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BACKGROUND AMP-activated protein kinase (AMPK) has recently emerged as an 

attractive and novel target for the regulation of vascular smooth muscle contraction. 

The present study investigated the vasodilatory effects of -lipoic acid (-LA) and 

the possible mechanism of its action on aortic rings from Wistar–Kyoto (WKY) rats 

and spontaneously hypertensive rats (SHR). 

METHODS Aortae were removed from WKY and SHR, and contractile responses to 

acetylcholine and -LA studied in organ chamber. Phosphorylated AMPK (pAMPK), 

phosphorylated Peutz-Jeghers syndrome kinase LKB1 (pLKB1) and 

calcium/calmodulin-dependent protein kinase (CaMKK) protein level were measured 

in SHR, WKY and aortic smooth muscle (A10) cells. 

RESULTS -LA (1-500 mol/l) produced a concentration-dependent relaxation of 

precontracted aortic rings from eight- and 16-week-old SHR, but not in those from 

WKY rats. This vasodilatory effect of -LA did not change after preincubation with 

NG-nitro-L-arginine methyl ester (100 mol/l), but significantly suppressed by an 

AMPK inhibitor, compound C (40 mol/l). The expression of pAMPK, pLKB1 and 

CaMKK were also significantly reduced in endothelium-denuded arteries from 

16-week-old SHR compared with those from younger SHR or age-matched WKY rats. 

After incubation with -LA (100 mol/l), the expression of pAMPK and pLKB1 
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was significantly increased in the endothelium-denuded aortas from 16-week-old SHR, 

the expression of CaMKK was more reduced in the endothelium-denuded aortas of 

eight-week-old SHR, but this was not observed in WKY rats. -LA also activated 

AMPK phosphorylation in A10 cells. 

CONCLUSION The effects of -LA on vascular relaxation in SHR result from the 

enhanced phosphorylation of LKB1-AMPK in aortic smooth muscle.
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AMP-activated protein kinase (AMPK) is a ubiquitous serine/threonine protein 

kinase activated by pathological stimuli, such as oxidative damage, by physiological 

stimuli, such as exercise and muscle contraction, and by hormones, including leptin 

and adiponectin.1 AMPK is activated in response to reduced cellular energy charge 

(high AMP/ATP ratio) and is involved in regulating carbohydrate and fat 

metabolism.1,2 AMPK exists as a heterotrimeric enzyme consisting of a catalytic 

subunit () and two regulatory subunits ( and ). Isoforms of each subunit exist (1, 

2, 1, 2, 1, 2, and 3), with multiple combinations possible. AMP binds to the 

-subunit of AMPK and facilitates the phosphorylation of threonine 172 (Thr172) of 

the -subunit by an upstream kinase, AMPK kinase (AMPKK), increasing the 

enzyme activity of AMPK.3 Recent data suggest that the tumor suppressor protein, 

Peutz-Jeghers syndrome kinase LKB1 (LKB1) functions as an AMPKK in several cell 

types and that calcium/calmodulin-dependent protein kinase 1 (CaMKK) also 

phosphorylates Thr172 and activates AMPK.4-7 

A target of AMPK is endothelial nitric oxide synthase (eNOS), an important 

modulator of vascular tone. It has been clearly established that AMPK can associate 

with and phosphorylate eNOS in cardiomyocytes and endothelial cells,8 thus 

increasing eNOS activity and NO production. The direct activation of AMPK with 
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5-aminoimidizole-4-carboxamide riboside (AICAR) stimulates NO synthesis in 

human aortic endothelial cells.9 Furthermore, metabolically challenged 

endothelium-denuded porcine carotid artery segments exhibit a rapid increase in 

AMPK activity after metabolic stress, associated with the recruitment of signaling 

pathways that may regulate smooth muscle contraction.10 However, AICAR failed to 

relax endothelin-1-precontracted carotid artery rings in this species.10 These data 

suggest that AMPK plays a complex role in vascular function and remodeling. 

