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Abstract

The structure of a protein determines its function and its interactions with other factors. Regions of proteins that interact
with ligands, substrates, and/or other proteins, tend to be conserved both in sequence and structure, and the residues
involved are usually in close spatial proximity. More than 70,000 protein structures are currently found in the Protein Data
Bank, and approximately one-third contain metal ions essential for function. Identifying and characterizing metal ion–
binding sites experimentally is time-consuming and costly. Many computational methods have been developed to identify
metal ion–binding sites, and most use only sequence information. For the work reported herein, we developed a method
that uses sequence and structural information to predict the residues in metal ion–binding sites. Six types of metal ion–
binding templates– those involving Ca2+, Cu2+, Fe3+, Mg2+, Mn2+, and Zn2+–were constructed using the residues within 3.5 Å
of the center of the metal ion. Using the fragment transformation method, we then compared known metal ion–binding
sites with the templates to assess the accuracy of our method. Our method achieved an overall 94.6 % accuracy with a true
positive rate of 60.5 % at a 5 % false positive rate and therefore constitutes a significant improvement in metal-binding site
prediction.
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Introduction

The structure of a protein determines its function and its

interaction(s) with other components, e.g., other proteins and

cofactors, including metal ions. Approximately one-third of all

proteins bind at least one metal ion [1,2,3], and many different

types of metal ion–binding proteins are found in humans [4,5].

Metal ions help stabilize protein structure, may induce a

conformational change upon binding, and/or participate in

catalysis. Metal ions found in proteins include those of the alkali

metals, alkaline earth metals and transition metals, with the most

common being sodium and potassium ions, calcium and

magnesium ions, and iron, manganese, copper and zinc ions,

respectively. For the metal ion–binding proteins found in the

Protein Data Bank (PDB http://www.rcsb.org/pdb/), ,66 %

contain transition metal ions, ,37 % contain alkaline earth metal

ions, and ,6 % contain alkali metal ions [6].

In humans, hemoglobin transports oxygen in the blood from the

lungs to peripheral tissues. Hemoglobin contains four heme groups

that reversibly bind Fe2+. Fe2+coordinates four heme nitrogens

and, reversibly, one oxygen. In the absence of an oxygen, a water

molecule is bound. Urease, expressed by the Gram-negative

microaerophilic bacterium Helicobacter pylori, requires Ni2+ for its

function. Urease hydrolyses urea into carbon dioxide and

ammonia to produce an alkaline environment that protects the

bacterium from acidic gastric juice during its infection of the

stomach. Thus, in both prokaryotes and eukaryotes, metal ion–

binding proteins are extensively involved in many different

biochemical reactions. Identifying metal ion–binding sites is,

therefore, key to understanding the functional mechanisms of

metal ion–binding proteins.

Experimentally, metal ion–binding proteins are identified and/

or characterized using nuclear magnetic resonance spectroscopy

[7], gel electrophoresis [8], metal-affinity column chromatography

[9], electrophoretic mobility shift assay [9], absorbance spectros-

copy [10], and mass spectrometry [8]. Most of these methods

require complex steps and specialized equipment, making them

unsuitable for unknown targets. There is considerable demand,

therefore, for other ways to identify metal ion–binding sites.

Computational methods have been used to identify metal ion–

binding sites, e.g., support vector machines [6,11,12], neural

networks [6,13], the FoldX force field [14], the CHED algorithm

[15,16], graph theory and geometry algorithms [17,18]. Some of

these methods use only sequence information [6,11,12], whereas

others use both sequence and structure information [17,18].

However these previous attempts to predict metal ion–binding

sites have often had low sensitivities; clearly, predictive accuracy

must be improved.

