1	Running title: Defensin with Antioxidant Activities in vitro and ex vivo
2	
3	Defensin Protein from sweet potato (Ipomoea batatas [L.] Lam. 'Tainong
4	57') storage roots exhibits Antioxidant Activities in vitro and ex vivo
5	
6	Guan-Jhong Huang ^{a, 1} , Jeng-Shyan Deng ^{b, 1} , Hsien-Jung Chen ^c , Shyh-Shyun Huang ^d ,
7	Jung-Chun Liao ^d , Wen-Chi Hou ^e , and Yaw-Huei Lin ^{f,} *
8	
 9 10 11 12 13 14 15 16 17 18 19 	 ^aSchool of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan ^b Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan ^c Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan ^d School of Pharmacy, China Medical University, Taichung 404, Taiwan; ^e Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan ^f Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
20	*Corresponding author:
21	Dr. Yaw-Huei Lin
22	Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, Taiwan
23	115, Republic of China
24	FAX: 886 (2) 2782-7954; TEL: 886 (2) 2787-1172
25	E-mail: <u>boyhlin@gate.sinica.edu.tw</u>
26	
27	¹ Equal contribution to this paper.

28 ABSTRACT

29	This study was designed to investigate the antioxidant activities of sweet potato
30	defensin (SPD1) in vitro and ex vivo. Antioxidant status [2,
31	2'-azinobis[3-ethylbenzthiazoline-6-sulfonic acid (ABTS) assay], scavenging activity
32	against DPPH (1,1-dipheny-2-picrylhydrazyl) radical method, reducing power
33	method, Fe ²⁺ -chelating ability, FTC (ferric thiocyanate) method, and protection of
34	calf thymus DNA against hydroxyl radical-induced damage were studied in vitro. The
35	ex vivo experiments revealed that SPD1 could decrease the production of intracellular
36	peroxide in HepG2 cells. Four peptides, namely GFR, GPCSR, CFCTKPC, and
37	MCESASSK for testing antioxidative activity were synthesized according to tryptic
38	hydrolysis simulation. In TEAC assay CFCTKPC performed the best (13.5 \pm 0.3
39	$\mu mol~TE/g~dw),$ even better than reduced glutathione (7.3 \pm 0.2 $\mu mol~TE/g~dw).$ In
40	scavenging activity of DPPH radical assay (%), [IC ₅₀ (μ M) (the concentration
41	required for scavenging 50% activity)] CFCTKPC again has the highest antioxidant
42	activity (IC ₅₀ is 11.3 ± 3.2 μ M) even better than reduced glutathione (IC ₅₀ is 74.3 ± 2.4
43	μ M). In lipid peroxidation assay, once again CFCTKPC performed the best with an
44	IC ₅₀ value of 0.5 \pm 0.0 μM better than reduced glutathione (1.2 \pm 0.1 μM). These
45	findings mean that cysteine residue is most important in antioxidant activities. It was
46	suggested that SPD1 might contribute its antioxidant activities against hydroxyl and

47 peroxyl radicals.

48	
49	Keywords: Sweet potato; Defensin; Antioxidant;
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	

66 **1. Introduction**

It is commonly accepted that in a situation of oxidative stress, reactive oxygen 67 species such as superoxide (O_2^{-1}) , hydroxyl (OH⁻¹) and peroxyl (OOH, ROO⁻¹) 68 69 radicals are generated. The reactive oxygen species (ROS) play an important role in 70 the degenerative or pathological processes of various serious diseases, such as aging, Alzheimer's disease, atherosclerosis, cancer, cataracts, coronary heart disease, 71 72 inflammation, and neurodegenerative disorders (Wettasinghe & Shahidi, 2000). The 73 use of traditional medicine is widespread and plants still present a large source of 74 natural antioxidants that might serve as leads for the development of novel drugs. 75 Several antiinflammatory, antinecrotic, digestive, hepatoprotective, and 76 neuroprotective drugs have recently been shown to have an antioxidant and/or 77 antiradical scavenging mechanism as part of their activity (Prakash, Singh, & 78 Upadhyay, 2007). In the search for sources of natural antioxidants and radical 79 scavenging compounds in sweet potato during the last few years, some have been 80 found, such as trypsin inhibitor proteins (Huang, Sheu, Chen, Chang, & Lin, 2007), 81 phenolic compounds (Huang et al., 2011), and mucilage (Huang, Chen, Hou, & Lin, 82 2006).

Plant defensins have been shown to be major constituents of the immune systems
of plants. This class of cysteine rich polypeptides is usually basic and contains 45-54

85	amino acids with four conserved disulfide bridges (Huang et al., 2008). The diverse
86	biological functions of plant defensins include antibacterial activities, inhibition of
87	insect or bovine trypsin and gut α -amylases (Olli & Kirti, 2006), antifungal activities,
88	inhibition of protein synthesis, blockage of sweet taste, and sodium channel
89	(Salampessy, Phillips, Seneweera, & Kailasapathy, 2010). The objectives of this work
90	were to investigate the antioxidant properties of defensin from sweet potato (SPD1) in
91	comparison with chemical compounds such as butylated hydroxytoluene (BHT) or
92	reduced glutathione in a series of <i>in vitro</i> and <i>ex vivo</i> tests.

2. Materials and Methods

95 2.1. Expression of defensin in E. coli.

96	Sweet potato defensin (SPD1, Gene Bank accession number: AY552546) was
97	expressed in E. coli. The coding sequence was amplified from SPD1 cDNA using an
98	oligonucleotide (5 ⁻ A <u>GGAT CC</u> ATG GCTTC ATCTC TTCGT TC-3 ⁻), with a Bam
99	HI site (underlined) at the putative initial Met residue, and an oligonucleotide (5
100	-GCCTT GCTAG TTCA <u>G TCGAC</u> CGCTGT -3°), with a <i>Sal</i> I site at the 3° end. The
101	PCR fragment was subcloned into pGEM T-easy vector. The plasmid was then
102	digested with Bam HI and Sal I and subcloned into pQE30 expression vector
103	(QIAexpress expression system, Qiagen). The resulting plasmid, termed pQE-SPD1,