-Lipoic acid (-LA) is a naturally occurring, essential cofactor for 

mitochondrial respiratory enzymes.11 It has been used as a safe and potent antioxidant 

for the treatment of diabetic neuropathy. This potent free-radical scavenger has been 

considered for the treatment or prevention of conditions such as diabetes,12 

Alzheimer’s disease,13 and atherogenic dyslipidemia.14 Because this versatile agent 

has recently been found to exert an antihypertensive effect in rodents,15 we 

hypothesized that -LA improves the vasoreactivity by the activation of AMPK in the 

hypertensive vasculature. Therefore, the goal of this study was to investigate the 

effects of -LA on the involvement of AMPK phosphorylation and the vasoreactivity 

using aortas excised from normotensive Wistar Kyoto (WKY) rats and spontaneously 

hypertensive rats (SHR). 
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Animals 

Male SHR and WKY rats, from a stock that originated from the Charles River 

Breeding Laboratories (Tokyo, Japan), were purchased from the National Laboratory 

Animal Breeding and Research Center of the National Science Council, Taiwan. The 

animals were housed individually in clear plastic cages and kept in an 

environmentally controlled room maintained at room temperature (23 ± 1 °C), relative 

humidity of 55 ± 5%, and a 12 h–12 h light–dark cycle. The animals were handled in 

accordance with the Guide for the Care and Use of Laboratory Animals published by 

the US National Institutes of Health (publication no. 85-23, revised 1996). This study 

was approved by the National Defense Medical Center Institutional Animal Care and 

Use Committee, Taiwan. 

Vascular ring preparation and organ bath experiments 

Male WKY rats or SHR were anesthetized with sodium pentobarbital (60 mg/kg, 

i.p.) and their thoracic aortas were isolated and placed in Kreb’s solution. The intact 

thoracic aortas were cleared of adhering periadventitial fat and cut into sections (3–4 

mm long). The detail process was as described previously.16 Concentration– response 

curves for -LA were constructed by adding norepinephrine (NE, 1 mol/l; Sigma, St 

Louis, MO, USA) to produce the maximum contraction, after which -LA (1–500 
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mol/l; Sigma) was added cumulatively and the relaxation recorded. To examine the 

roles of endothelium-derived NO and AMPK activation in the vascular response to 

-LA, the segments were incubated for 30 min with 100 mol/l NG-nitro-L-arginine 

methyl ester (L-NAME; Sigma) or 40 mol/l (6-[4-(2-piperidin-1-yl-ethoxy)- 

phenyl])-3-pyridin-4-yl-pyyrazolo[1,5-a]-pyrimidine (Compound C; an AMPK 

inhibitor; Merck, Whitehouse Station, NJ, USA), respectively, before they were 

contracted with NE (1 mol/l). 

Cell culture 

Rat aortic smooth muscle A10 cells (Bioresource Collection and Research 

Center) were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Gibco Life 

Technologies, Grand Island, NY, USA) supplemented with 10% fetal bovine serum 

(FBS; Gibco Life Technologies) at 37 °C in a humidified atmosphere containing 5% 

CO2. The cells were fed every 2–3 days and were subcultured when they reached 

90%–100% confluence. 

Cytotoxicity assay 

The reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide 

(MTT; Sigma-Aldrich, St Louis, MO, USA) was used to measure cell survival in a 

quantitative colorimetric assay.17 This assay is based on the capacity of mitochondrial 

enzymes (succinate dehydrogenase) in the cells to reduce MTT, forming the insoluble 
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Western blot analysis 

Aortas from WKY rats and SHR were isolated in Kreb’s buffer and cleaned of 

any connective tissue. The endothelial layer was mechanically disrupted by gently 

rubbing the luminal surface of the artery. The endothelium-denuded aortic rings were 

then incubated with -LA (100 mol/l) for 30 min. After incubation, the 

endothelium-denuded aortic rings were rapidly frozen in liquid nitrogen and stored 

at –80 °C until processed. The endothelium-denuded aortas were ground in a mortar 

containing liquid nitrogen. The powdered tissue was suspended in 1 ml of lysis buffer 

containing protease inhibitors, as described.16 In addition, the cellular proteins were 

