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Abstract 

Background 

Complex human diseases may be associated with many gene interactions. Gene interactions 

take several different forms and it is difficult to identify all of the interactions that are 

potentially associated with human diseases. One approach that may fill this knowledge gap is 

to infer previously unknown gene interactions via identification of non-physical linkages 

between different mutations (or single nucleotide polymorphisms, SNPs) to avoid hitchhiking 

effect or lack of recombination. Strong non-physical SNP linkages are considered to be an 

indication of biological (gene) interactions. These interactions can be physical protein 

interactions, regulatory interactions, functional compensation/antagonization or many other 

forms of interactions. Previous studies have shown that mutations in different genes can be 



linked to the same disorders. Therefore, non-physical SNP linkages, coupled with knowledge 

of SNP-disease associations may shed more light on the role of gene interactions in human 

disorders. A user-friendly web resource that integrates information about non-physical SNP 

linkages, gene annotations, SNP information, and SNP-disease associations may thus be a 

good reference for biomedical research. 

Findings 

Here we extracted the SNPs located within the promoter or exonic regions of protein-coding 

genes from the HapMap database to construct a database named the Linkage-Disequilibrium-

based Gene Interaction database (LDGIdb). The database stores 646,203 potential human 

gene interactions, which are potential interactions inferred from SNP pairs that are subject to 

long-range strong linkage disequilibrium (LD), or non-physical linkages. To minimize the 

possibility of hitchhiking, SNP pairs inferred to be non-physically linked were required to be 

located in different chromosomes or in different LD blocks of the same chromosomes. 

According to the genomic locations of the involved SNPs (i.e., promoter, untranslated region 

(UTR) and coding region (CDS)), the SNP linkages inferred were categorized into promoter-

promoter, promoter-UTR, promoter-CDS, CDS-CDS, CDS-UTR and UTR-UTR linkages. 

For the CDS-related linkages, the coding SNPs were further classified into nonsynonymous 

and synonymous variations, which represent potential gene interactions at the protein and 

RNA level, respectively. The LDGIdb also incorporates human disease-association databases 

such as Genome-Wide Association Studies (GWAS) and Online Mendelian Inheritance in 

Man (OMIM), so that the user can search for potential disease-associated SNP linkages. The 

inferred SNP linkages are also classified in the context of population stratification to provide 

a resource for investigating potential population-specific gene interactions. 

Conclusion 

The LDGIdb is a user-friendly resource that integrates non-physical SNP linkages and SNP-

disease associations for studies of gene interactions in human diseases. With the help of the 

LDGIdb, it is plausible to infer population-specific SNP linkages for more focused studies, an 

avenue that is potentially important for pharmacogenetics. Moreover, by referring to disease-

association information such as the GWAS data, the LDGIdb may help identify previously 

uncharacterized disease-associated gene interactions and potentially lead to new discoveries 

in studies of human diseases. 

Background 

Gene interactions are usually inferred from biological interactions such as protein-protein 

interactions (PPIs) [1-3], co-expression of genes [4,5], co-localization of proteins [6,7], co-

evolution of proteins [8,9], and shared gene-phenotype associations [10]. Gene interactions 

that are implicated in human disorders are of particular interest [11]. Recently, it has been 

proposed that the associations between mutations and human disorders can be evaluated at 

the systems level [11-13]. This concept is based on observations that mutations in different 

genes can be linked to the same disorders, and that multiple mutations in the same genes can 

be associated with different diseases [11]. In other words, a human disorder may be the 

outcome of a molecular system where mutations in different genes are interconnected via a 

variety of gene interactions. Single nucleotide polymorphisms (SNPs) are frequently 

associated with human phenotypes, and SNPs in different genes that are strongly correlated 



with each other may be important for gene interactions. Therefore, exploring the linkages 

between SNPs may offer new insights into the biological interactions in the human molecular 

system. A database that stores information about non-physical SNP linkages and possible 

SNP-disease associations may be helpful for exploring the role of gene interactions in human 

disorders. 