104	was introduced into E. coli (M15). Cultures of the transformed E. coli (M15)
105	overexpressed a protein of the expected molecular mass, which was purified by
106	affinity chromatography in Ni-NTA columns (Qiagen), according to the manufacturer
107	s instructions.
108	
109	2.2. Protein staining on 15% SDS-PAGE gels
110	SPD1 was detected on 15% SDS-PAGE gels. Samples treated with sample buffer
111	and β -mercaptoethanol (2-ME) with a final concentration of 14.4 mM were heated at
112	100^{0} C for 5 min before 15% SDS-PAGE.
113	
114	2.3. Synthesis of peptides contained in SPD1 sequence
115	Four peptides for testing antioxidative activity were synthesized according to
116	tryptic hydrolysis simulation of SPD1. The obtained peptides: GFR, GPCSR,
117	CFCTKPC, and MCESASSK were analyzed by TEAC assay (µmol TE/g dw),
118	Scavenging activity of DPPH radical (%) assay [IC $_{50}$ (μ M)], and scavenging activity
119	of lipid peroxidation assay [IC $_{50}$ (μM)] using reduced form of glutathione (GSH) as a
120	positive control.
121	

122 2.4.1. Total antioxidant status

123	Total antioxidant status of SPD1 was measured using 2,
124	2'-azinobis[3-ethylbenzthiazoline-6-sulfonic acid (ABTS) assay (Re, Pellegrini,
125	Proteggente, Pannala, Yang, & Rice-Evans, 1999). ABTS (7 mM) was reacted with
126	aqueous potassium persulfate (2.45 mM). The reaction mixture was left to stand at
127	room temperature overnight (12 to 16 h) in the dark before use. The resultant
128	intensely-colored ABTS ⁺ radical cation was diluted with 0.01 M PBS (phosphate
129	buffered saline), pH 7.4, to give an absorbance value of ~0.70 at 734 nm. Test
130	compound was treated with the ABTS solution in a total volume of 200 μ L.
131	Absorbance was measured spectrophotometrically at time intervals of 1, 2, 5, 10, and
132	20 min after addition of each compound in a range of four to eight concentrations.
133	The assay was repeated at least three times. Controls containing 180 μL of PBS to
134	replace ABTS were used to measure the absorbance of the test compounds themselves.
135	The assay relies on the antioxidant ability of the samples to inhibit the oxidation of
136	ABTS to ABTS ⁺ radical cation. In addition, Trolox (TE) was used as a reference
137	standard, and results were expressed as TEAC values (µmol TE/g dw). These values
138	were obtained from at least three different concentrations of each extract tested in the
139	assay giving a linear response between 20 and 80% of the blank absorbance.
140	

141 2.4.2. Scavenging activity against DPPH radical

142	The effect of SPD1 and four synthetic peptides on the DPPH radical was
143	estimated according to the method of Huang et al (Huang, Chen, Chang, Sheu, & Lin,
144	2007). An aliquot of SPD1 (10 μ L) was mixed with 100 mM Tris-HCl buffer (120 μ L,
145	pH 7.4) and then 100 μ L of the DPPH in ethanol with a final concentration of 50 μ M
146	was added. The mixture was shaken vigorously and left to stand at room temperature
147	for 20 min in the dark. The absorbance at 517 nm of the reaction solution was
148	measured spectrophometrically. The percentage of DPPH decolourization of the
149	sample was calculated according to the equation: % decolourization= [1- Abs sample
150	/Abs $_{\rm control}$] × 100.

152 2.4.3. Determination of antioxidant activity by reducing power measurement

153	The reducing power of SPD1 and glutathione was determined according to the
154	method of Yen and Chen (1995). SPD1 (0, 6.25, 12.5, 25, 50, and 100 $\mu g/mL)$ and
155	glutathione were mixed with an equal volume of 0.2 M phosphate buffer, pH 6.6, and
156	1% potassium ferricyanide. The mixture was incubated at 50°C for 20 min, during
157	which time ferricyanide was reduced to ferrocyanide. Then an equal volume of 1%
158	trichloroacetic acid was added to the mixture, which was then centrifuged at $3,500 g$
159	for 10 min. The upper layer of the solution was mixed with distilled water and 0.1%
160	$FeCl_3$ at a radio of 1 : 1 : 2, and the absorbance at 700 nm was measured to determine

- the amount of ferric ferrocyanide (Prussian Blue) formed. Increased absorbance of thereaction mixture indicated increased reducing power of the sample.
- 163

164 2.4.4. Determination of antioxidant activity by Fe^{2+} -chelating ability

The Fe²⁺-chelating ability was determined according to the method of Decker and 165 Welch (1990). The Fe^{2+} was monitored by measuring the formation of ferrous 166 167 iron-ferrozine complex at 562 nm. SPD1 (0, 6.25, 12.5, 25, 50, and 100 µg/mL) was mixed with 2 mM FeCl₂ and 5 mM ferrozine at a ratio of 10: 1: 2. The mixture was 168 169 shaken and left to stand at room temperature for 10 min. The lower the absorbance of the reaction mixture the higher the Fe^{2+} -chelating ability. The capability of the sample 170 171 to chelate the ferrous iron was calculated using the following equation: 172 Scavenging effect (%) = $[1 - ABS_{sample} / ABS_{control}] \times 100$

173

174 2.4.5. Determination of antioxidant activity by the ferric thiocyanate (FTC) method

175 The FTC method was adopted from the method of Osawa and Namiki (1981).

176 Twenty mg/mL of samples dissolved in 4 mL of absolute ethanol (w/v) were mixed

177 with linoleic acid (2.51%, v/v) in absolute ethanol (w/v) (4.1 mL), 0.05 M phosphate

178 buffer pH 7.0 (8 mL) and distilled water (3.9 mL) and kept in a screw-cap container at

179 40°C in the dark. Then, to 0.1 mL of this solution was added 9.7 mL of 75% (v/v)

180	ethanol and 0.1 mL of 30% (w/v) ammonium thiocyanate. Precisely 3 min after the
181	addition of 0.1 mL of 20 mM ferrous chloride in 3.5% (v/v) hydrochloric acid to the
182	reaction mixture, the absorbance at 500 nm of the resulting red color $\{[Fe (SCN)^{2+}],$
183	was measured every 24 h until the day when the absorbance of the control reached the
184	maximum value (Fe ³⁺ was formed after lipid peroxide was produced and Fenton
185	reaction occurred). The inhibition of linoleic acid peroxidation was calculated as (%)
186	inhibition = 100 - [(absorbance increase of the sample/absorbance increase of the
187	control) x 100]. All tests were run in duplicate and analyses of all samples were run in
188	triplicate and averaged.

