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Ischemic heart and cerebral diseases are complex clinical syndromes. Endothelial dysfunction caused by
dysfunctional endothelial progenitor cells (EPCs) is thought to play a major role in pathophysiology of both
types of disease. Healthy EPCs may be able to replace the dysfunctional endothelium through endogenous
repair mechanisms. EPC levels are changed in patients with ischemic cerebrovascular and cardiovascular
disease and EPCs may play a role in the pathophysiology of these diseases. EPCs are also a marker for
preventive and therapeutic interventions. Homing of EPCs to ischemic sites is a mechanism of ischemic
tissue repair, and molecules such as stromal-derived factor-1 and integrin may play a role in EPC homing
in ischemic disease. Potentiation of the function and numbers of EPCs as well as combining EPCs with
other pharmaceutical agents may improve the condition of ischemia patients. However, the precise role of
EPCs in ischemic heart and cerebral disease and their therapeutic potential still remain to be explored. Here,
we discuss the identification, mobilization, and clinical implications of EPCs in ischemic diseases.
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INTRODUCTION velop into functionally specialized cells. There is much
evidence that human peripheral blood contains bone
marrow-derived progenitor cells, which have the capac-Infarction or ischemia occurring in the brain or heart

is a common cause of clinical illness. Occlusion of ity to differentiate into mature endothelial cells, termed
endothelial progenitor cells (EPCs) (75). Certain surfaceblood flow from the supplying artery leads to ischemia,

oxygen deprivation, and associated cell injury to organs. membrane markers, including the endothelial marker
vascular endothelial growth factor receptor-2 (VEGFR-The consequences of ischemia depend on the tissue area

involved in the occlusion, the presence of collateral cir- 2) and the hematopoietic progenitor cell markers CD34
and CD133, are expressed on the surface of EPCs afterculation, and the vulnerability of a given tissue to hy-

poxia (19). Neurons and myocardial cells undergo irre- vascular trauma (8,30,45). EPCs have the potential to
form into new blood vessels (postnatal vasculogenesis)versible damage when deprived of blood supply, and

persistent ischemia causes irreversible tissue injury and to repair ischemic injury (8,52,87). This process con-
trasts with the sprouting of new vessels from existingnecrosis. Cell necrosis triggers an inflammatory response

and a degradation of the extracellular matrix. However, ones in the area (angiogenesis) to relieve ischemia. Vas-
culogenesis and angiogenesis are different in many as-the high number of cells with the capacity for prolifera-

tion and regeneration in highly differentiated organs, pects. Vasculogenesis begins from the assembling of
EPCs and formation of a primary vascular plexus (36).such as the brain and the heart, means that there is po-

tential for self-renewal in these organs (19). In angiogenesis, new vessels are produced from preex-
isting vessels during which endothelial cells replicate,Stem cells have the capacity to self-renew and de-
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sprout, and make new lumen (37). In angiogenesis, peri- express CD133 and c-kit (CD117), whereas CESs do
not. HSCs express CD38, but generally do not expresscyte detachment is the first step to form the new vessels.

Endothelial cell replication and degradation of surround- VE-Cadherin or fibroblast growth factor receptor
(FGFR), in contrast to EPCs, which express all three.ing extracellular matrix happen thereafter. Many mole-

cules act as mitogens of endothelial cells, such as vascu- Burger and colleagues proposed the following pheno-
type for EPCs: CD34+FGFR+CD38+VE-Cadherin+c-lar endothelial growth factor (VEGF), basic fibroblast

growth factor (bFGF), and many other proteins whose kit+CD31+ KDR+CD133+, which is generally compatible
with the definitions of several other investigatorssecretion is induced by ischemia (37,38).