Here we infer potential gene interactions on the basis of long-range linkage disequilibrium 

(LRLD) between SNPs. We term these potential interactions “linkage disequilibrium-based 

gene interactions” (LDGIs), where two genes are considered to be connected if the SNPs 

located in these two genes are subject to strong linkage disequilibrium (LD; usually measured 

by r
2
 or D′ [14]). Theoretically, LD should be observed between SNPs that are physically 

close to each other owing to the hitchhiking effect or lack of recombination [15]. In this 

study, however, we consider only the SNP pairs (designated as LRLD-SNP pairs) that are 

subject to strong LD (r
2
 ≥ 0.8) but are located in different LD blocks (or different 

chromosomes) to minimize the possibilities of accidentally linked SNPs or physical linkage, 

and thus increase the probability that the associations between the LRLD-linked SNPs/genes 

are functionally meaningful. To facilitate research based on these inferred SNP linkages (and 

potential gene interactions), we constructed a user-friendly database, the LDGIdb, to store the 

information. The LDGIdb also contains information about disease-associated SNPs/genes, 

such as the associations identified in genome-wide association studies (GWAS) [16] and 

those recorded in Online Mendelian Inheritance in Man (OMIM) database [17]. Users can 

thus search for LDGIs that involve disease-associated SNPs/genes, and identify potentially 

uncharacterized disease-associated gene interactions for further studies. 

Findings 

Construction of LDGIs 

The data analysis workflow is shown in Figure 1. We first extracted human haplotypes from 

the HapMap Phase II and III data [18], which were generated using the PHASE software 

[19]. Only the SNPs that are located within the promoter or exonic regions of protein-coding 

genes (with reference to the Ensembl annotations [20]) were considered. Note that the 

promoter regions encompass 2 kb sequences upstream of the transcriptional start sites, and 

exonic regions include coding regions (CDSs) and untranslated regions (UTRs). In view of 

population stratification, we clustered the individuals examined in the HapMap Phase II and 

III projects into subpopulations using the PLINK package (version 1.07) [21] (Table 1). Here 

we consider only the subpopulations that contain at least 20 individuals. For each 

subpopulation, we calculated LD scores (i.e., r
2
 and D′ [14]) for all combinations of SNP 

pairs. Two SNPs were considered to be a long-range LD-linked SNP pair (designated as an 

“LRLD-SNP pair”) if they satisfied both of the following criteria: (1) to avoid the inclusion 

of accidentally linked SNPs, an LRLD-SNP pair had to be subject to a strong LD (r
2
 ≥ 0.8); 

(2) to minimize the probability of hitchhiking or lack of recombination, the two SNPs had to 

be located in different chromosomes or be separated by at least one recombination hotspot 

retrieved from the International HapMap Project. The latter criterion may considerably 

decrease the probability that the identified LRLD-SNP pairs belong to the same “LD blocks” 

(or “haplotype blocks”, which represent regions where recombination events occur rarely, 

and consequently LD is maintained) even if they are located in the same chromosomes. 

Accordingly, we identified 801,340 LRLD-SNP pairs, which contained 94,876 SNPs (Table 

1). Genes connected by these LRLD-SNP pairs were considered human LD-based gene 



interactions (LDGIs). The LDGIdb is composed of a collective total of about 646,203 gene 

linkages, which contain 21,240 genes (Table 1). Since population stratification was also 

considered, the LDGIdb also provides potential population-specific gene interactions, which 

may be useful for investigations of population-specific traits/diseases. 

