 21 

large lobe can move toward or away from the small lobe, resulting in opening or 22 

closing of the cleft between the two lobes. The Src catalytic site is located within 23 

the cleft. An open conformation allows the entrance of ATP into the cleft and exit of 24 

ADP from the cleft. Drugs that can either interact with the residues (404-432) on the 25 
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activation loop or inhibit the activation loop from moving away and opening the 26 

cleft as a result of Tyr419 phosphorylation can effectively inhibit Src activity. 27 

The importance of Src is established in cancer, but increasing studies are also 28 

suggesting its possible involvement in hypertension (40).Based on the 29 

pathophysiology of hypertension, endogenous ouabain (EO) and mutant α-adducin 30 

have been shown to increase binding of Na-K-ATPase with the SH2 domain and 31 

phosphorylation of Tyr416, thus activating subsequent 32 

Na,K-ATPase-Src-EGFR-ERK1/2 signaling cascade (41-43). As Src kinase is a key 33 

protein regulating the activation of downstream pathways, inhibiting Src kinase 34 

activation and Tyr416 phosphorylation may be a novel approach to controlling 35 

hypertension. Observations showing that lung cancer patients also have the 36 

tendency to develop hypertension and other cardiovascular diseases (44) also 37 

suggest possible linkage between the two diseases. In view of this, we speculate that 38 

Src may be a common factor for the development of hypertension and cancer, and 39 

inhibiting Src may have multi-targeting effects for both diseases. Though many Src 40 

inhibitors have been developed, limited pharmaceutical effectiveness has been 41 

observed. Recently, computational techniques are commonly used to screen or 42 

predict potent drugs targeting specific diseases (45-58).In view of this shift in drug 43 

design, and considering the vast pharmaceutical potential of traditional Chinese 44 

medicine (TCM), we constructed the world’s most comprehensive TCM database 45 

TCM Database@Taiwan (http://tcm.cmu.edu.tw/) (59,60) and its accompanying 46 

cloud-computing webserver iScreen (61) and integrative computational design 47 

portal “integrated SysteMs Biology Associated Research with TCM” (iSMART) 48 

(62) to facilitate drug development from TCM. TCM Database@Taiwan has been 49 

successfully used to identify lead compounds for a variety of important diseases 50 
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(63-82). In our previous study, we utilized TCM Database@Taiwan to identify 51 

potential Src inhibitors (83). Based on the essential role of Src in cancer, we deemed 52 

it important to evaluate the effect of TCM compounds with Src inhibitory potential 53 

against other cancer target proteins. This study targets not only Src, but also 54 

validates the docking potential of these TCM candidates against established cancer 55 

targets EGFR (84,85), HER2 (86,87), and HSP90 (88-91). Since Src is also 56 

involved in the pathological mechanisms of EGFR and HER2 (92,93), ourTCM 57 

candidates may have potential as multi-targeting inhibitors for different cancers. 58 

Materials and Methods 59 

Docking and Candidate Screening 60 

 The protein structure used in this study was downloaded from Protein Data 61 

Bank (PDB: 2H8H) (94). The binding site was defined as the space occupied by 62 

Saracatinib within the 2H8H crystal structure, and TCM compounds from TCM 63 

Database@Taiwan docked and screened. Using Discovery Studio 2.5, the ligands 64 

were first passed through Lipinski’s Rule of Five, and then screened for contour of 65 

TCM ligands with the Src kinase binding site using LigandFit. LigandFit is a 66 

receptor-rigid docking algorithm that uses Monte Carlo simulation to match ligands 67 

with designate binding sites on a given protein. Results from docking are ranked by 68 

binding energy and ligand similarity to the Saracatinib within the 2H8H crystal 69 

structure, and three candidates are selected for further analysis. Each candidate 70 

ligand was minimized with smart minimizer setting in Minimization Algorithm 71 

under the force field of CHARMm (95), and a maximum of five docking poses were 72 

generated. Each generated docking pose was redocked into the protein for a second 73 

time, and five poses from each re-dock were generated. The 25 poses for each 74 

ligand are then visually compared with that of Saracatinib within the crystal 75 



6 
 

structure, and docking poses that are most similar to Saracatinib were selected. 76 