On average, the members of the Structural Genomics Initiative

solve 20 new protein structures each week. Currently, the PDB
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contains more than 70,000 protein structures. In general the

regions in proteins that interacts with ligands, substrates, or other

proteins tends to be structurally conserved [19] and the residues

involved are in close spatial proximity even though they may be

distant in sequence. Such residues constitute , 10–30 % of a

protein sequence [20,21,22]. The residues that most often bind

metal ions are CYS, HIS, GLU and ASP [23,24] because the

atoms of their polar or charged side chains can coordinate metal

ions. For the work reported herein, we used the fragment

transformation method [25] to identify residues in proteins that

bind Ca2+, Cu2+, Fe3+, Mg2+, Mn2+, or Zn2+. This method

combines sequence and structural information contained within

spatially local fragments. Given that the three-dimensional

structure and residue type are often conserved, similar binding

regions can be found by comparing the types of residues and their

relative locations with those of computationally constructed metal

ion–binding residue templates.

Methods

Overview
First, the structures of known metal ion–binding proteins were

extracted from the PDB. Next, a database containing metal ion–

binding sites templates was constructed. Each template included

residues at least partially within 3.5 Å of the metal ion center. The

structure of the protein being queried for a metal ion–binding site

(query protein) was then compared with each template using a

‘‘leave-one-out’’ comparison method. The fragment transforma-

tion method [25] attempts to structurally align fragments of the

query protein and the metal ion–binding residue template. After

each comparison, each residue in the query protein was assigned

an alignment score that is composed of two functions for the

evaluation of sequence and structure conservation. The sequence

similarity is calculated by using the BLOSUM62 substitution

matrix [26], and the structure similarity is taken by measuring the

root mean square deviation (RMSD) of the Ca carbons of the

Figure 1. Schematic of the metal ion–binding prediction method.
doi:10.1371/journal.pone.0039252.g001
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local structural alignments. Residues that score above the assigned

alignment-score threshold are predicted to bind metal ions. This

method is illustrated in Figure 1.

Dataset containing the metal ion–binding proteins
The proteins in the final dataset were extracted from the PDB

and contain at least one Ca2+, Cu2+, Fe3+, Mg2+, Mn2+, or Zn2+

ion. At the time of our study, approximately one-fourth of all PDB

entries (20094 of 77294 proteins) contained a metal ion(s). The

following criteria were applied to these proteins as filters. If the

structures did not contain any polypeptide chain, those structures

were excluded. For proteins containing more than one polypeptide

chains, we included only the chains with residues involved in metal

ion–binding. The length of the polypeptide chain was required to

be more than 50 residues. DNA and/or RNA components were

removed, leaving only the polypeptide chain.

To ensure that many different types of proteins were included in

the dataset, proteins were grouped according to their superfamily

by SCOP (version 1.67) [27]. Proteins that could not be classified

by in this manner were removed. Finally, BLASTClust, in the

standalone BLAST package (version 2.2.10) [28], was used to align

the sequences in a pairwise fashion so that the remaining proteins

could be sorted into groups that had sequence identities $ 25%.

This step was performed to remove the redundant structures from

the dataset because sequences with at least 25 % identity usually

have similar conformations. For each cluster we retained the first

entry as representative of the cluster. The final dataset is composed

of 1,109 polypeptides representing 361 SCOP superfamilies.

Figure 2. Metal ion–binding residues. All residues at least partially within 3.5 Å of a metal ion are defined as metal ion–binding residues.
doi:10.1371/journal.pone.0039252.g002

Table 1. The types and number of metal ion–binding
polypeptides and metal ion–binding residue template.

Metal ion
Number of
polypeptides Number of templates

Ca2+ 273 407

Cu2+ 47 74

Fe3+ 51 77

Mg2+ 256 209

Mn2+ 110 144

Zn2+ 372 499

Total 1109 1410

doi:10.1371/journal.pone.0039252.t001

Figure 3. The fragment transformation method. si and sk are two
arbitrary triplet units in the query protein S, and tj and tl are two
arbitrary triplet units in the template T. In the illustration, the triplet si is
transformed onto tj via application of the transformation matrix Mi,j.
doi:10.1371/journal.pone.0039252.g003
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Metal ion–binding residue templates
Figure 2 shows an example of a local structure containing metal

ion–binding residues, i.e., those at least partially within 3.5 Å of a

metal ion center as judged by their PDB coordinates. To be

considered as a template, a site needed contain more than two

metal ion–binding residues. In total, 1,410 templates were

generated from the 1,109 polypeptides. Table 1 list the statistics

for each kind of metal ion–binding polypeptide and metal ion–

binding template.