190 2.4.6. Protection against hydroxyl radical-induced calf thymus DNA damage by SPD1

191 and synthetic peptide CFCTKPC

The hydroxyl radical was generated by Fenton reaction according to the method of Kohno et al. (Kohno, Yamada, Mitsuta, Mizuta, & Yoshikawa, 1991). The 15 μ L reaction mixture containing SPD1 (2.5, 5, or 10 mg/mL) or synthetic peptide CFCTKPC (2.5, 5, or 10 μ M), 5 μ L of calf thymus DNA (1 mg/mL), 18 mM FeSO₄, and 60 mM hydrogen peroxide were incubated at room temperature for 15 min. Then 2 μ L of 1 mM EDTA was added to stop the reaction. Blank test contained only calf thymus DNA and the control test contained all reaction components except SPD1.

- 199 The treated DNA solutions were subjected to agarose electrophoresis and then stained
- 200 with ethidium bromide and examined under UV light.
- 201
- 202 2.5. Culture and Harvest of Human Hepatoma Cell Line
- HepG2 cells were cultured with Dulbecco's modified Eagle's medium (DMEM) with 10% foetal bovine serum (FBS) in a T75 flask at 37°C, 5% CO₂, and 90% relative humidity. To harvest cells, HepG2 cells were washed with PBS buffer and treated with 2 mL of trypsin-EDTA for 3 min. The reaction was stopped by adding 8 mL of DMEM with 10% FBS. The mixture was then transferred into a tube and centrifuged at 200 g at room temperature for 5 min. After removing the supernatant, cell pellet was resuspended in 5 mL of DMEM with 10% FBS.
- 210
- 211 2.5.1. Cell viability Assay

212 Cell survival and proliferation were determined by a colorimetric 3-(4, 213 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay 214 (Chemicon) and sulforhodamine B assay. HepG2 cells (with an initial concentration of 2×10^4 cells/ well) were cultured without or with SPD1 (at various concentrations 215 216 in 10 μ L of suspension) in a 96-well microplate (90 μ L suspension/well). After 24 h, 217 10 μ L of MTT solution was added to each well, and the cells were incubated at 37 °C

218	for 4 h. Then, 100 μ L of lysis buffer were added to each well, and the cells were again
219	incubated at 37°C for 1 h to dissolve the dark blue crystals. Each well was completely
220	pipetted, and then the absorption at 570 nm of formazan solution was measured using
221	a microplate reader. At least three repeats for each sample were used to determine the
222	cell proliferation.

224 2.5.2. Sulforhodamine B assay

225 Cell density was measured by sulforhodamine B (SRB) assay. After 24 h of incubation, HepG2 cells (with an initial concentration of 2×10^4 cells/ well) were 226 227 treated without or with SPD1 (at various concentrations in 10 µL of suspension) in a 228 96-well microplate and incubated for an additional 24 h. There were three replications 229 for each treatment concentration, and the control for the experiment was cells grown 230 in media. Cells were then fixed for 1 h with 50% trichloroacetic acid and exposed to a 231 0.4% SRB solution for 30 min. The incorporated dye was solubilized in Tris-HCl buffer solution (pH 7.4). The absorbance was measured by a microplate reader 232 233 (Molecular Devices, Orleans Drive, Sunnyvale, CA) at 570 nm. Data are reported as % of control. 234

235

236 2.5.3. Determination of Intracellular Peroxide in HepG2 Cells

237	2',7'-Dichlorofluorescin diacetate (DCFH-DA), a relative specific probe for the
238	presence of hydrogen peroxide, was used as a probe for intracellular ROS formation.
239	HepG2 cells (2 x 10^5 cells/ well) were first cultured in 96-well tissue culture plate in
240	100 μ L complete DMEM for 24 h and then treated with different concentrations of
241	SPD1 to determine its capacity to inhibit intracellular peroxide formation. The
242	reaction was initiated by the addition of 2 μM DCFH-DA (final concentration) and
243	incubated at 37°C for up to 3, 6, 9, and 12 h. The fluorescence intensity was measured
244	using a micro-plate reading fluorometer (VersaMAx, Molecular Devices) with the
245	excitation wavelength at 485 nm and the emission wavelength at 535 nm.
246	
247	2.6. Statistical Analysis
248	Means of triplicates were calculated. Student's t test was used for comparison
249	between two treatments. All data (expressed as percent of control value) were means
250	± SD. A difference was considered to be statistically significant when $p < 0.05$.
251	

252 **3. Results and Discussion**

253 3.1. Purification of expressed SPD1

254 SDS-PAGE analysis of crude extracts from transformed *E. coli* (M15) showed a 255 high level of a polypeptide with the expected molecular mass (ca. 9,000 Da). This

256	polypeptide was found as a soluble protein in the supernatant (Fig. 1, lane 2), and was
257	absent in protein extracts obtained from E. coli transformed with pQE-30 vector (Fig.
258	1, lane 1). The expressed protein was purified from crude extracts by Ni ²⁺⁻ chelate
259	affinity chromatography, which yielded highly purified His-tagged SPD1 (Fig. 1, lane
260	3).

262 3.2. 2, 2'-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assay

ABTS assay is often used in evaluating total antioxidant power of single compounds and complex mixtures of various plants. This method is quick and simple to perform, and the results are reproducible and linearly related to the molar concentration of the antioxidants (Benzie, Wai, & Strain, 1999). In Fig. 2A SPD1 protein exhibited a dose-dependent total antioxidant activity within the applied concentrations (0, 6.25, 12.5, 25, 50, and 100 μ g/mL). At the concentration of 100 μ g/mL, SPD1 displayed the highest total antioxidant capacity.