Hydrophobic contacts between the ligands and Src kinase are calculated with 77 

LigPlot v.2.2.25(96). The absorption, distribution, metabolism, excretion and 78 

toxicity (ADMET) analysis in D.S. 2.5 was used to calculate pharmacology and 79 

toxicity of the derivatives in human bodies. To assess the general applicability of the 80 

candidates on other cancer target proteins, the top three candidates from screening 81 

were further docked into EGFR, HER2, and HSP. Protein structures used for this 82 

application spectrum verification were EGFR (PDB: 2ITY) (97) and HSP90 (PDB: 83 

3K97) (98). The HER2 model used was adopted from our previous study (72,99) 84 

and was built from structures 2ITY and 2J5E (97,100). 85 

Bioactivity Prediction by Multiple Linear Regression (MLR) and Support 86 

Vector Machine (SVM) Models 87 

 Linear MLR (101) and nonlinear SVM (102) were used to construct 88 

quantitative structure-activity relationship (QSAR) models for predicting the 89 

bioactivity of the TCM compounds. A total of 20 Src ligands (103) were randomly 90 

separated into a training set of 15 compounds and an external validation test set of 91 

five compounds.  92 

 Prior to constructing QSAR models, genetic function approximation (GFA) 93 

(104) was applied to identify representative descriptor sets from the large pool of 94 

descriptors generated from the training set. The MLR model was built based on the 95 

representative descriptors using MATLAB in the form of equation [1]: 96 

nn

n
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1

050 αα                           [1] 97 

 where α0 is a constant value and αn is the coefficient value of descriptor Xn. 98 

The generated MLR model was validated with cross-validation and independent 99 
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tests and verified by calculating the square correlation coefficients (R2) between 100 

predicted and actual pIC50 of the training set.  101 

 SVM are groups of supervised methods that allow categorization of hard-to 102 

separate patterns through the use nonlinear of generalized portrait algorithms (105). 103 

The SVM algorithm was extended for regression (SVMR) from its original use for 104 

classification through the use of a ε-insensitive loss function (106) with the goal of 105 

identifying a function f(x) in which all training points has a maximum deviation ε 106 

from experimental values and has a maximum margin (107). A final nonlinear SVM 107 

regression giving the modeled property for a pattern x was obtained by introducing 108 

Lagrange multipliers and kernels to map input patterns into a higher dimension 109 

space, the formula being equation [2]: 110 

( ) ( ) bxxKxf
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[2] 111 

where +−

ii λλ , are Lagrange multipliers and K(xi, xk) is the kernel function. 112 

 Our SVM model was constructed using the LibSVM program(108). Key 113 

parameters determining the SVM model fit are C cost, ε, γ, the kernel type, and the 114 

corresponding kernel parameters. The kernel selected for training the SVM model 115 

was the Gaussian radial basis function kernel equation [3]: 116 
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Optimum C, ε, γ were determined using the gridregression.py command within 118 

LibSVM. Cross-validation was conducted according to default settings in LibSVM. 119 

The validated MLR and SVM models to the TCM candidates to predict individual 120 

pIC50 values of the compounds. 121 

3D-QSAR Modeling and Analysis  122 
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 3D-QSAR methods such as comparative molecular field analysis (CoMFA) 123 

(109) and comparative molecular similarity analysis (CoMSIA) (110) are widely 124 

used as activity prediction tools in drug design. Since traditional QSAR (MLR and 125 

SVM) do not take into account the 3D structure of the compounds, CoMFA and 126 

CoMSIA models were constructed to further test the robustness of TCM candidates 127 

as ligands with biological activity against Src. The Src ligands from (103) were 128 

randomly divided into a training set of 15 compounds and an external validation test 129 

set of five compounds.  130 

 Partial least square (PLS) analysis is a statistical tool used for establishing a 131 

linear model describing the correlation between dependent and independent 132 

variables and has the advantage of being directly applicable for prediction(111). In 133 

this section, CoMFA and CoMSIA descriptors were used as independent variables 134 

and pIC50 values were the dependent variables.  135 

The cross-validated coefficient, q2, which is calculated by equation [4], was used to 136 

evaluate the prediction accuracy: 137 

( )
( )∑

∑
−

−
−= 2
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q                 [4] 138 