EPCs can migrate to the site of blood vessel injury (17,67,119). If necessary, distinction between EPCs and
CECs can be made by expression of CD146 on CECsto help repair the damage and differentiate into mature

endothelial cells (50,83). Restoration of the endothelial and by CD133 on EPCs (90). Activated CECs may be
distinguished by expression of CD105 (endoglin), thelining and maintenance of vascular homeostasis are two

of the main functions of EPCs, but EPCs also promote receptor for transforming growth factor-β1, which is a
recognized regulator of angiogenesis. Currently, it is ac-vascular growth by releasing factors that act in a para-

crine manner to support local angiogenesis and mobilize ceptable to measure the number of circulating EPCs by
flow cytometry using the markers CD34, VEGFR-2, andtissue-residing progenitor cells (39,76,99). Therefore,

EPCs may restore dysfunctional endothelium by an en- CD133. However, the functional and clonogenic capac-
ity of EPCs need to be evaluated using colony-formingdogenous repair mechanism.

In this article, we summarize the current concepts in unit assays (111). A summary of the different markers
to differentiate EPCs (early and late), CECs, and HSCsthe biology of EPCs, focusing on their role in ischemic

cerebral and cardiovascular disease and their clinical im- is provided in Table 1.
plications.

ENDOTHELIAL PROGENITOR
CELL MOBILIZATIONIDENTIFYING ENDOTHELIAL

PROGENITOR CELLS Accumulating evidence suggests the existence of a
common precursor cell for both blood and endothelialEPCs have several origins such as bone marrow

(BM), peripheral blood, and tissue-derived stem cells cells in adult life. This precursor might be the adult
equivalent of the hemangioblast that has been identified(15,71,77) and are characterized by the expression of

cell surface markers CD34, CD133, and VEGFR-2 in embryonic development (21,69,96). Additionally, a
population of primitive cells has been described with an(KDR/Flk-1) (6,42). Additionally, two types of EPCs

(early and late) have been identified sequentially from even larger multipotent differentiation potential: the
multipotent adult progenitor cells (MAPCs). These cellsthe same donors during the culture of total mononuclear

cells from human peripheral blood (43). Therefore, are able to differentiate into mesenchymal cells, and into
EPCs have heterogenous cell populations of various ori-
gins and different phenotypes that have the ability to

Table 1. Characterization of Circulating Endothelial Cellsdifferentiate into functionally competent endothelial
(CECs), Endothelial Progenitor Ccells (EPCs),cells. EPCs also have the ability to transdifferentiate:
and Hematopoietic Stem Cells (HSCs)Badorff and colleagues found that when EPCs from

healthy volunteers and coronary artery disease (CAD) Cell Types Markers Origins
patients were cocultured with rat cardiomyocytes, they

CECs CD34, KDR, CD146, Mature endo-transdifferentiated in vitro into functional, active cardio-
VE-cadherin, TM, theliummyocytes. They concluded that cell-to-cell contact, but
vWFnot cellular fusion, mediates EPC transdifferentiation (11).

Early EPCs CD133, CD34, KDR, Bone marrow, pe-The identification, isolation, and purification of EPCs
CD31, VE-cadherin, ripheral blood,is troublesome because EPCs have the same surface
CD117, CD38, FGFR vascular paren-

markers as hematopoietic stem cells (HSCs), which chyma
hampers the interpretation of research and comparisons Late EPCs CD34, KDR, CD105, Early EPCs
between studies (42). More specific endothelial markers VE-cadherin, vWF,
and validated functional assays are needed to confirm CD146, CD31
the characteristics of isolated endothelial cells. Cur- HSCs CD34, KDR, CD133, Bone marrow

CD117rently, EPCs and circulating endothelial cells (CECs) are
mostly defined by the expression of CD34 and VEGFR-

KDR: kinase-inserted domain containing receptor (VEGFR-2); TM:
2 (KDR/Flk-1), although the CD34+KDR+ fraction is thrombomodulin; vWF: von Willebrand factor; FGFR: fibroblast

growth factor receptor.also expressed by HSCs (119). HSCs and EPCs both
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cells with neuroectoderm, endoderm, and visceral meso- states, perhaps using small molecules. EPCs express a
wide variety of receptors that may enable them to re-derm characteristics (i.e., endothelial cells) in vitro.