Figure 1 Process of identification of LRLD-SNP pairs and LDGIs 

Table 1 Identified LRLD-SNP pairs and LDGIs (with r
2
≥0.8) 

Population # 

Individuals 

#LRLD-SNP pairs #Affected SNPs # LDGIs # Affected genes 

PLINK (P < 0.01)      

Phase II      

  CEU 30 66343 44756 23425 14444 

Phase III      

  CEU cluster 1 27 34940 28817 18569 11644 

  CEU cluster 2 40 30353 28082 15333 11308 

  CHD cluster 1 22 44513 29109 24675 11934 

  CHD cluster 2 31 30981 27563 15425 11161 

  JPT + CHB cluster 1 28 34672 28024 18212 11401 

  JPT + CHB cluster 2 22 48626 29360 29751 12014 

  LWK 23 42305 23398 35808 10545 

  MKK cluster 1 28 28924 22740 21185 10056 

  MKK cluster 2 24 54795 25086 47884 11203 

  MKK cluster 3 21 98150 27043 89007 11952 

  MKK cluster 4 22 63718 25598 53623 11465 

  YRI cluster 1 29 19116 20874 13011 9246 

  YRI cluster 2 28 22127 21138 16279 9390 

PLINK (P < 0.001)      

Phase II      

  CEU 48 61699 43945 21112 14181 

  JPT + CHB 20 117251 44754 61435 14792 

  YRI cluster 1 22 86494 38786 65698 13775 

  YRI cluster 2 21 98239 39389 75825 13950 

Phase III      

  ASW 25 18880 21631 11922 9432 

  CEU cluster 1 62 29924 27834 14997 11208 

  CEU cluster 2 41 30586 27967 15302 11269 

  CHD cluster 1 33 31456 27684 15283 11224 

  CHD cluster 2 21 31931 27598 15821 11215 

  CHI cluster 1 23 48723 30147 29355 12304 

  CHI cluster 2 21 56926 30705 37185 12543 

  JPT+CHB cluster 1 28 34509 28021 19004 11404 

  JPT+CHB cluster 2 30 33894 28111 17153 11424 

  JPT+CHB cluster 3 27 36917 28193 19958 11495 

  JPT+CHB cluster 4 23 44475 29077 25505 11928 

  JPT+CHB cluster 5 61 32011 27861 15491 11229 



  LWK cluster 1 21 61580 24684 54472 11194 

  LWK cluster 2 33 15850 19800 10436 8729 

  MEX 25 36330 29249 22032 11998 

  MKK cluster 1 41 17272 20819 10688 8997 

  MKK cluster 2 26 30057 22480 24739 10124 

  MKK cluster 3 25 52057 25081 44570 11104 

  MKK cluster 4 27 36459 23314 28450 10368 

  MKK cluster 5 24 41993 24359 33284 10779 

  TSI cluster 1 32 31021 28490 16191 11517 

  TSI cluster 2 30 32289 28501 16722 11535 

  YRI cluster 1 31 18261 20636 12029 9185 

  YRI cluster 2 37 15825 19577 9889 8602 

  YRI cluster 3 22 45628 23996 39632 10846 

Sum  801340 94876 646203 21240 

Calculation of r2 and D′ values 

Let PA and PB be the major allele frequencies at SNP1 and SNP2, respectively. Define Pa and 

Pb as the minor allele frequencies at SNP1 and SNP2, respectively. Let PAB be the haplotype 

frequency of observing both A and B alleles at these two loci. Define D = PAB - PA PB. The 

LD scores, r
2
 and D′ [14], between SNP1 and SNP2 can be computed by 
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Data retrieval 

HapMap Phase II (release 22) and III (release 2) haplotype data and the corresponding 

recombination hotspot information were retrieved from the International HapMap Project 

[22]. The human protein-coding genes were downloaded from the Ensembl genome browser 

(release 53). The human PPI data (designated as “collected PPIs” in the LDGIdb) were 

collected from seven experiment-supported PPI databases: HPRD [23], DIP [24], MINT [25], 

IntAct [26], REACTOME [27], BioGRID [28], and MIPS [29]. The extracted PPI collection 

included a total of 76,955 interactions. The CRG (Centre for Genomic Regulation) human 

interactomes (designated as “CRG PPIs” in the LDGIdb) were downloaded from Bossi and 

Lehners’ study [30], which comprised 80,922 interactions. Human gene co-expression data 

were downloaded from the TMM database [4], which contained 203,043 high-confidence co-

expression links that were observed in at least three microarray data sets. The biological 

interactions inferred from the above databases (i.e., collected PPIs, CRG PPIs, and co-

expression links) were integrated into the LDGIdb for comparison with LDGIs. If an LDGI 

was not found in any of the databases, it was considered to be a potentially uncharacterized 

gene interaction. The GWAS [16] data were downloaded on August 23rd, 2011 [31]. For 

LRLD-linked genes, more detailed information was provided including protein domain 

descriptions (according to Interpro [32], SMART, and PFAM), KEGG pathways [33], and 



disease association information (OMIM, HIV interaction, and the Genetic Association 

Database [34]), which were all downloaded from the DAVID knowledgebase [35]. 