270

271 3.3. Scavenging Activity against 1, 1-Diphenyl-2-Picrylhydrazyl (DPPH) Radical

DPPH radical is scavenged by antioxidants through the donation of a hydrogen forming the reduced DPPH-H. The color changed from purple to yellow after reduction, which could be quantified by its decrease of absorbance at wavelength 517

275	nm (Sharma & Bhat, 2009). Fig. 2B shows the dose-response curve for the
276	radical-scavenging activity of the different concentrations of SPD1 and glutathione
277	using the DPPH coloring method. SPD1 had the highest radical-scavenging activity
278	(27.2 \pm 3.1%) at the concentration of 100 $\mu g/mL.$ Free cysteine residues in whey
279	proteins (Tong, Sasaki, McClements, & Decker, 2000) were reported to have
280	antioxidant activities. These findings suggest that cysteine residues in sweet potato
281	SPD1 may also participated in the antiradical activities.

282

283 3.4. Measurement of Reducing Power

We investigated the Fe^{3+} - Fe^{2+} transformation in the presence of SPD1 to measure 284 its reducing capacity. The reducing capacity of a compound may serve as a significant 285 286 indicator of its potential antioxidant activity (Meir, Kanner, Akiri, & Hadas, 1995). 287 The antioxidant activities of putative antioxidants have been attributed to various mechanisms. Among them are prevention of chain initiation, binding of transition 288 289 metal ion catalysts, decomposition of peroxides, prevention of continued hydrogen 290 abstraction, and radical scavenging (Diplock, 1997). The reducing power of SPD1 is shown in Fig. 2C with reduced glutathione serving as a positive control. The reducing 291 292 power of SPD1 exhibited a dose-dependence (P < 0.05) within the applied 293 concentrations (0, 6.25, 12.5, 25, 50, and 100 µg/mL).

295 3.5. Measure of Fe^{2+} -chelating ability

296	Iron and other transition metals promote oxidation by acting as catalysts of free
297	radical reactions. These redox-active transition metals transfer single electrons during
298	changes in oxidation states. Chelating compounds may also sterically hinder
299	formation of the metal hydroperoxide complex (Blokhina et al 2003). The metal
300	chelating capacity of SPD1 and standard antioxidants was determined by assessing
301	their ability to compete with ferrozine for the ferrous ions. The Fe^{2+} -chelating ability
302	of the SPD1 is shown in Fig. 2D. EDTA was used as a positive control. The Fe^{2+}
303	-chelating ability of SPD1 was lower than that of EDTA and this difference was
304	statistically significant (P <0.05). The doses of 6.25, 12.5, 25, 50, and 100 µg/mL of
305	SPD1 exhibited 1.25, 4.97, 9.07, 12.72, and 15.67% iron binding capacity,
306	respectively. On the other hand, the doses of 6.25, 12.5, 25, 50, and 100 $\mu\text{g/mL}$ of
307	EDTA have shown 4.60, 8.24, 12.13, 22.68, and 27.03% chelating activity of iron,
308	respectively. Values obtained from Fig. 2D demonstrate that the action of SPD1, as a
309	peroxidation protector, may be related to its iron-binding capacity.

310

311 3.6. Ferric thiocyanate (FTC) method

312 The ferric thiocyanate method measured the amount of peroxide produced during

313	the initial stages of oxidation which was the primary product of oxidation. So far
314	low-density lipoprotein (LDL) peroxidation has been reported to contribute to
315	atherosclerosis development (Koba, Matsuoka, Osada, & Huang, 2007). Therefore,
316	delay or prevention of LDL peroxidation is an important function of antioxidants. Fig.
317	2E shows the time-course curve for the antioxidative activity of the SPD1, BHT and
318	$\mathrm{H_{2}O}$ by the FTC method. The BHT was used as a positive control, and $\mathrm{H_{2}O}$ as a
319	negative control. The results indicate that SPD1 has antioxidative activity. SPD1 may
320	act as a significant LDL peroxidation inhibitor ($P < 0.05$).
321	
322	3.7. Protecting Calf Thymus DNA against Hydroxyl Radical-Induced Damage by
323	SPD1
324	Free radicals could damage macromolecules in cells, such as DNA, protein, and
325	lipids in membranes (Wu, Zhang, Kong, & Hua, 2009). The oxidative damage of
326	DNA is one of the most important mechanisms in the initiation of cancer. The damage

lipids in membranes (Wu, Zhang, Kong, & Hua, 2009). The oxidative damage of DNA is one of the most important mechanisms in the initiation of cancer. The damage is usually caused by hydroxyl radicals. The activity of these radicals can be reduced by natural antioxidants found in plants including herbs. The Fenton reaction involves the reaction between hydrogen peroxide and Fe^{2+} to form hydroxyl radicals. Hydroxyl radical scavenging was measured indirectly by the inhibition of the Fenton reaction via reducing Fe^{3+} to Fe^{2+} . Fig. 3A shows that SPD1 protected against

332	hydroxyl radical-induced calf thymus DNA damages. The blank contained calf
333	thymus DNA only and the control contained all components except SPD1. Compared
334	to the blank and control, it was found that SPD1 added above 5 mg/mL (with a final
335	absolute amount of 75 μ g) could protect against hydroxyl radical induced calf thymus
336	DNA damages during 15-min reactions. In addition, it was found that synthetic
337	peptide (CFCTKPC) added above 5 μ M could protect against hydroxyl radical
338	induced calf thymus DNA damages during 15-min reactions (Fig. 3B).

340 3.8. Effects of SPD1 on Cell Survival (MTT Assay) and Cell density (SRB assay).

341 The cell survival test of HepG2 cells treated with different concentrations (0, 342 6.25, 12.5, 25, 50, and 100 µg/mL) of SPD1 for 24 h were examined, and results are 343 shown in Fig. 4A. The relative MTT activity of cells treated with 12.5, 25, 50, and 100 µg/mL of SPD1 were 98.41, 96.16, 90.86 and 89.95%, respectively. Cells 344 345 cultured with SPD1 did not change cell viability at the concentrations (0, 6.25, 12.5, 346 25, 50, and 100 µg/mL). The SPD1 concentration-dependent cytotoxic effect was also 347 confirmed by SRB assay carried out in cells treated with SPD1 under the same 348 experimental conditions (Fig. 4B). Compared to the MTT assay, the potency by which 349 SPD1 induced the cytotoxic effect was similar. In this study, the cell survival rate was 350 greater than 90% if the HepG2 cells were treated with SPD1 in the range of 0-100 351 µg/mL. Therefore, 0-100 µg/mL of SPD1 was used to study its effects on antioxidant
352 system in HepG2 cells for the following experiments.