Conventional correlation coefficient r2 and the standard error, SEE, were also 139 

computed for each PLS model. Models with the highest q2, r2, and lowest SEE were 140 

selected as the optimum CoMFA and CoMSIA model. Once the optimum model is 141 

established, relevant compound descriptors are projected into the PLS model to 142 

make external predictions on the test set. 143 

 CoMFA and CoMSIA structure building was performed using the SYBYL 144 

program. The CoMFA descriptors steric and electrostatic field energies were 145 
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calculated by Lennard Jones function (112) and Coulombic function (113), 146 

respectively, using the SYBYL default parameters: avan der Waals (vdW) radius of 147 

1.52 Å, a C1+ probe atom, grid point spacing of 2Å, and energy cut-off value of 30 148 

kcal/mol. The field contributions in CoMSIA, namely steric, electrostatic, 149 

hydrophobic, H-bond donor and H-bond acceptor descriptors, were calculated with 150 

identicalC1+ probe atom and grid spacing parameters. The probe radius was set at 151 

1.0 Å. The default attenuation factor (R) value of 0.3 was used. Column filtering 152 

was set at2.0 kcal/mol. The TCM ligands were overlaid against the generated 153 

models to evaluate biological activities based on the CoMFA and CoMSIA models. 154 

Molecular Dynamics (MD) Simulation 155 

 To verify the stability of TCM candidates under dynamic conditions, molecular 156 

dynamics (MD) simulations were conducted on the Src-candidate complexes using 157 

DS2.5. The energy of each complex was minimized with 500 steps each of Steepest 158 

Descent and Conjugate Gradient. The system was heated for 50 ps to increase 159 

temperature from 50K to 310K and allowed to equilibrate for 200 ps once the target 160 

temperature was reached. Canonical ensemble (NVT; constant temperature) was 161 

selected for the 40 ns production process and snapshots were taken at 20 ps intervals. 162 

Time steps were set at 2fs. Electrostatic interactions (114) were calculated using 163 

Particle Mesh Ewald (PME) method. The MD results were used to analyze energy 164 

trajectories, H-bond formation and distances, and torsion angles which provide 165 

insights to the interaction between TCM candidates and Src kinase. 166 

Results and Discussion 167 

Docking and Candidate Screening 168 

. Table I lists the top ten TCM candidates with the lowest Binding Energy and 169 
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Ligand Internal Energy. The complete list of top 100 TCM ligands based on Binding 170 

Energyand Ligand Internal Energy can be viewed in Supplementary Table I. 171 

Considering the ability to form multiple bonds with Src and their chemical structure, 172 

Angeliferulate,(3R)-2'-hydroxy-3',4'-dimethoxyisoflavan-7-O-beta-D-glucoside 173 

(HMID), and 3-[2',6-dihydroxy-5'-(2-propenyl)[1,1'-biphenyl]3-yl]-(E)-2-propenoic 174 

acid (3PA) were selected as our top candidates. The structural scaffolds of the TCM 175 

candidates and the control Saracatinib are shown in Figure 2.Significantly lower 176 

binding energy and LIE values were estimated for the TCM candidates (Table I).A 177 

higher binding energy, such as the case with Saracatinib, implies that the ligand 178 

binding with the protein is more unstable. Results for ADMET are shown in 179 

Supplementary Figure 1. 180 

Figures 3-6 illustrates interactions and Src protein residues that may be of 181 

importance for each ligand. Figure 7 highlights amino acids that form hydrophobic 182 

contacts with each test ligand. Saractatinib formed two types of interactions with 183 

Src. Pi-interaction was formed with the positively charged alkyl group in Lys298 184 

(Figure 3A), and hydrophobic interactions were formed with amino acids located on 185 

different loops (Figure 7A). The low calculated binding energy and LIE for 186 

Angeliferulate (Top 1) could be the result of H-bonds formed with Lys298, Asp351, 187 

Asp407 (Figure 4A), and hydrophobic interactions with Val284, Gly347, and 188 

Leu396 (Figure 7B). HMID is docked within Src through H-bonds with Leu276, 189 

Lys298, and Asp407 (Figure 5A) and hydrophobic interactions with seven amino 190 

acids (Figure 7C). These interactions are formed with amino acids either on the 191 
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activation loop (Ala407, Asp407) or on different loops (Leu276, Ser348), helping to 192 

maintain the stability of the cleft. Similarly, 3PA also docked in Src through the 193 

formation of H-bonds (Lys298, Ser348, and Asp351) (Figure 6A) and hydrophobic 194 

interactions formed with amino acids on different loops (Figure 7D).  195 

 Lys298 is an amino acid of critical importance in Src activation. Under open 196 

conformations, ATP will enter the cleft, bind atLys298, undergo hydrolysis to 197 

release a phosphate and exit as ADP. The released phosphate is used to 198 

phosphorylate downstream reactions. A ligand that can effectively interact with 199 