extracted from the control and treated A10 cells. The washed cell pellets were 

resuspended in extraction lysis buffer, as described previously.18 

Samples containing equal amounts of protein were electrophoresed in 10% 

sodium dodecyl sulphate-polyacrylamide gels and transferred to a nitrocellulose 

membrane (Millipore, Bedford, MA, USA). The membranes were incubated with 

antibodies against rabbit anti-phosphorylated AMPK, rabbit anti-AMPK, rabbit 

anti-phosphorylated LKB1 (all 1:1000 dilution; Cell Signaling Technology, MA, 

USA), rabbit anti-CaMKK (1:1000 dilution; BD Transduction Laboratories, 

Lexington, KY, USA), and mouse anti--actin (1:2000 dilution; Sigma-Aldrich). The 
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membranes were then incubated with horseradish-peroxidase-conjugated secondary 

antibodies (1:1000 dilution; Cell Signaling Technology). Immunodetection was 

performed using an enhanced chemiluminescence kit (Pierce, Rockford, IL, USA). 

Protein quantities were measured by densitometric scanning of the blots using 

Image-Pro software (Media CyberMetrics, Inc., Phoenix, AZ, USA).  

Statistical analysis 

The results are presented as means ± s.e.m. Statistical evaluation was performed 

with two-factor analysis of variance followed by the Holm-Sidak test. A P value of 

less than 0.05 was deemed statistically significant.
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Vasorelaxation induced by ACh in SHR and WKY rats 

The addition of ACh to all the aortic rings with intact endothelium resulted in 

the concentration-dependent relaxation of the rings that had been precontracted with 

NE (1 mol/l). Figure 1 shows dose-response curves for ACh, and NO-dependent 

relaxation to ACh did not differ between aortic rings from four- and eight-week-old 

SHR and WKY rats. However, ACh-induced vasorelaxation was significantly reduced 

in both 16-week-old WKY rats and SHR, and the vasorelaxant response to ACh was 

significantly lower in SHR than in the age-matched WKY rats (Figure 1). 

Vasorelaxation induced by -LA in SHR and WKY rats 

Figure 2A shows that the aortic rings from four-week-old SHR and four- and 

eight-week-old WKY rats were not significantly affected by -LA (1–500 mol/l). 

However, -LA induced a dose-dependent relaxation of aortic rings from eight-, 

16-week-old SHR and 16-week-old WKY rats. The relaxation was greater in rings 

from 16-week-old SHR compared with age-matched WKY rats and eight-week-old 

SHR. Significant differences were seen at 30-500 mol/l -LA. Meanwhile, no 

significant differences were seen in the responses of aortic rings from 16-week-old 

SHR in either the presence or absence of L-NAME (100 mol/l) and similar pattern 

were also found from 16-week-old WKY rats (Figure 2B). The vehicle (0.1% ethanol) 
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had no significantly effect in the responses of aortic rings from either strain (data are 

not shown). 

Effects of the AMPK inhibitor, compound C, on -LA-induced vasorelaxation 

To investigate the role of AMPK in -LA-induced vasorelaxation, aortic rings 

obtained from 16-week-old SHR were treated with the AMPK inhibitor compound C. 

The results are shown in Figure 2C. After preincubation with compound C (40 

mol/l), -LA-induced vasorelaxation was reduced in the aortic rings from 

16-week-old SHR (-LA plus compound C, 26.6 ± 1.5% versus -LA, 44.6 ± 3.7%, 

P < 0.05). Vehicle (DMSO) had no significant effect on the vascular response to -LA 

(DMSO, 46.8 ± 2.1% versus -LA, 44.6 ± 3.7%). 

Effects of -LA on the phosphorylation of AMPK in aortic rings 

To demonstrate the physiological relevance of the findings described above, the 

effect of -LA on AMPK phosphorylation in isolated rat aortic rings was investigated. 