The fragment transformation method
In general, the fragment transformation method [25] aligns

similar local fragments that contain residues that are discontinuous

in sequence but spatially close; for our study, the method was

modified to align metal ion–binding residues. The fragment

transformation method treats each binding residue as an

individual unit. The structural unit used to align the query protein

and the templates is a triplet formed by the backbone N{Ca{C
atoms of a given residue. S denotes the query protein of length m,

T denote template of n residues. The N{Ca{C triplets of S and

T be given by (xN,xCa,xC) and (yN,yCa,yC) respectively, where

x and y are the PDB coordinates for that atom. S and T can

therefore be expressed in terms of the triplets as

S~ s1,s2, � � � ,smf g and T~ t1,t2, � � � ,tmf g, where

si~ xN ,xCa ,xCð Þandtj~ yN ,yCa ,yCð Þ:

Note that the information contained in the peptide bonds

preceding and following a residue is not used, meaning that s and

t are not representative of the backbone torsion angles, w and Q,

which require the coordinates of C0{N{Ca{C and

N{Ca{C{N00, respectively, where C’ is the carbonyl carbon

preceding the residue and N’’ is the amide nitrogen of the next

residue. Thus, the fragment unit do not contain information

concerning the torsion angles.

A matrix of dimensions m|n is then constructed for the

residues of S and T as:

M~D

M1,1 M1,2 . . . M1,n

M2,1 M2,2 . . . M2,n

. . . . . . . . . . . .

Mm,1 Mm,2 . . . Mm,n

D ð1Þ

where the element Mij is a rigid-body transformation matrix that

Figure 4. Frequency of each amino acid in the metal ion–binding sites. Frequencies of each amino acid in a given type of metal ion–binding
site (black) and in the corresponding protein (grey). A, Ca2+. B, Cu2+. C, Fe3+. D, Mg2+. E, Mn2+. F, Zn2+. For this study, 1,109 metal ion–binding
polypeptides were used and the metal ion–binding sites were defined as residues partially within 3.5 Å of the metal ion.
doi:10.1371/journal.pone.0039252.g004
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transforms the triplet si to tj , i.e., Mijsi~tj . Each transformation

matrix Mij contains three rotations around and three translations

along the x, y and z Cartesian axes (Figure 3).

Performing triplet clustering
D

ij
kl , defined as the Cartesian distance between the target tl and

the transformed triplet Mijsk, provides a measure of how similar

the orientation of the triplet pairs (si,tj) and (sk,tl) is, which

Figure 5. Frequency of atom types in the metal ion–binding sites. Frequency of each type of atom in the backbone (black) and in the side
chain (grey). A, Ca2+. B, Cu2+. C, Fe3+. D, Mg2+. E, Mn2+. F, Zn2+.
doi:10.1371/journal.pone.0039252.g005
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allows us to cluster the triplet fragments using the single-linkage

algorithm [29] as follows. If for two triplet pairs,(si,tj) and (sk,tl),

D
ij
kl vD0, and i=k and j=l, then the triplets are clustered. LetG1

and G2 be two clusters, the first containing (si,tj) and (sk,tl) and

the second containing (si0 ,tj0 ) and (sk0 ,tl0 ). If D
ij
k0l0vD0, then G1

and G2 are merged to form a new cluster G3, where G3~G1|G2.

The procedures are carried out iteratively until no new clusters

can be formed. For each final cluster Gm, we obtain the aligned

substructure pairSm and Tm, where Sm~
[

sk[Gm

sk and

Tm~
[

tk[Gm

tk.