353

354 *3.9. Effects of SPD1 on Intracellular Peroxide in HepG2 Cells*

Production of intracellular peroxide in HepG2 cells treated with 0, 12.5, 25, 50, and 355 356 100 µg/mL of SPD1 for 3 - 12 h is shown in Fig. 4B. The production of intracellular 357 peroxide in HepG2 cells after treatment with the SPD1 for 3 h was significantly 358 inhibited (P<0.05). The doses of 12.5, 25, 50, and 100 µg/mL of SPD1 inhibited 5.69, 359 11.39, 16.84 and 25.08% intracellular peroxide production, respectively. As the treatment increased to 6 h, the production of intracellular peroxide in HepG2 cells 360 361 reached minimum value of concentration for SPD1 treatments. However, the 362 inhibitory effects of SPD1 on production of intracellular peroxide became less 363 effective after 9 h. It appeared that SPD1 could protect HepG2 cells from antioxidative attack. When SPD1 was incubated with HepG2 cell at 9 h, SPD1 364 became partly denaturation or cleavage by protease. Osseni et al. also used HepG2 365 cells to study the antioxidant effects of melatonin, and they found that low doses of 366 367 melatonin increased glutathione concentration. They suggested that melatonin acts as an antioxidant as well as a modulator of cellular signaling processes to exert its 368 369 oxidative-stress-protection effect (Osseni, Rat, Bogdan, Warnet, & Touitou, 2000). In this study, we found that SPD1 might effectively reduce the cellular oxidative stressin human hepatoma HepG2 cells.

372

373 *3.10.* Determination of the Antioxidative Activities of four synthetic peptides

374 We used four synthetic peptides to measure antioxidative activities (section 2.3.). Synthetic peptides were designed by simulating trypsin cutting sites of SPD1 gene 375 376 products from sweet potato (http://au.expasy.org/tools/peptidecutter/). Gly-Phe-Arg 377 (GFR), Gly-Pro-Cys-Ser-Arg (GPCSR), Cys-Phe-Cys-Thr-Lys-Pro-Cys (CFCTKPC), 378 and Met-Cys-Glu-Ser-Ala-Ser-Ser-Lys (MCESASSK) (Table I) were obtained according to simulation. Our results showed that in TEAC assay CFCTKPC 379 380 performed the best (13.5 \pm 0.3 μ mol TE/g dw), even better than reduced glutathione $(7.3 \pm 0.2 \ \mu mol \ TE/g \ dw)$. In scavenging activity of DPPH radical assay (%), (IC₅₀ 381 382 (µM) (the concentration required for scavenging 50% activity) of GPCSR, CFCTKPC, and MCESASSK peptides were 337.4 \pm 10.1, 11.3 \pm 3.2 and 136.2 \pm 5.1 μ M, 383 384 respectively. CFCTKPC again has the highest antioxidant activity (IC₅₀ is 11.3 ± 3.2 μ M) even better than reduced glutathione (IC₅₀ is 74.3 ± 2.4 μ M). In lipid 385 386 peroxidation assay, once again CFCTKPC performed the best with an IC₅₀ value of $0.5 \pm 0.0 \mu M$ better than reduced glutathione (1.2 $\pm 0.1 \mu M$). These results 387 388 demonstrated that some simulated synthetic peptides from tryptic defensin

389 hydrolysates exhibited antioxidative activities.

390	Synthetic peptides (CFCTKPC) containing cysteine (C), phenylalanine (F),
391	threonine (T), lysine (K) and proline (P) showed an effective capacity for TEAC,
392	scavenging DPPH radical and lipid peroxidation assays. The presence of three
393	cysteine (C) residues, that have been reported to exert antioxidant effects, could be
394	responsible for scavenging ABTS radical (Hernandez-Ledesma, Miralles, Amigo,
395	Ramos, & Recio, 2005). Cysteine residues with free-SH in whey proteins (Tong,
396	Sasaki, McClements, & Decker, 2000) were reported to have antioxidant activities. It
397	could be due to the localization of one of C residues at both the N-terminal and
398	C-terminal positions that could make the access to radicals easier. A number of
399	studies have been devoted to assess the antioxidant potential of soy protein fractions
400	as well as to the isolation and structural characterization of the most active peptides. A
401	number of antioxidative peptides, usually composed of 3-16 amino acid residues,
402	have been isolated and identified from these hydrolyzates, and their antioxidant
403	activities investigated to gain insight into the antioxidative mechanism of peptides.
404	Several amino acid residues, such as His, Met, Tyr, Cys, and Trp, are generally
405	accepted as antioxidants in spite of their pro-oxidative effects in some cases (Marcuse,
406	1960). These antioxidant peptides derived from soybean protein have been found to
407	contain between 5 and 16 amino acids (Chen, Muramoto, & Yamauchi, 1995). Our

408 results demonstrate that SPD1 might contribute various antioxidant properties through 409 its hydrolytic peptides as shown in Table 1. Various peptides may have specific 410 antioxidant properties. For example, among four synthetic peptides CFCTKPC (with 411 three cysteine groups) performs the best in all three assays, both GPCSR and 412 MCESASSK (with one cysteine group) perform second to CFCTKPC in lipid 413 peroxidation assay.

414 Especially, regarding to target groups, CFCTKPC was more potent for 415 scavenging hydroxyl and peroxyl radicals. It is generally accepted that the chemical 416 reactivity of hydroxyl radical is the strongest among ROS. Hydroxyl radical reacts 417 easily with biomolecules, such as amino acids, proteins and DNA. Therefore, the 418 removal of hydroxyl radical is probably one of the most effective defenses of a living 419 body against various diseases (Cacciuttolo et al., 1993). Carbon-centered radicals that 420 represent $R \cdot , RO \cdot and ROO \cdot could be quenched by CFCTKPC. This result agreed$ 421 with a lipid peroxidation inhibition assay in which CFCTKPC inhibited lipid 422 peroxidation by scavenging lipid-derived radicals.