The expression of pAMPK, Ca2+/calmodulin-dependent kinase kinase (CaMKK), 

and pLKB1 were not significantly different in the isolated aortic rings obtained from 

four-week-old and eight-week-old WKY rats, but were significantly reduced in 

16-week-old WKY rats (Figures 3A, 3C, 3E, 3G). The expression of pAMPK, 

CaMKK, and pLKB1 were not altered by preincubation of the aortas with -LA (100 

mol/l; Figures 3A, 3C, 3E, 3G). In contrast, the expression of pAMPK and pLKB1 
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were significantly reduced in the isolated aortic rings obtained from eight- and 

16-week-old SHR compared with their expression in four-week-old SHR (Figures 3B, 

3D, 3H). AMPK and LKB1 were clearly phosphorylated after the aortas of 

16-week-old SHR were preincubated with -LA (Figures 3B, 3D, 3H). In addition, 

the expression of CaMKK were not significantly different in the isolated aortic rings 

obtained from four-week-old and eight-week-old SHR rats, but was significantly 

reduced in the isolated aortic rings obtained from 16-week-old SHR. The expression 

of CaMKK was significantly reduced after the aortas of eight-week-old SHR were 

preincubated with -LA (Figure 3F). 

Effects of -LA on cultured cell viability 

To exclude any possible artefactual interference, the effects of -LA (5–100 

mol/l) on cell viability were tested in A10 cells. Cell survival was not affected by 

exposure to -LA (5–100 mol/l) or vehicle (ethanol, < 0.01%) for 24 h (Figure 4A). 

Activation of AMPK by -LA in A10 cells 

To determine whether -LA induces the activation of AMPK, A10 cells were 

treated with various concentrations of -LA (5–100 mol/l) for 24 h. The expression 

of phosphorylated AMPK protein in the cell lysate was detected by western blotting. 

As shown in Figure 4B, treatment with -LA (10–50 mol/l) significantly increased 

the phosphorylation of AMPK, and pAMPK expression reached maximum levels 
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when the cells were treated with 10 mol/l -LA, progressively decreasing at higher 

-LA concentrations (30–50 mol/l). Treatment of the cells with -LA (10 mol/l) 

resulted in the time-dependent activation of AMPK, beginning after incubation for 3 h 

and reaching a maximum after 6 h (Figure 4C). Ethanol (< 0.01%; the vehicle for 

-LA) alone had no significant effect on the phosphorylation of AMPK in A10 cells 

(Figure 4B). 

CaMKK-mediated AMPK activation with -LA stimulation 

To determine whether -LA activates LKB1 and/or CaMKK in A10 cells, the 

cells were exposed to -LA (10 mol/l) for 6 h, and LKB1 and CaMKK protein 

expression was analyzed by western blotting. There was no significant difference in 

LKB1 protein expression between the -LA-treated and control cells (Figure 4D). 

However, A10 cells exposed to -LA exhibited a relative increase (2.5-fold) in 

CaMKK protein expression compared with that in the control cells (Figure 4E). 

Ethanol (< 0.01%; the vehicle for -LA) alone had no significant effect on the 

expression of LKB1 or CaMKK in A10 cells. The inhibition of CaMKK by STO-609 

(10 mol/l)19 abolished the phosphorylation of AMPK induced by -LA (Figure 4F).
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This study was to investigate that the vasodilatory effects of -LA and the 

possible mechanism of its action on aortic rings from SHR and WKY rats of different 

ages. Our results show that -LA produced a concentration-dependent vasodilatory 

effect on the aortic rings from SHR. This concentration-dependent effect was greater 

than that observed in age-matched WKY rats. Furthermore, the vasodilatory effect of 

-LA was almost identical in endothelium-intact and L-NAME-preincubated arteries 

from SHR and WKY rats. These results suggest that -LA induced vasorelaxation is 

not associated with NO pathway in either WKY rats or SHR. Instead, -LA may act 

directly on the vascular smooth muscle. In addition, both of LKB1 and AMPK 

phosphorylation were also lower in the endothelium-denuded aortas of 16-week-old 

SHR compared with that in younger SHR or in age-matched WKY rats. Preincubation 

with -LA markedly enhanced the LKB1 and AMPK phosphorylation in the 

endothelium-denuded aortas of 16-week-old SHR. The effects of -LA on vascular 

reactivity were markedly reduced by the AMPK inhibitor, compound C. These results 

suggest that the effects of -LA on vascular relaxation in SHR result from the 

enhanced phosphorylation of LKB1-AMPK in the aortic smooth muscle. 