Lys298and form stable and permanent interactions with neighboring amino acid 200 

residues has potential to block ATP from the binding site and inhibit activation of 201 

downstream reactions. Whilst Saracatinib formed a pi-interaction with Lys298, lack 202 

of H-bonds with other residues renders Saracatinib unstable. Higher stability of 203 

TCM candidates over Saracatinib may be likely due to their ability to form H-bonds 204 

with multiple amino acids including Lys298. Hydrophobic contacts, through 205 

significantly weaker than pi-interactions and H-bonds, may also contribute to 206 

stability. In particular, hydrophobic interactions formed by Saracatinib, HMGF, and 207 

3PA with Leu276 and Ser348 (located on different amino acid chains) (Figure 7) 208 

can increase stability of the cleft. HMID also forms hydrophobic interactions with 209 

activation loop amino acids Ala406 and Asp407 which can resist removal of the 210 

activation loop from the cleft during Tyr419 activation. 211 

Bioactivity Prediction by Multiple Linear Regression (MLR)and Support 212 

Vector Machine (SVM) Models 213 

 The MLR and SVM models were developed with ten structural descriptors 214 

identified by GFA, namely ALogP, ES_Sum_dsCH, ES_Sum_aaCH, ES_Sum_sCl, 215 

Molecular_Weight, Molecular_SurfaceArea, Molecular_PolarSurfaceArea, 216 
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Jurs_RPCG, Jurs_WNSA_1, and PMI_X.ALogPis a measurement of molecular 217 

hydrophobicity based on Ghose and Crippen’s method (115); ES_Sum_dsCHis 218 

theelectrotopological count for carbons with one single bond and one double 219 

bond,ES_Sum_aaCH stand for the electrotopological count for carbons with two 220 

aromatic bonds; ES_Sum_sCl is related to the electrotopological count of chlorides 221 

with a single bond; Molecular_Weight is the sum of atomic weight; 222 

Molecular_SurfaceArea and Molecular_PolarSurfaceAreacalculate total surface 223 

area and polar surface area, respectively; Jurs_RPCGdescribes relative positive 224 

charge; Jurs_WNSA_1describes the total molecular solvent-accessible surface, and 225 

PMI_X is a spatial descriptor related to the orientation and conformational rigidity 226 

of the ligand. 227 

The generated MLR model is expressed as follows and has good prediction ability 228 

(R2= 0.8043; Figure 8A): 229 

XPMIWNSAJurs

RPCGJursceAreaPolarSurfaMolecular

aSurfaceAreMolecularWeightMolecular

sClSumESaaCHSumES

dsCHSumESALogPpIC

_0060.01__0050.0

_3521.7_0567.0

_0107.0_0433.0

__9470.33__879.0

__2497.92414.07.38750

×+×+

×−×−

×+×

+×−×−

×+×−=

 230 

The SVM model constructed using the aforementioned descriptors also 231 

generated a prediction model where predicted values were highly correlated to 232 

actual observed values (R2=0.937; Figure 8B). The robustness of our models were 233 

validated through external validation tests using the test set. Good correlation 234 

between observed and predicted pIC50 values were observed for both models.  235 

Predicted pIC50values of the TCM candidates and Saracatinib using the MLR 236 

and SVM models are listed in Table I. Results suggest that the TCM candidates 237 

have good bioactivity towards Src. 238 

3D-QSAR Modeling and Analysis  239 
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 Table II shows the results of the CoMFA and CoMSIA models generated 240 

through PLS algorithm. PLS statistics led to a CoMFA model in which steric 241 

features were the dominant contributing factor. Several CoMSIA model 242 

combinations were generated and the model considering electrostatic (E), 243 

hydrophobic (H), and H-bond donor (D) properties was selected as the optimum 244 

model based on high cross-validation and non-cross validation correlation 245 

coefficients (q2=0.482, r2=0.877). 246 

 To test the predictive capabilities of the models, they were used to predict the 247 

pIC50 values of an external test set excluded from the original training set. 248 