In conclusion, the results from our *in vitro* experiments, including ABTS assay
(Fig. 2A), DPPH radical assay (Fig. 2B), reducing power method (Fig. 2C), Fe²⁺
-chelating ability (Fig. 2D), FTC method (Fig. 2E), hydroxyl radical-induced calf
thymus DNA damage (Fig. 3), and intracellular peroxide in HepG2 cells (Fig. 4B)

22

427	demonstrated that SPD1 in sweet potato may have significant antioxidant activities.
428	SPD1 may also contribute significantly to complexation of di- and higher valent metal
429	ions with formation of thermodynamically stable complexes in which free metal ions
430	are bound and show no further reactions. The ex vivo or in vivo antioxidant activities
431	of SPD1 should be performed in near further.
432	
433	Acknowledgements
434	The authors want to thank the financial supports from the National Science Council
435	(NSC100-2313-B-039-004- and NSC 100-2320-B-039-033-), China Medical
436	University (CMU) (CMU100-TC-11, and CMU100-TC-22) and Taiwan Department
437	of Heath Clinical Trial and Research Center of Excellence (DOH101-TD-B-111-004).
438	

```
439 Reference
```

440	Benzie, I. F. F.,	Wai, Y., &	Strain, J. J.	(1999).	Antioxidant	(reducing)	efficiency	of
-----	-------------------	------------	---------------	---------	-------------	------------	------------	----

- 441 ascorbate in plasma is not affected by concentration. *The Journal of Nutritional*
- 442 *Biochemistry*, *10*, 146-150.
- 443 Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative
- damage and oxygen deprivation_stress. *Annals of botany*, *91*, 179-194.
- 445 Cacciuttolo, M. A., Trinh, L., Lumpkin, J. A., & Rao, G. (1993). Hyperoxia induces

- 446 DNA damage in mammalian cells. *Free Radical Biology and Medicine*, *14*,
 447 267-276.
- 448 Chen, H. M., Muramoto, K., & Yamauchi, F. (1995). Structural analysis of
- 449 antioxidative peptides from soybean β -conglycinin. Journal of Agricultural and
- 450 *Food Chemistry*, *43*, 574–578.
- 451 Decker, E. A., & Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in
 452 muscle food. *Journal of Agricultural and Food Chemistry*, 38, 674-677.
- 453 Diplock, A. T. (1997). Will the 'good fairies' please proves to us that vitamin E
- 454 lessens human degenerative of disease? *Free Radical Research*, 27, 511-532.
- 455 Hernandez-Ledesma, B., Miralles, B., Amigo, L., Ramos, M., & Recio, I. (2005).
- 456 Identification of antioxidant and ACE-inhibitory peptides in fermented milk.
- 457 *Journal* of the *Science* of *Food* and *Agriculture*, 85, 1041–1048.
- 458 Huang, D. J., Chen, H. J. Hou, W. C. & Lin, Y. H. (2006). Sweet potato (Ipomoea
- *batatas* [L.] Lam 'Tainong 57') storage roots mucilage with antioxidant activities *in vitro. Food Chemistry*, 98, 774-781.
- 461 Huang, G. J., Sheu, M. J., Chen, H. J., Chang, Y. S. & Lin, Y. H. (2007). Inhibition of
- 462 reactive nitrogen species in *vitro* and ex *vivo* by trypsin inhibitor from sweet
- 463 potato 'Tainong 57' storage roots. *Journal of Agricultural and Food Chemistry*, 55,

464 6000-6006.