Endothelial dysfunction, generally considered a reduction in endothelium- 

mediated vascular relaxation, has been reported in hypertensive and diabetic 
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arteries.20,21 Similar to those reports, the NO-dependent relaxation in response to ACh 

did n ot differ between the aortic rings from four- and eight-week-old rats of either 

strain in the present study (Figure 1). However, there was much less ACh-induced 

relaxation of the aortas from 16-week-old SHR than of those from younger SHR or 

age-matched WKY rats (Figure 1). -LA dose-dependently induced vasorelaxation in 

the preconstricted aortas from eight- and 16-week-old SHR, but not in those from 

WKY rats (Figures 2A). Preincubation of the aortas with L-NAME, an inhibitor of 

endothelial NOS, failed to block -LA-induced vasorelaxation (Figure 2B), 

suggesting that endothelial NOS is not involved in the vasorelaxation effects of -LA. 
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Although AMPK is traditionally considered a major regulator of cellular 

anabolic and catabolic pathways that conserve and synthesize ATP, several studies 

have suggested that endothelial AMPK also has important physiological functions, 

such as the modulation of the endothelial cell energy supply,22 the protection of cells 

from apoptosis,23 the mediation of endothelial NOS activation in response to shear 

stress,24 the regulation of inflammation and angiogenesis, and the maintenance of 

perfusion.25,26 A recent study has also shown that the treatment of aortic smooth 

muscle cells with AICAR leads to the activation of AMPK.27 In the present study, the 

expression of phosphorylated LKB1 and AMPK was much lower in the 

endothelium-denuded aortas from 16-week-old rats of both strains compared with that 
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in four- and eight-week-old rats and suggested that this could be causally related to 

the vascular dysfunction in hypertensive rats (Figure 3B, 3D, 3F). After incubation 

with -LA, the expression of pLKB1 and pAMPK were significantly increased in 

the endothelium-denuded aortas from 16-week-old SHR, but this phenomenon was 

not observed in WKY rats (Figure 3A, 3C, 3E). Moreover, the -LA-induced 

relaxation in the aortas from 16-week-old SHR was also significantly suppressed by 

preincubation with an AMPK inhibitor (Figure 2C). These data confirm the report by 

Goirand et al.28 and suggest that the activation of smooth-muscle LKB1-AMPK 

induces the vasorelaxation of the aorta and independently of NO. 

In additional to LKB1, in certain cell types CaMKK has also been shown to 

phosphorylate and activate AMPK in response to increase in intracellular Ca2+.19,29,30 

Previous studies had shown that the activation of AMPK by thrombin or α-LA in 

endothelial cells and C2C12 myotubes, respectively, was mediated by increasing of 

the intracellular Ca2+ concentration, which were abolished by STO-609 or siRNAs 

targeting CaMKK.31,32 However, in this study, the expression of CaMKK was 

significantly reduced in isolated aortas of eight-week-old SHR after preincubated with 

-LA (Figures 3F). This may be explained by the fact that the antihypertensive effect 

of α-LA is produced by increasing free sulfhydryl groups of calcium channels, leading 

to a decrease in cytosolic free calcium.15,33,34 Thus, this study suggested that the 
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elevation of AMPK phosphorylation may mainly contributed to the relaxation of 

α-LA in aortas from 8- and 16-week-old rats of SHR. Although we provide evidence 

that -LA mediated the AMPK signaling in cultured aortic smooth muscle cells (Fig 4) 

and in aortic tissue of SHR (Fig 3). Some limitations to our study need to be 

addressed; for example, -LA activates AMPK via CaMKK in normal cultured aortic 

smooth muscle cells (A10 cells) but via LKB1 in the endothelium-denuded aortas of 

SHR. These divergent results may simply be due to the intrinsic differences in the two 

experimental model systems (ie, cultured cells represent a normal state versus aortas 

tissue represent a hypertensive state). Further study need to clarify the upstream 

kinase involve in the regulation of AMPK phosphorylation in primary culture of 

aortae both from SHR and WKY rats. 