Scoring function
The metal ion–binding score, Ci, for each residue i, is defined as

Ci~ MAX
si[Gm

em|CR
m |CB

m

� �
ð2Þ

where em is the number of triplets of Sm, i.e., the aligned residues of

the query structure. The alignment scores CR
m , CB

m are defined as:

CR
m ~

1

1zRMSD(Sm,Tm)
ð3Þ

and

CB
m ~

BLOSUM(Sm,Tm)

BLOSUM(Tm,Tm)
ð4Þ

where RMSD(Sm,Tm) is the root mean square deviation of allCa

atoms between Sm and Tm;BLOSUM(Sm,Tm) is the sequence

alignment score between Sm and Tm, calculated using the

BLOSUM62 [26] substitution matrix, and BLOSUM(Tm,Tm) is

Figure 6. Metal ion–binding site prediction as functions of the metal ion–binding threshold scores. Accuracy (black solid line), true
positive rate (dashed line), and false positive rate (grey line) as functions of the threshold values. A, Ca2+. B, Cu2+. C, Fe3+. D, Mg2+. E, Mn2+. F, Zn2+.
doi:10.1371/journal.pone.0039252.g006
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the maximum sequence alignment score of Tm. The value of

RMSD(Sm,Tm) should be less than 3 Å, and CB
m should be greater

than CB
0 which can be adjusted to obtain the best result for each

type of metal ion. Finally, the normalized metal ion–binding score,

ZC
i , is calculated as:

ZC
i ~

Ci{C

SDC

ð5Þ

where C and SDC denote the mean and the standard deviation,

respectively, of the metal ion–binding score.

Performance assessment
The performance of the metal ion–binding site prediction

method, i.e., the prediction accuracy (ACC), was defined as the

number of true positive and true negative and evaluated using a

leave-one-out approach. The accuracy (ACC), the true positive

rate (TPR) and false positive rates (FPR) were calculated using the

true positive (TP), true negative (TN), false positive (FP), and false

negative (FN) values as follows:

ACC~
TPzFN

TPzTNzFPzFN
ð11Þ

TPR~
TP

TPzFN
ð12Þ

FPR~
FP

FPzTN
ð13Þ

Results

Metal ion–binding residue profiles
Spheres each with a 3.5 Å radius from the center of a metal ion

were constructed for each metal ion–site in our dataset. We

assessed the frequency that each of the 20 amino acids coordinated

a metal ion (Fig. 4); those metal ions were found to preferentially

bind certain residues, as follows: for Ca2+, ASP, GLU, ASN, and

GLY; for Cu2+, HIS; for Mg2+ ASP and GLU; for Fe3+, HIS,

GLU, ASP, CYS, and TYR; for Mn2+, ASP, HIS, and GLU; and

for Zn2+, CYS and HIS. Notably, each type of metal ion favors

specific residues.

The preferred types of atoms surrounding the metal ions are as

follows (Figure 5): for Ca2+, backbone and side-chain oxygens; for

Mg2+ and Mn2+, side-chain oxygens; for Cu2+, Fe3+, and Zn2+,

oxygen, nitrogen, and sulfur. Each metal ion appears to

preferentially bind certain atoms in certain residues.

Predictive performance
For each metal ion, we set the threshold of the normalized metal

ion–binding score so that the FPR was #5% (Fig. 6). For Ca2+–

binding proteins, the threshold was 1.6, which gave a 94.1 %

Figure 7. Receiver operating characteristic curves generated from the metal ion–binding site prediction. The performance of the
method was assessed by measuring the areas under the receiver operating characteristic curves. The x axis reports the false positive rate (FPR), and
the y axis reports the true positive rate (TPR).
doi:10.1371/journal.pone.0039252.g007

Table 2. Comparison of the results for the fragment
transformation and the artificial neural network methods.