 sporamin and its synthesized peptides with antioxidant activities <i>in vi</i> <i>Botanical Studies</i>, 48, 133-140. Huang, G. J., Lai, H. C., Chang, Y. S., Lu, T. L., Sheu, M. J., Chang, H. Y. et (2008). Antimicrobial, dehydroascorbate reductase and monodehydroascorb reductase activities of defensin from sweet potato (<i>Ipomoea batatas</i> [L.] L 'Tainong 57') storage roots. <i>Journal of Agricultural and Food Chemistry</i>, 2989-2995. Huang, M. H., Wang, B. S., Chiu, C. S., Amagaya, S., Hsieh, W. T., Huang, S. S. al., (2011) Antioxidant, antinociceptive, and anti-inflammatory activities of <i>Xan</i> <i>fructus</i> extract. <i>Journal of Ethnopharmacology</i>, <i>135</i>, 545-552. Koba, K., Matsuoka, A., Osada, K., & Huang, Y. S. (2007). Effect of log (<i>Eriobotrya japonica</i>) extracts on LDL oxidation. <i>Fa</i> 	465	Huang, G. J., Chen, H. J., Chang, Y. S., Sheu, M. J., & Lin, Y. H. (2007). Recombinant
 Botanical Studies, 48, 133-140. Huang, G. J., Lai, H. C., Chang, Y. S., Lu, T. L., Sheu, M. J., Chang, H. Y. et (2008). Antimicrobial, dehydroascorbate reductase and monodehydroascorb reductase activities of defensin from sweet potato (<i>Ipomoea batatas</i> [L.] L 'Tainong 57') storage roots. Journal of Agricultural and Food Chemistry, 2989-2995. Huang, M. H., Wang, B. S., Chiu, C. S., Amagaya, S., Hsieh, W. T., Huang, S. S. al., (2011) Antioxidant, antinociceptive, and anti-inflammatory activities of Xan <i>fructus</i> extract. Journal of Ethnopharmacology, 135, 545-552. Koba, K., Matsuoka, A., Osada, K., & Huang, Y. S. (2007). Effect of loq (Eriobotrya japonica) extracts on LDL oxidation. For 	466	sporamin and its synthesized peptides with antioxidant activities in vitro.
 Huang, G. J., Lai, H. C., Chang, Y. S., Lu, T. L., Sheu, M. J., Chang, H. Y. et (2008). Antimicrobial, dehydroascorbate reductase and monodehydroascorbate reductase activities of defensin from sweet potato (<i>Ipomoea batatas</i> [L.] L 'Tainong 57') storage roots. <i>Journal of Agricultural and Food Chemistry</i>, 2989-2995. Huang, M. H., Wang, B. S., Chiu, C. S., Amagaya, S., Hsieh, W. T., Huang, S. S. al., (2011) Antioxidant, antinociceptive, and anti-inflammatory activities of <i>Xan</i> <i>fructus</i> extract. <i>Journal of Ethnopharmacology</i>, <i>135</i>, 545-552. Koba, K., Matsuoka, A., Osada, K., & Huang, Y. S. (2007). Effect of loq (<i>Eriobotrya japonica</i>) extracts on LDL oxidation. <i>For</i> 	467	Botanical Studies, 48, 133-140.
 469 (2008). Antimicrobial, dehydroascorbate reductase and monodehydroascorb 470 reductase activities of defensin from sweet potato (<i>Ipomoea batatas</i> [L.] L 471 'Tainong 57') storage roots. <i>Journal of Agricultural and Food Chemistry</i>, 472 2989-2995. 473 Huang, M. H., Wang, B. S., Chiu, C. S., Amagaya, S., Hsieh, W. T., Huang, S. S. 474 al., (2011) Antioxidant, antinociceptive, and anti-inflammatory activities of <i>Xan</i> 475 <i>fructus</i> extract. <i>Journal of Ethnopharmacology</i>, <i>135</i>, 545-552. 476 Koba, K., Matsuoka, A., Osada, K., & Huang, Y. S. (2007). Effect of loq 477 (<i>Eriobotrya japonica</i>) extracts on LDL oxidation. <i>Fo</i> 	468	Huang, G. J., Lai, H. C., Chang, Y. S., Lu, T. L., Sheu, M. J., Chang, H. Y. et al.,
 reductase activities of defensin from sweet potato (<i>Ipomoea batatas</i> [L.] L 'Tainong 57') storage roots. <i>Journal of Agricultural and Food Chemistry</i>, 2989-2995. Huang, M. H., Wang, B. S., Chiu, C. S., Amagaya, S., Hsieh, W. T., Huang, S. S. al., (2011) Antioxidant, antinociceptive, and anti-inflammatory activities of <i>Xan</i> <i>fructus</i> extract. <i>Journal of Ethnopharmacology</i>, <i>135</i>, 545-552. Koba, K., Matsuoka, A., Osada, K., & Huang, Y. S. (2007). Effect of log (<i>Eriobotrya japonica</i>) extracts on LDL oxidation. <i>For</i> 	469	(2008). Antimicrobial, dehydroascorbate reductase and monodehydroascorbate
 471 'Tainong 57') storage roots. Journal of Agricultural and Food Chemistry, 472 2989-2995. 473 Huang, M. H., Wang, B. S., Chiu, C. S., Amagaya, S., Hsieh, W. T., Huang, S. S. 474 al., (2011) Antioxidant, antinociceptive, and anti-inflammatory activities of Xan 475 <i>fructus</i> extract. Journal of Ethnopharmacology, 135, 545-552. 476 Koba, K., Matsuoka, A., Osada, K., & Huang, Y. S. (2007). Effect of loq 477 (Eriobotrya japonica) extracts on LDL oxidation. For 	470	reductase activities of defensin from sweet potato (Ipomoea batatas [L.] Lam
 472 2989-2995. 473 Huang, M. H., Wang, B. S., Chiu, C. S., Amagaya, S., Hsieh, W. T., Huang, S. S. 474 al., (2011) Antioxidant, antinociceptive, and anti-inflammatory activities of <i>Xan</i> 475 <i>fructus</i> extract. <i>Journal of Ethnopharmacology</i>, <i>135</i>, 545-552. 476 Koba, K., Matsuoka, A., Osada, K., & Huang, Y. S. (2007). Effect of loq 477 (<i>Eriobotrya japonica</i>) extracts on LDL oxidation. <i>For</i> 	471	'Tainong 57') storage roots. Journal of Agricultural and Food Chemistry, 56,
 Huang, M. H., Wang, B. S., Chiu, C. S., Amagaya, S., Hsieh, W. T., Huang, S. S. al., (2011) Antioxidant, antinociceptive, and anti-inflammatory activities of <i>Xan</i> <i>fructus</i> extract. <i>Journal of Ethnopharmacology</i>, <i>135</i>, 545-552. Koba, K., Matsuoka, A., Osada, K., & Huang, Y. S. (2007). Effect of loq (<i>Eriobotrya japonica</i>) extracts on LDL oxidation. <i>Fo</i> 	472	2989-2995.
 474 al., (2011) Antioxidant, antinociceptive, and anti-inflammatory activities of <i>Xan</i> 475 <i>fructus</i> extract. <i>Journal of Ethnopharmacology</i>, <i>135</i>, 545-552. 476 Koba, K., Matsuoka, A., Osada, K., & Huang, Y. S. (2007). Effect of loq 477 (<i>Eriobotrya japonica</i>) extracts on LDL oxidation. <i>Fo</i> 	473	Huang, M. H., Wang, B. S., Chiu, C. S., Amagaya, S., Hsieh, W. T., Huang, S. S., et
 475 <i>fructus</i> extract. <i>Journal of Ethnopharmacology</i>, <i>135</i>, 545-552. 476 Koba, K., Matsuoka, A., Osada, K., & Huang, Y. S. (2007). Effect of loq 477 (<i>Eriobotrya japonica</i>) extracts on LDL oxidation. <i>Fo</i> 	474	al., (2011) Antioxidant, antinociceptive, and anti-inflammatory activities of Xanthii
 476 Koba, K., Matsuoka, A., Osada, K., & Huang, Y. S. (2007). Effect of loq 477 (<i>Eriobotrya japonica</i>) extracts on LDL oxidation. For 	475	fructus extract. Journal of Ethnopharmacology, 135, 545-552.
477 (<i>Eriobotrya japonica</i>) extracts on LDL oxidation. Fo	476	Koba, K., Matsuoka, A., Osada, K., & Huang, Y. S. (2007). Effect of loquat
	477	(Eriobotrya japonica) extracts on LDL oxidation. Food
478 <i>Chemistry</i> , 104, 308-316.	478	Chemistry, 104, 308-316.

- 479 Kohno, M., Yamada, M., Mitsuta, K., Mizuta, Y., & Yoshikawa, T. (1991).
- 480 Spin-trapping studies on the reaction of iron complexes with peroxides and the
- 481 effects of water-soluble antioxidants. *Bulletin of the Chemical Society of Japan*,
- *4*82 *64*, 1447-1453.
- 483 Marcuse, R. (1960). Antioxidative effect of amino-acids. *Nature*, *186*, 886–887.