Web interface 

Users can search for LRLD-SNP pairs and LDGIs (which are linked by LRLD-SNP pairs) by 

setting three adjustable parameters: HapMap data source (Phase II or III), P value for PLINK 

population clustering (P < 0.01 or P < 0.001), and r
2
 value for linkage disequilibrium (≥0.8, 

≥0.9, or 1) (Figure 2A). Note that we only considered population clusters containing at least 

20 individuals (Table 1). Also note that LDLR-SNP pairs with r
2 = 1 are subject to a 

“complete” LD. The LDGIdb supports four types of queries. Users can search for LRLD-

SNP pairs/LDGIs by specifying the types of genomic location of LRLD-linked SNPs, SNP 

ID, gene accession number(s), or genomic coordinates (Figure 2B). GWAS-related LRLD-

SNP pairs are also provided (Figure 2C). As shown in Figure 2D, the LRLD-SNP 

pairs/LDGIs are categorized, according to the types of genomic location of the linked SNPs, 

into promoter-promoter, promoter-UTR, promoter-CDS, CDS-CDS, CDS-UTR and UTR-

UTR interactions. The CDS-related LDGIs are further categorized according to whether the 

LD-linked SNPs are nonsynonymous or synonymous (Figure 2D). Therefore, the user can 

choose LRLD-SNP pairs that occur in different genomic regions and that (in the case of 

coding SNPs) represent changes at the RNA or protein levels (the user can choose more than 

one type of interaction). The user can further select one or more population of interest to 

retrieve population-specific LDGIs. The results are downloadable (Figure 2E). For simplicity, 

the web interface displays only the first 10 records of each query (Figure 2F). The user can 

find detailed information of allele combinations of LRLD-linked SNPs and genomic regions 

where the linked SNPs are located in the results (Figure 2G). For the identified LDGIs, the 

interface also provides human PPI data collected from eight experiment-supported databases 

(i.e., collected PPIs and CRG PPIs) and high-confidence co-expression interactions for 

comparison. More detailed information of LDGI genes is also provided, including protein 

domain annotations, biological pathways, and disease associations. 

Figure 2 The LDGIdb interface. (A) The three adjustable parameters. Users can search for 

LRLD-SNP pairs and LDGIs by setting the three adjustable parameters: HapMap Phase (II or 

III), P value of PLINK population clustering (P < 0.01 or P < 0.001), and r
2
 value for linkage 

disequilibrium (≥ 0.8, ≥ 0.9, and 1). (B) Types of queries. Users can query by selecting the 

genomic types of the LRLD-linked SNP loci (D) and the population of interest (E), SNP 

accession number, gene accession number, or the coordinates of the genomic region of 

interest. (C) GWAS-related LRLD-SNP pairs. (F) and (G) are results. Users can download all 

records by clicking on the button (F). The first 10 records are displayed (G). If the linked 

SNP(s) is located within alternatively spliced genomic regions or overlapping genes, a 

LRLD-SNP pair record appears more than once with different genomic types or gene 

accession numbers in the downloaded file 

Discussion and future development 

Here we propose a new resource for studies of potential human gene interactions (i.e., 

LDGIs) based on haplotype data. In LDGIs, the linked genes are located in different 

chromosomes or LD blocks but are connected by one or more exonic/promoter SNP pairs that 

are subject to strong linkage disequilibrium (r
2
 ≥ 0.8, ≥ 0.9, or 1). We suggest that this LRLD 

approach and the LDGIdb can be potentially applied to the following areas. First, LDGIs may 

represent potential uncharacterized gene interactions, in which the functional associations 



between the LDGI genes may not be explicitly indicated in other biological networks. 