Metal ion ANN This work

Accuracy (%) TPR (%) Accuracy (%) TPR (%)

Ca2+ 93.9 30.4 94.1 48.9

Cu2+ 94.9 36.2 94.9 85.6

Fe3+ 94.9 48.8 94.9 85.4

Mg2+ 94.2 32.4 94.6 37.0

Mn2+ 94.7 38.8 95.0 61.4

Zn2+ 94.6 47.8 94.8 71.1

Overall 94.5 39.1 94.6 60.5

doi:10.1371/journal.pone.0039252.t002
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accuracy and a TPR of 48.9 %; for Cu2+– and Mg2+–binding

proteins, the threshold was 1.8, which yielded 94.9 % accuracy

and a TPR of 85.6 %, and 95.0 % accuracy and a TPR of

61.4 %, respectively; for Fe2+– and Mn2+–binding proteins, the

threshold was 1.0 for 94.9 % accuracy and a TPR of 85.4 %, and

94.6 % accuracy and a TPR of 37.0 %, respectively. The best

performance was obtained for Zn2+–binding proteins, for which a

threshold of 2.2 gave 94.8 % accuracy and a TPR of 71.1 %. The

performance of the predictions as a function of the threshold

values for six types of metal ion–binding proteins is shown as

receiver operating characteristic plot (TPR values vs. FPR values,

Fig. 7). The predictive performance was excellent for Cu2+– and

Fe3+–binding proteins and very good for Mn2+– and Zn2+–

binding, but less so for Mg2+– and Ca2+–binding proteins.

Comparison with published methods
We compared our results with those obtained using the artificial

neural network (ANN) method [30] and the geometric subgraph

method [18]. The same types of metal ion–binding sites were used

in the three studies, and the methods were each designed to

predict every residue within a metal ion–binding protein as a

binding or a non-binding residue. When the FPR was # 5 %, our

method was more accurate and had greater TPR values than did

the ANN method (Table 2). Given the similar accuracies (61 %),

the larger TPR values were especially noticeable for the Cu2+– and

Fe3+–binding proteins (TPR = 85.6 % and 85.4 % for our

method, and 36.2 % and 48.8 % for the ANN method, for the

two types of proteins, respectively). The TPR values for Mn2+ and

Zn2+ also dramatically improve–from 38.8 % to 61.4 % for Mn2+

Figure 8. Identification of Ca2+–binding sites. A. human cytosolic phospholipase A2 (PDB ID:1RLW) as the query protein. B. Template
constructed from chain A of synaptotagmin I C2B-domain (PDB ID:1K5W).
doi:10.1371/journal.pone.0039252.g008

Figure 9. Identification of Cu2+–binding sites. A. Chain A of plastocyanin from the cyanobacterium Phormidium laminosum (PDB ID:1BAW) as
the query protein. B. Template constructed from plastocyanin (PDB ID:1KCW).
doi:10.1371/journal.pone.0039252.g009

Identification of Metal Ion Sites in Proteins

PLoS ONE | www.plosone.org 8 June 2012 | Volume 7 | Issue 6 | e39252



and from 47.8 % to 71.1 % for Zn2+. The TPR for Ca2+ also

increased from 30.4 % to 48.9 %; however, the improvement was

much smaller for Mg2+, from 32.4 % to 37.0 %. The average

TPR for the six classes of proteins for our study was 60.5 %

(FPR# 5 %), which is an improvement compared with the results

obtained using the geometric subgraph method (TPR, 46.9 %;

FPR, 11.9 %).

Template matching
Figures 8,9,10,11,12,13 show examples of an alignment for each

type of metal ion–binding protein and the corresponding template.

The structures were drawn by PyMOL [31]. For human cytosolic

phospholipase A2 (PDB ID: 1RLW; Fig. 8) [32], which has two

Ca2+–binding sites, seven binding residues were found, all with

large normalized metal ion–binding scores. The template that best

Figure 10. Identification of Fe3+–binding sites. A. Desulfoferrodoxin (PDB ID:1DFX) as the query protein. B, C. Templates constructed from (B)
chain A of superoxide reductase (PDB ID:1DO6:A) and (C) chain A of rubrerythrin (PDB ID:1B71).
doi:10.1371/journal.pone.0039252.g010

Figure 11. Identification of Mg2+–binding sites. A. Chain A of human mitochondrial deoxyribonucleotidase (PDB ID:1MH9) as the query protein.
B. Template constructed from chain B of transglutaminase 3 (PDB ID:1NUG).
doi:10.1371/journal.pone.0039252.g011
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aligned with the Ca2+–binding sites in phospholipase A2 was the

chain A of synaptotagmin I C2B-domain (PDB ID:1K5W) [33]