Bioactivity predictions of the training and test set are listed in Table III.The 249 

correlation curves show high square correlation coefficients of R2=0.9721 for 250 

CoMFA (Figure 9A) and R2=0.9414 for CoMSIA (Figure 9B), implying models of 251 

good prediction power.  252 

In Figure 10, the heteroaromatic ring of Saracatinib, the benzene of 253 

Angeliferulate, and the hydroxyl group of HMID, and partial regions of the hexane 254 

ring in 3PA fall within the steric favor region, but only Angeliferulate forms 255 

interaction bonds. All test ligands fall within the regions between Leu276/Asp351 256 

and Lys298/Asp407, satisfying the CoMFA steric favoring region located at 257 

Leu276/Asp351. However, only TCM candidates have interactions with the amino 258 

acids located within the Lys298/Asp407 region. When the CoMSIA contour was 259 

superimposed, Lys298 was located within the region where hydrophilic interactions 260 

were desirable for bioactivity (white)(Figure 11). The ability of Angeliferulate, 261 

HMID and 3PA to form H-bonds at Lys298 contour to this hydrophilic region and 262 

most likely contribute to higher bioactivities. The hydroxyl group of Angeliferulate 263 

falls adjacent to the electrostatic favoring (orange) region of Leu276/Asp351 264 
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(Figure 11B). The hydrophobic benzene ring moiety of 3PA is located close to the 265 

hydrophobic disfavoring region (white) of Leu276/Asp351 (Figure 11D). Violation 266 

of the hydrophobic disfavor region contour matches the lower bioactivity predicted 267 

by our SVM/MLR models (Table I). 268 

Molecular Dynamics (MD) Simulation 269 

RMSDs and total energy trajectories 270 

 Protein-ligand complex RMSDs, ligand RMSDs, and total energy level 271 

changes during MD are shown in Figure 12. Saracatinib has the highest complex, 272 

ligand RMSDs, and the highest total energy of the four test compounds. Most 273 

notably, the significant increase in ligand RMSD (Figure 12B) indicates high 274 

instability. Total energy of the TCM candidates by increasing order 275 

were3PA<Angeliferulate<HMID, all of which were lower than that of Saracatinib 276 

(Figure 12C). The lower total energy trajectories indicate a more stable state of the 277 

ligand-protein complex during dynamic situations. 278 

Saracatinib-Src interactions during MD 279 

 Saracatinib formed the least amount of interactions with Src during docking, a 280 

phenomenon also observed during MD (Figure 3A).As indicated by the H-bond 281 

distance trajectories (Figure 3B) and H-bond occupancy analysis (Table IV), the 282 

only stable H-bonds formed during MD were with Lys298 and Ser348. Saracatinib 283 

could not form H-bonds with neighboring residues Leu276, Asp351, and Asp407 284 

were the underlying reasons for the inability to form H-bonds. 285 

Angeliferulate-Src interactions during MD 286 

 The primary stabilizing interactions formed between Angeliferulate and Src 287 

were at Ser348, Asp351, and Asp407 (Figure 4B). H-bonds with Lys298 were also 288 

initially observed, but rotations on Angeliferulate increased the distance and 289 
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discouraged interactions with Lys298 after 9.86 ns. Distance from Asp351 reduced 290 

from 4.47Å to 2.45Å at 7.64ns, enabling the formation of multiple H-bonds. Small 291 

fluctuations on the H-bond distanceswithSer348 and Asp407 were observed, but 292 

since the distance was greater than the 2.50Å cut-off distance, the H-bonds were 293 

presumed to be weaker. 294 

HMID-Src interactions during MD 295 

 A significant directional shift of HMID was observed during MD due to the 296 

formation of H-bonds with new amino acid residues (Table IV). Initially, the 297 

H-bond with Leu276 during directed HMID towards the small lobe (Figure 5A). 298 

During MD, the loss of the Leu276 H-bond and the formation of H-bond with 299 

Ser348 (Figure 5B) shifted HMID towards the large lobe (Figure 5A). HMID 300 

formed seven H-bonds with Lys298, but as the HZ1, HZ2, and HZ3 on Lys298 301 

continuously rotated, only a 50.65% occupancy was recorded. The H-bond with 302 

Asp407 observed during docking was stable throughout MD.  303 

3PA-Src interactions during MD 304 

 3PA was primarily stabilized by Lys298 and Asp351 during MD (Table IV). 305 

Multiple H-bonds were formed with Lys298. Distance fluctuations recorded in 306 

Figure 6B were normal circumstances caused by the constant rotation of the Lys298 307 