These MAPCs, identified in long-term culture of human spond to many chemotactic signals that emanate from
brain pathologies. Chemokine and cytokine productionadherent bone marrow cells, confirm the existence of

primitive cells in adult life (78,105). Currently, HSCs is a common feature of many brain lesions, including
stroke, which suggests that these factors could be impor-and EPCs for transplantation purposes are generally

acquired from mobilized peripheral blood, not bone tant in mediating the responses of stem cells to injuries.
Recent studies have demonstrated that integrin-mediatedmarrow.

Several growth factors, cytokines, and chemokines adhesion and transmigration are involved in the homing
of transplanted EPCs to bone marrow (66), as well ashave been found to mediate mobilization of EPCs. In

both animal and human studies, stimulation by the the recruitment of EPCs to sites of angiogenesis (102).
growth factors VEGF, stromal derived factor-1 (SDF-1),

Stromal Cell-Derived Factor-1 (SDF-1) and CXCgranulocyte colony-stimulating factor (G-CSF), granulo-
Chemokine Receptor-4 (CXCR-4)cyte macrophage colony-stimulating factor (GM-CSF),

erythropoietin (EPO), angiopoetin-2, fibroblast growth Mutual, reciprocal SDF-1/CXCR4 interactions be-
tween HSCs, EPCs, and bone marrow stromal cells reg-factor, placental growth factor (PlGF), platelet-derived

growth factor-CC, stem cell factor (SCF), interleukin ulate human stem cell migration and development, as
reviewed comprehensively by Dar and coworkers (23).(IL)-2, IL-3, IL-6, IL-8, and IL-1β, which are all known

to mobilize HSCs, have also been shown to result in an The chemokine SDF-1 (also known as CXCL12) and its
receptor CXCR4 are reported to be involved in regula-increased number of EPCs (4,42,59). This conformity

between the EPC and the HSC response might reflect tion of migration, survival, and development of multiple
cell types, including HSCs, EPCs, and stromal stem cellsthe common origin of these cells (i.e., hemangioblast),

or a common physiological mechanism for the mobiliza- (54). During steady-state homeostasis, CXCR4 is ex-
pressed by hematopoietic cells and also by stromal cells,tion of progenitor cells from bone marrow. HSCs and

EPCs may show concomitant mobilization due to the which are the main source for SDF-1 in the BM. Stress
will increase SDF-1 and CXCR4 levels, which stimulatephysiological need of synergistic interactions between

these cells in the processes of angiogenesis and vasculo- recruitment of immature and maturing leukocytes from
the BM reservoir to damaged organs as part of host de-genesis (42). In this respect, it is thought that VEGF-

A, PlGF, and SDF-1, released by blood platelets and fense and repair mechanisms (1,49). Additionally, traf-
ficking of SDF-1 is mediated by CXCR4, expressed bymonocytes, activate metalloproteinase-9 (MMP-9), which

mediates a joint mobilization of HSCs, EPCs, and other endothelial and various stromal cell types in the BM,
but not by hematopoietic cells (23). Transcytosis ofcell types. The interactions between these cells and

EPCs, which may contribute to the revascularization functional SDF-1 to the BM also occurs in the stem cell-
rich endothelium and endosteum regions, regulatingprocess, are illustrated in Figure 1. Endothelial nitric ox-

ide synthase (eNOS) activity has also been suggested to HSCs, EPCs, and stromal interactions in the stem cell
niche. Dynamic expression of SDF-1 and CXCR4 in-account for the mobilization of EPCs in response to in-

jury (56). Impaired mobilization of EPCs from bone duces proliferation of HSCs, EPCs, and mesenchymal
progenitors, recruitment of osteoclasts, osteoblasts, neu-marrow was observed in eNOS knockout mice (3). In-