(Fig. 8). The template for the Cu2+–binding protein, human

ceruloplasmin (PDB ID:1KCW) [34], almost perfectly aligned

with the Cu2+–binding site in the A chain of plastocyanin

(PDBID:1BAW) [35] (Fig. 9), although a few FP metal ion–

binding residues were also identified. The best predictive

performance was found for Fe3+–binding proteins. For desulfo-

ferrodoxin (PDB ID:1DFX) [36], two templates derived from two

different proteins, superoxide reductase chain A (PDB ID:1DO6)

[37] and rubrerythrin chain A(PDBID:1B71) [38], matched its two

binding sites, and the nine binding residues, plus an FP, were

identified (Fig. 10). Although the identification of Mg2+–binding

sites was not as successful, because many FPs were associated with

high scores, the Mg2+–binding site of human mitochondrial

deoxyribonucleotidase chain A (PDB ID:1MH9) [39] was found to

be similar to the template constructed from transglutaminase 3

chain B (PDB ID:1NUG) [40] (Fig. 11). In cytochrome b1 chain A

(PDB ID:1BFR) [41], two Mn2+–binding sites were in close

proximity and involved the same two glutamic acids (Fig. 12).

These binding sites were found using the template from

ribonucleotide reductase chain A (PDB ID:1KGP) [42], even

though a reorientation of the template was required during the

fragment transformation procedure. For Zn2+–binding proteins, a

near perfect match was found for chain A of the inhibitor of

apoptosis protein DIAP1 (PDB ID:1JD5) [43] and the template

from chain E of the baculoviral IAP repeat-containing protein 4,

BIR 2 (PDB ID:1I3O) [44] (Fig. 13).

Discussion

In this study, we developed and used a structure comparison

method to predict metal ion–binding sites in proteins. During

development, we combined conserved structure and sequence

information to identify metal ion–binding residues, which are

extremely important design elements as they substantially affect

the prediction. Our prediction method performed much better for

Cu2+, Fe, 3+ Mn2+, and Zn2+ than it did for Ca2+ and Mg2+,

possibly because there are fewer types of residues that bind the

transition metal ions compared with those that bind the alkaline

earth ions. Thus, the residues and structures of the Ca2+– and

Mg2+–binding sites may be less specific. In particular, we observed

that backbone carbonyl oxygens, rather side-chain oxygens,

frequently bind Ca2+ and Mg2+, which indicates that the type of

residue is less important–at least for an interaction involving a

carbonyl oxygen. Conversely, interactions between backbone

atoms and Cu2+, Fe3+, Mn2+, and Zn2+ are rare; instead, side-

chain atoms bind these ions; causing steric and chemical

limitations imposed by the particular side-chain. These two

factors, i.e., residue and atom–binding patterns, probably result

in smaller sequence alignment scores for the metal ion–binding

residues. As such, the final metal ion–binding scores for certain

residues may in fact be lower than the threshold value set for metal

ion–binding residues.

Our approach yielded excellent predictions for Cu2+– and Fe3+–

binding sites, and very good predictions for Zn2+– and Mn2+–

binding sites. Although the method gave poorer results for Ca2+–

and Mg2+–binding sites, it nonetheless performed better than did

Figure 12. Identification of Mn2+–binding sites. A. Chain A of cytochrome b1 (PDB ID:1BFR) as the query protein. B, C. Both templates
constructed from chain A of ribonucleotide reductase (PDB ID:1KGP) but oriented differently.
doi:10.1371/journal.pone.0039252.g012
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the geometric subgraph and ANN methods. Ultimately, for an

FPR threshold of 5 % our method achieved an overall 94.6 %

accuracy with a TPR of 60.5 %, which is a substantial

improvement over other prediction methods currently available.

Therefore, our method may find use as a predictor of putative

metal ion–binding proteins and their binding. The Linux binary

codes for our method are available upon request.
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