484	Meir, S., Kanner, J., Akiri, B., & Hadas, S. P. (1995). Determination and involvement
485	of aqueous reducing compounds in oxidative defense systems of various
486	senescing leaves. Journal of Agricultural and Food Chemistry, 43, 1813–1817.
487	Olli, S.; Kirti, P. B. (2006). Cloning, characterization and antifungal activity of
488	defensin Tfgd1 from Trigonella foenum-graecum L. Journal of biochemistry and
489	molecular biology, 39, 278-283.
490	Osawa, T., & Namiki, M. (1981). A novel type of antioxidant isolated from leaf wax
491	of Eucalyptus leaves. Agricultural and Biological Chemistry, 45, 735–739.

- 492 Osseni, R. A., Rat, P., Bogdan, A., Warnet, J. M., Touitou, Y. (2000). Evidence of
- 493 prooxidant and antioxidant action of melatonin on human liver cell line HepG2.
- 494 *Life Science*. 68, 387-393.
- 495 Prakash, D., Singh, B. N., & Upadhyay G. (2007). Antioxidant and free
- 496 radical scavenging activities of phenols from onion (*Allium cepa*). Food
 497 Chemistry, 102, 1389-1393.
- 498 Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C.
- 499 (1999) Antioxidant activity applying an improved ABTS radical cation
- 500 decolourization assay. *Free Radical Biology and Medicine*, 26, 1231-1237.
- 501 Salampessy, J., Phillips, M., Seneweera, S., & Kailasapathy, K. (2010). Release of 502 antimicrobial peptides through bromelain hydrolysis of leatherjacket

- 503 (*Meuchenia* sp.) insoluble proteins. *Food Chemistry*, 15, 556-560.
- 504 Sharma, O. P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. *Food*505 *Chemistry*, *113*, 1202-1205.
- 506 Tong, L. M., Sasaki, S., McClements, D. J., & Decker, E. A. (2000). Mechanisms of
- the antioxidant activity of a high molecular weight fraction of whey. *Journal of Argicultural and Food Chemistry*, 48, 1473-1478.
- 509 Wettasinghe, M., & Shahidi, F. (2000) Scavenging of reactive-oxygen species and
- 510 DPPH free radicals by extracts of borage and evening primrose meals. *Food*
- 511 *Chemistry*, 70, 17-26.
- 512 Wu, W., Zhang, C., Kong, X., & Hua, Y. (2009). Oxidative modification of

513 soy protein by peroxyl radicals. *Food Chemistry*, *116*, 295-301.

- 514 Yen, G. C., & Chen, H. Y. (1995). Antioxidant activity of various tea extracts in
- 515 relation to their antimutagenicity. Journal of Agricultural and Food Chemistry,
- *46*, 849-854.
- 517
- 518
- 519
- 520

220

521

522 Figure Legends

523	Figure 1. SDS-PAGE analysis of purified recombinant sweet potato defensin protein
524	(SPD1). Crude extracts from E. coli (M15) transformed with pQE30 (lane 1)
525	or with pQE30-SPD1 (lane 2) were analyzed by 15% (w/v) SDS/PAGE with 5
526	μg protein in each line, and then the gel was stained with Coomassie blue
527	G-250. Molecular masses of standard proteins are indicated at the left of the
528	figure. His-tagged SPD1 was purified by Ni ²⁺ -chelate affinity chromatography
529	(lane 3). The experiments were done twice and a representative one is shown.
530	M: Molecular marker.
531	
532	Figure 2. Antioxidant activities of recombinant defensin (SPD1) protein from sweet
533	potato. The inhibition of the formation of ABTS ⁺ . Glutathione was used as a
534	positive control (A). DPPH radical scavenging activity. Glutathione was used
535	as a positive control (B). Reducing power. EDTA was used as a positive
536	control (C). Fe ²⁺ -chelating ability. Ascorbic acid was used as a positive
537	control (D). Inhibition of linoleic peroxidation, BHT was used as a positive
538	control (E). Concentration range includes 0, 6.25, 12.5, 25, 50, and 100
539	μ g/mL. Absorbance value represents average of triplicates of different

542	Figure 3. Protecting calf thymus DNA against hydroxyl radical-induced damage by
543	recombinant defensin protein (SPD1) (2.5, 5, or 10 mg/mL) (A) or synthetic
544	peptide CFCTKPC (2.5, 5, or 10 μ M) (B). Calf thymus DNA only was used
545	for blank test, and the control test contained no defensin.
546	
547	
548	Figure 4. Effects of recombinant defensin protein (SPD1) on cell survival (MTT assay)
549	(A), cell density (SRB assay) (B), and the production of intracellular
550	peroxide (C) in HepG2 cells. An asterisk indicates that the values are
551	significantly different from untreated cells ($P < 0.05$).
552	
553	
554	
555	
556	
557	
558	
559	

Figure 1.

Figure 2.

Figure 3.

Figure 4.

609 A.

	Peptide	TEAC	Scavenging activity of	Scavenging activity of
		(µmol TE/g dw)	DPPH radical (%), IC	lipid peroxidation assay,
			₅₀ (µ M)*	IC 50 (µM)*
	GSH	7.3 ± 0.2	74.3 ± 2.4	1.2 ± 0.1
	GFR	1.5 ± 0.1	> 1000	28.6 ± 0.5
	GPCSR	4.1 ± 0.2	337.4 ± 10.1	5.6 ± 0.3
	CFCTKPC	13.5 ± 0.3	11.3 ± 3.2	0.5 ± 0.0
	MCESASSK	5.7 ± 0.2	136.2 ± 5.1	2.5 ± 0.2
617	Note: SPD1 has pre-pro-sequence. These sequences were retrieved from the NCBI			
618	(National Center			
619	for Biotechnology Information, http://www.ncbi.nlm.nih.gov) with accession			
620	number .	AY552546.		
621	[†] Each value is expressed as mean \pm S.D. ($n = 3$).			
622	*IC ₅₀ value was obtained by interpolation from linear regression analysis.			
623				
624				
625				
626				
627				
628				

616 Table 1: Defensin peptides with antioxidative activities^{\dagger}.