creased NO availability is required for statin-induced trophils, and other myeloid cells, leading to leukocyte
mobilization (23). In one study, the role of a recipient’smobilization of EPCs (53). EPC mobilization was also

inhibited by C-reactive protein (CRP), which interferes EPCs in the repair process was studied using wild-type
donor female heart transplanted into male rat abdominalwith NO production (106). NO produced by eNOS also

interacted with SDF-1 and the CXCR4 signaling path- cavity (109). Induced male EPCs migrated into the car-
diac allograft and SDF-1 mRNA levels increased signifi-way to induce mobilization and homing of EPCs (116).
cantly. CXCR4 was also strongly expressed. The authors

ENDOTHELIAL PROGENITOR CELL HOMING concluded CXCR4 overexpression enhances vasculari-
zation in the damaged myocardium, and that the SDF-Progenitor cells such as EPCs are highly migratory

and seem to be attracted to injured brain areas such as 1/CXCR4 axis is important in EPC chemotaxis, homing,
engraftment, and retention in damaged myocardium (109).ischemic regions (2,20). While stem cell homing to bone

marrow has been widely studied (64), the molecular ba- The correlation between platelets and EPC homing
has also been discussed. Platelets induce differentiationsis of stem cell pathotropism is not well understood.

Further identification of the mechanisms involved would of HSCs or EPCs into foam cells and endothelial cells
(24). Platelets could be involved in progenitor cell re-pave the way for the development of treatments to en-

hance endogenous mobilization of stem cells in disease cruitment and differentiation via specific adhesion re-
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Figure 1. The mechanism of mobilization of endothelial progenitor cells (EPCs) by various stim-
uli. ECs: endothelial cells, HSCs: hematopoietic stem cells, eNOS: endothelial nitric oxide syn-
thase, EPO: eryothropoietin, G-CSF: granulocyte colony-stimulating factor, HGF: hepatocyte
growth factor, IL-8: interleukin-8, sKitL: soluble Kit ligand, MMP-9: matrix metalloproteinase-9,
SDF-1: stromal cell-derived factor-1, VEGF: vascular endothelial growth factor, VEGFR: vascular
endothelial growth factor receptor.

ceptors such as P-selectin/P-selectin glycoprotein li- veal that β1-integrin is necessary for neuroplasticity
after intracerebral stem cell transplantation, possiblygand-1 (PSGL-1) and integrins. This interaction may be

the central mechanism for homing of EPCs to vascular through the enhanced angiogenesis by homing of stem
cells to ischemic sites (89).injury sites (24,57). Sphingosine-1-phosphate (S1P) can

also influence migration and proliferation of EPCs β2-Integrins also mediate the adhesion and transmi-
gration of EPCs as well as hemopoietic stem/progenitorthrough the S1P receptor and supports SDF-1-induced

migration and BM homing of CD34+ progenitor cells cells in vitro (18,68). β2-Integrins are involved in the
homing of hematopoietic progenitor cells to sites of is-(108).
chemia and are critical for their neovascularization ca-

Integrins pacity in vivo (18). Preactivation of β2-integrins on
adult EPCs has been shown to significantly augment theIntegrins are heterodimeric transmembrane molecules

consisting of α and β subunits that mediate cell adhesion in vivo neovascularization capacity of EPCs, whereas
β2−/− animals display a neovascularization defect in aand migration (22). Homing of progenitor cells such as

EPCs to BM or ischemic tissue may follow the paradigm model of hindlimb ischemia (18).
Whether β2- and β1-integrins play the same cellularof mature leukocytes migrating to inflammatory tissue