Second, although we constructed the LDGIdb using SNP data in this study, the LRLD 

approach can actually be expanded to include other types of genomic variants such as copy 

number variation and insertion/deletion. Third, given enough haplotype information, 

population-specific LDGIs/LRLD-SNP pairs may be identified for more focused studies, 

particularly in the field of pharmacogenetics. Fourth, the correlation between the 

LDGIs/LRLD-SNP pairs and disease-associated SNPs such as those identified in GWAS 

studies can be explored. For example, SNP rs393152, which is associated with Parkinson’s 

disease [36], forms an LRLD-SNP pair with rs12185268. Interestingly, rs12185268 was 

demonstrated to be connected to the same disease [37] two years after the publication (i.e., 

Ref #36) of the association of rs393152 with the disease. Another example is the LRLD-SNP 

pair: rs9858542–rs3197999. The two SNPs in this pair were shown to be related, 

respectively, to the Crohn’s disease [38-41] and the ulcerative colitis [42,43]. These examples 

show that two SNPs that are associated with the same (or related) human diseases/traits can 

be identified by our approach. Moreover, there are also cases in which GWAS SNPs and their 

LDGI partners are associated with the same (or related) human diseases. For example, the 

GWAS SNP rs5215 in KCNJ11 is known to be associated with Type II diabetes [44,45]. This 

SNP forms an LRLD-SNP pair with rs757110, which is located within the CDS of ABCC8. 

Mutations and deficiencies in the protein encoded by ABCC8 have been suggested to be 

associated with hyperinsulinemic hypoglycemia of infancy and non-insulin-dependent 

diabetes mellitus type II [46,47]. The above examples suggest that the LRLD-SNP linkages 

may reflect biological interactions in the human molecular system and have the potential to 

detect previously uncharacterized gene interactions. As disease-association data accumulate, 

the LDGIdb may become an increasingly powerful tool by which to identify potentially 

uncharacterized disease-associated gene interactions, contributing to network-based studies 

of human diseases. Notably, however, since the majority of HapMap SNPs are relatively 

common variants, the linkages of rare alleles may not be represented in LDGIdb. 

This study actually examined whether observed non-physical SNP linkages occur simply by 

chance or whether they are biologically meaningful. The above examples suggest that the 

inferred LDGIs may be functionally relevant. One interesting question is what are the 

molecular mechanisms underlying the inferred gene interactions. For the CDS-CDS LDGIs 

that involve only nonsynonymous changes, the functional association is speculated to result 

from direct or indirect protein-level interactions. Of course, the LDGIs may also represent 

adventitious linkages or false positives that result from unknown population substructures. 

Meanwhile, the biological meanings of the LDGIs that involve UTR SNPs (i.e., CDS-UTR 

and UTR-UTR linkages) or synonymous SNPs (i.e., nonsynonymous-synonymous and 

synonymous-synonymous linkages) may be more subtle. These potential interactions may be 

associated with translational regulation. Specifically, 5′UTRs may contain multiple sequence 

features that are involved in translational regulation, including upstream open reading frames, 

secondary structures, internal ribosome entry sites, and iron regulatory protein binding sites 

[48]. The disruption of these functional elements may cause changes in the efficiency of 

protein translation. On the other hand, 3′UTRs are known to be the major binding target of 

microRNAs, which can also suppress protein expression [49]. In addition, 3′UTRs may 

harbor protein-interacting secondary structures or the signals of nonsense-mediated decay or 

polyadenylation [48], both of which can affect the efficiency of protein translation. 

Meanwhile, synonymous coding SNPs are known to affect mRNA stability and splicing, 

leading to changes in the corresponding protein products [50]. Since both the UTR and 

synonymous SNPs may affect protein abundance, dosage imbalance and unidentified, indirect 

protein interactions may be possible explanations for the observed linkages. 
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