H atoms. A stable H-bond with occupancies of greater than 99% was maintained 308 

with Asp351. Contrary to the docking pose, no high occupancy H-bonds were 309 

observed for Ser348.  310 

Torsion angle changes during MD 311 

 More information on bond formation during MD can be explained through 312 

torsion angle changes. As shown in Figure 3C, torsion of a and b contribute to the 313 

relative spatial angle of the chloride-containing moiety of Saracatinib. The inability 314 
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of Saracatinib to maintain interactions with Lys298 and Asp407 could be attributed 315 

to conformational shifts brought on by these torsions which increase the distance of 316 

these residues from Saracatinib. Oxane could not form interactions due to large 317 

torsion fluctuations in c and d and its orientation away from the pocket. Piperazine 318 

groups could not form H-bonds due to the large torsion changes observed in e, f, g, 319 

and h. 320 

 Angeliferulate was a largely flexible ligand as indicated by the torsion angles 321 

(Figure 4C). Large torsion changes at a-d disrupted the ability of the terminal 322 

aromatic ring to form stable H-bonds. Torsion angles at e-h also showed that 323 

constant fluctuations. Though m and n were more stable, the dynamic outer regions 324 

of the cleft limited the methoxy group and hydroxyl groups of m and n from 325 

forming H-bonds. 326 

 Fluctuations of the torsion angles were also observed in HMID, but H-bond 327 

formations were rarely affected (Figure 5C). The stability of b, e, and f enabled the 328 

formation of stable H-bonds with Lys298 and Asp407 through O17 and O28, 329 

respectively. Other recorded fluctuations at a-d, and g did not affect stability of 330 

these two H-bonds. Two large torsion changes were observed at h (8.98 ns and 15 331 

ns), both of which directly caused H-bond distance changes between H55 and 332 

Leu276, Ser348, and Asp351 (Figure 5B). 333 

 Figure 6C shows that c, which connects the two benzene moieties in 3PA were 334 

very stable. Torsions at e, f, g did not fluctuate greatly, resulting in the stable 335 

H-bond with Lys298. 3PA remained in a relatively linear conformation until changes 336 

observed at d. Nonetheless, aromatic rings remained in a planar state after 22 ns. 337 

Discussion 338 

 Based on the results of docking and MD, Leu276, Lys298, Ser348, Asp351, 339 
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and Asp407 are important amino acid residues for stability within Src (Table V). 340 

MD results generally supported the findings of docking but showed additional 341 

H-bond formation. This implies that under dynamic physiological conditions, all 342 

ligands tested could form and remain in complex with Src. Comparison between 343 

ligands show that the TCM candidates were more stable and had lower total energy 344 

than Saracatinib. The higher stability of the TCM candidates can be attributed to the 345 

formation of more H-bonds that remain stable throughout MD. Angeliferulate and 346 

HMID not only formed H-bond with the ATP binding site Lys298, but also with 347 

Asp407. This can effectively limit the phosphorylated Tyr419 from moving away 348 

from the cleft, thus exhibiting important characteristics for being potential Src 349 

inhibitors. 350 

Conclusion 351 

This study utilizes computational methods to virtually screen small molecules 352 

found in TCM for potential Src inhibitors. Potential of each candidate was validated 353 

using structure-based and ligand-based drug design. As shown in Supplementary 354 

Video 1, Angeliferulate and HMID have multiple stable interactions with the two 355 

Src cleft loops while simultaneously interacting with Asp407, hindering the 356 

activation loop from activation. 3PA also exhibits drug-like potential by primarily 357 

interacting with Src through via cleft loop amino acids, but may be less potent than 358 

its TCM counterparts due to the lack of direct interaction with the activation loop. 359 

Considering the aforementioned interactions with Src and high affinity with EGFR, 360 

HER2, and HSP90, we suggest that Angeliferulate and HMID which both originate 361 

from the TCM Angelica sinensis may have potential as multi-targeting drug leads. 362 

Supplementary Materials 363 

Supplementary material include the top 100 candidates from screening, ADMET 364 
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results of the top three TCM candidates, and a video depicting the mode of 365 

inhibition of the TCM candidates on Src. 366 
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