(61). We have shown that peripheral blood stem cell role or whether different cell types use distinct mecha-
nisms for homing remains to be determined. Further(PBSC) intracerebral transplantation can significantly

improve neurological function following chronic cere- studies are still needed to elucidate whether there is a
synergism between other adhesion molecules and theirbral ischemia in rats, accompanied by increased local

cortical cerebral blood flow and β1-integrin expression counterligands in the multistep recruitment of EPCs to
ischemic tissue (62). Modulation of these integrins mayin the ischemic hemisphere (89). The neurological im-

provement in this study was blocked by β1-integrin in- provide novel opportunities for treating cerebral and car-
diac ischemic disease.hibitor (synthetic RDG peptide) (89). These results re-
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ENDOTHELIAL PROGENITOR CELLS Transplantation of EPCs with autologous harvesting
eliminates immunorejection; however, mobilization andIN MYOCARDIAL INFARCTION
supply remain problems (6). Therefore, use of cytokines
to increase maturation and migration of endogenousMyocardial ischemia and the cellular events that en-

sue may ultimately result in cardiomyocyte death and EPCs has been investigated. VEGF levels rise in con-
junction with increased levels of circulating endotheliala reduction in cardiac performance (65). The vascular

endothelium provides a one-cell-thick barrier for the progenitor cells after myocardial infarction (73). G-CSF
injection therapy induced growth and migration of endo-blood vessels of the body and endothelial breakdown

has been implicated in many disease processes, such as thelial progenitor cells from the bone marrow, and sub-
sequent neovascularization of the ischemic tissue (44,atherosclerosis (81). Circulating endothelial progenitor

cells contribute to blood vessel formation at ischemic 86,94). Studies in rat models showed that G-CSF could
recruit endothelial progenitor cells to sites of myocardialsites and are released into circulation after myocardial

infarction (7,33,94). The relation between EPCs and is- ischemia, improve ventricular function, and promote
neovascularization (47). Several studies suggest that NOchemic heart disease is illustrated in Figure 2. A signifi-

cant correlation between endothelial function and the production from eNOS is reduced in ischemic heart dis-
ease (84,98,116). Nitric oxide is essential for EPC-number of endothelial progenitor cells was found in

healthy volunteers, which reflects an increased endothe- induced neovascularization (3,34).
Oxidative stress also plays roles in the initiation andlial turnover by the proliferation and differentiated of

EPCs into endothelial cells after endothelial injury (41). progression of cardiovascular dysfunction associated
with ischemic heart disease (115). Reactive oxygen spe-Endothelial dysfunction and cardiovascular disease have

also been shown to be inversely correlated to levels of cies produced by xanthine oxidase, nicotinamide ade-
nine dinucleotide phosphate (NADPH) oxidase, and mi-circulating endothelial progenitor cells (41). Intravenous

injection of human endothelial progenitor cells into rats tochondrial enzymes have been proposed to impair
endothelial function by scavenging NO and yielding per-following left anterior descending coronary artery liga-

tion resulted in improved ventricular function, and endo- oxynitrite in patients with ischemic heart disease (115).
EPCs also have a higher expression of antioxidative en-thelial progenitor cell accumulation in areas of infarction

and in foci of neovascularization (46). Additionally, en- zymes, which enable them to resist oxidative stress (25).
Inflammatory stimuli may also induce a rapid releasedothelial progenitor cells have shown a higher expres-

sion of antioxidative enzymes, such as catalase, glutathi- of EPCs into the circulation in humans (74,114). IL-1β,
IL-6, and TNF-α were elevated in heart failure causedone peroxidase, and manganese superoxide dismutase,

which allow for increased protection against oxidative by coronary artery disease and hypertension (97). IL-1β
is also able to mobilize EPCs and promote neovasculari-stress (25).

Figure 2. Relation between endothelial progenitor cells (EPCs) and ischemic heart and cerebral
disease. CRP: C-reactive protein, eNOS: endothelial nitric oxide synthase, IL-1β: interleukin-1β,
NO: nitric oxide, SDF-1: stromal cell-derived factor-1, TNF-α: tumor necrosis factor-α, VEGF:
vascular endothelial growth factor, GM-CSF: granulocyte macrophage colony-stimulating factor.
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zation through a VEGF-dependent pathway (5). Ele- stroke and peaked after 7 days. Ghani and colleagues
also reported a reduction in EPCs in patients with cereb-vated levels of CRP have been associated with endothe-

lial dysfunction in the form of inappropriate vascular rovascular disease, when compared with healthy control
subjects (32). They recruited 88 people who were di-constriction or relaxation, which contribute to the pro-

gression and adverse prognosis of myocardial infarction vided into acute stroke, stable ischemic cerebrovascular
disease, and control groups. EPC colony counts in each(28,82,92). Human recombinant CRP, at concentrations

known to predict adverse vascular outcomes, directly in- well of culture dishes differed significantly between the
acute stroke (4.75), stable disease (7.25), and controlhibits EPC differentiation, survival, and function, ex-

pression of the key components of angiogenesis, and the groups (15.5). The level of EPCs also significantly cor-
related with the Framingham coronary risk score (p =response of EPCs to chronic ischemia and additionally

induced EPC apoptosis in vitro (106). This occurs in 0.002). They concluded that the low EPC levels may
play a role in the pathophysiology of cerebrovascularpart via CRP reducing EPC eNOS expression.

Therapeutically, the reduction of EPC number and disease. In our previous study, we also demonstrated
that intracerebral injection of peripheral blood stem cellsthe decreased functional activity of EPCs in patients

with coronary artery disease were improved by 3-hydroxy- (CD34+) can enhance angiogenesis via β1-integrin in
chronic stroke rats (89). In this study, CD34+ cells dif-3-methylglutaryl coenzymeA (HMG-CoA) reductase in-

hibitors (statins), VEGF, erythropoietin (EPO), estrogen, ferentiated into glial cells, neurons, and vascular endo-
thelial cells. At the site of CD34+ cell injection, the ex-and exercise (9,26,40,56,91,94). HMG-CoA reductase

inhibitors increased the number and functional activity pression of neurotrophic factors was increased. Finally,
the behavior of stroke animals injected with CD34+ cellsof EPCs in vitro, in mice, and in patients with stable

coronary artery disease (26,59,105). Statin therapy also improved faster than those of control animals.
Because stroke is well known to be associated withaccelerated reendothelialization after balloon injury by

improving mobilization and incorporation of bone mar- endothelial abnormalities, it is reasonable to speculate
that CECs are also increased in patients with this condi-row-derived EPCs (107,112). Regulation of EPC num-

ber and function was also affected by the lipid-lowering tion, and that CEC levels correlate with other indices
of endothelial dysfunction. There have been two studieseffect of statin therapy. Statins also increased the expres-

sion and activity of eNOS, contributing to increased mo- investigating CEC quantification in stroke. Freestone
and coworkers (29) looked at patients with atrial fibrilla-bilization and functional activity of EPCs (55). Several

studies have shown that the prosurvival phosphatidyl- tion (AF) and stroke as part of a broader study of CECs
in AF. They found higher levels of CECs in patientsinositol-3-kinase (PI3K)/Akt pathway may play an im-

portant role in endothelial cells and EPCs (10,51). Thus, with concurrent AF and a history of stroke than in
healthy controls with normal sinus rhythm, and thatstatins, VEGF, EPO, estrogen, and exercise (shear

stress) are well known to augment the PI3K/Akt-path- CECs correlated with von Willebrand factor (vWF). Na-
dar and colleagues (63) studied 29 patients presentingway (101). Based on the finding that eNOS is essential

for mobilization of bone marrow-derived stem and pro- with stroke and hypertension (but no AF), and compared
them with 30 high-risk hypertensive patients and 30 nor-genitor cells (3), these stimuli may increase progenitor

cell mobilization by PI3K/Akt-dependent activation of motensive controls. Compared with the other two groups,
the patients with acute ischemic stroke had significantlythe NOS within the bone marrow stromal cells (101).
higher numbers of CECs per milliliter in venous blood

ENDOTHELIAL PROGENITOR and higher levels of vWF and soluble E-selectin. In ad-
CELLS IN STROKE dition, the numbers of CECs correlated with both vWF

and soluble E-selectin (16).Acute ischemic stroke caused by occlusion of a cere-
bral artery leads to sudden interruption of blood flow to Angiogenesis also occurs in stroke conditions. As is-

chemic tissue usually depends on collateral blood flowparts of the brain, resulting in loss of neurons, astro-
cytes, and oligodendrocytes. Despite advances in medi- from newly produced vessels, acceleration of angiogen-

esis should be of therapeutic value to ischemic disorders.cal and surgical treatment, stroke is still a leading cause
of death and disability worldwide (103), and only a mi- Indeed, therapeutic induction of angiogenesis reduced

tissue injury in myocardial and limb ischemia (12,95).nority of patients can be rescued by systemic thrombo-
lytic therapy. A growing amount of data suggests that In ischemic stroke, on the other hand, angiogenic factors

often increase vascular permeability and thus may dete-EPCs are relevant to vascular homeostasis (41,100). Ta-
guchi and coworkers reported that CD34+ cells and riorate tissue damage (60). In order to safely apply ther-

apeutic angiogenesis for ischemic stroke treatment, elu-CD133+ cells, as an EPC-enriched population, provided
a marker of cerebrovascular function (93). They demon- cidating its precise mechanism is mandatory (37).

Upregulation and increased phosphorylation of eNOSstrated that circulating EPCs increased after the onset of
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improves endothelium- dependent vasodilation (35,48). tion with proangiogenic cytokines (4,58). In addition,
statins have been demonstrated to augment EPC numberClinical and experimental evidence suggests that brain

ischemia promotes the formation of new vessels (110). and function (26), and other factors that affect the func-
tion of EPCs (e.g., angiotensin II, glucose, and low-In general, neovascularization can take the from of angi-

ogenesis, arteriogenesis, or postnatal vasculogenesis me- density lipoprotein) are potential drug targets (6). As
EPCs have also been shown to play an important role indiated by mobilization of stem and progenitor cells (80).

EPCs may promote vascular repair, neovascularization, endothelial cell regeneration, they may also be of benefit
in a range of other vascular disorders.and improve endothelial function (56,94). However, the

functional role of EPCs in the formation of vessels, cere-
Future Research on EPC Mobilizationbral blood flow (CBF), and tissue recovery in the ische-

mic brain remain to be elucidated (3,14,72,118). Re- Long-term clinical studies examining drug-mediated
cently, increased EPCs and enhanced neovascularization mobilization and functional modification of endogenous
through an eNOS-dependant pathway was reported EPCs are not available. One focus of future research
(31,56). Tissue ischemia-induced eNOS activity is also should be the elucidation of the molecular pathways reg-
critical for ischemic remodeling and for mobilization of ulating EPC levels and the function and genetic modifi-
stem and progenitor cells, and even upregulates neuro- cation of EPCs leading to improved functional capacity.
genesis in the brain (3,56,117). Several studies have also The development of pharmacological and genetic strate-
found that eNOS improved angiogenesis and cerebral gies for targeting EPCs will be necessary in the future (6).
blood flow in ischemic stroke animals (31,79,88).

CONCLUSION
CLINICAL IMPLICATIONS Endothelial dysfunction, neurohumoral activation, in-
AND FUTURE PROSPECTS flammation, and increased oxidative stress may play a

EPCs as a Marker of Disease Prognosis and Severity role in the pathophysiology of ischemic heart and cere-
bral disease. The mechanism of mobilization and hom-A lot of evidence shows that EPCs may be a valuable
ing of EPCs is a complex process. EPCs could be a po-tool for clinical health providers. EPC number and func-
tential pharmaceutical target. Future studies shouldtion correlates with the risk of cardiovascular and cereb-
explore the role of EPCs in ischemic heart and cerebralrovascular disease (32,41) and EPCs play a role in the
disease along with their potential therapeutic roles.process of vasuloprotection (26); EPCs can be used as a
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