It is noteworthy that incubation with -LA produced significant vasorelaxation 

in the aortic rings of SHR, which was not observed in those of WKY rats. These 

differences in the vascular activity of -LA in SHR and WKY rats may be 

attributable to the structural and functional modifications present in the hypertensive 

state, such as the changes in superoxide levels,35 and reduced pAMPK expression 

(Figure 3B, 3F). -LA is well known as an antioxidant, and it directly scavenges 

free radicals. This suggests that the observed effects of -LA on the vascular 

responses in isolated SHR rat aortic rings could be attributable to the inhibition of 
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superoxide anions and/or their reactive oxygen metabolites. In SHR, the action of 

-LA on AMPK phosphorylation may also contribute to the vasorelaxation induced 

by -LA. Further studies are required to clarify the mechanism of -LA on the 

AMPK activation in hypertensive rats. 

In conclusion, our results suggest that reduced pLKB1 and pAMPK expression 

in the endothelium-denuded aorta plays an important role in the genesis of vascular 

dysfunction in hypertensive rats, and that -LA ameliorates vascular dysfunction in 

SHR by activating LKB1-AMPK in aortic smooth muscle. This study provides a 

rationale for the therapeutic use of -LA for vascular dysfunction in hypertension.
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Figure legend 

Figure 1 Relaxation responses to acetylcholine (ACh) in aortic rings from WKY rats 

and SHR. Symbols represent means ± s.e.m. (n = 6). *P < 0.05 vs. same strain 

four-week-old rats. #P < 0.05 vs. age-matched WKY rats. SHR, spontaneously 

hypertensive rats; WKY, Wistar–Kyoto rats. 

 

Figure 2 Relaxation responses to -LA in aortic rings precontracted with 

norepinephrine from (A) four-, eight- and 16-week-old WKY rats and SHR. Symbols 

represent means ± s.e.m. (n = 6). *P < 0.05 vs. same strain four-week-old rats. #P < 

0.05 vs. age-matched WKY rats. (B) Effects of L-NAME (100 mol/l) on the 

relaxation induced by -LA (100 mol/l) in aortic rings from 16-week-old SHR and 

WKY rats. Data are means ± s.e.m. (n = 6 in each group). *P < 0.05 vs. age-matched 

WKY. #P < 0.05 vs. treated with L-NAME. (C) Effects of the AMPK inhibitor, 

compound C (40 mol/l), on the relaxation induced by -LA (100 mol/l) in aortic 

rings from 16-week-old SHR. Data are means ± s.e.m. (n = 6 in each group). *P < 

0.05 vs. -LA alone. SHR, spontaneously hypertensive rats; WKY, Wistar–Kyoto rats; 

AMPK, AMP-activated protein kinase. 

 

Figure 3 Effects of -LA on AMPK phosphorylation and protein level, CaMKK 
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expression, and LKB1 phosphorylation in endothelium-denuded aortic tissues from 

WKY rats and SHR. In (A, B), representative western blot data are shown. (C, D), (E, 

F) and (G, H) are bar graphs for LKB1 phosphorylation, CaMKK expression and 

AMPK phosphorylation levels, respectively. Data are means ± s.e.m. (n = 6 in each 

group). *P < 0.05 vs. same treatment four-week-old rats. #P < 0.05 -LA-treated vs. 

age-matched-untreated rats. SHR, spontaneously hypertensive rats; WKY, 

Wistar–Kyoto rats; AMPK, AMP-activated protein kinase; CaMKK, 

calcium/calmodulin-dependent protein kinase. 

 

Figure 4 (A) Effects of -LA on cells viability. (B) The effect of -LA (5–100 mol/l) 

on AMPK phosphorylation in A10 cells. (C) The effect of -LA (10 mol/l) on the 

time course of changes in the phosphorylation of AMPK in A10 cells. (D, E) The 

effect of -LA (10 mol/l) on the expression of pLKB1 and CaMKK in A10 cells, 

respectively. (F) The modulation of -LA (10 mol/l)-induced AMPK 

phosphorylation by STO-609 (10 mol/l), a CaMKK inhibitor, in A10 cells. Data 

shown are means ± s.e.m. (n = 6). *P < 0.05 vs. control, #P < 0.05 vs. -LA. AMPK, 

AMP-activated protein kinase; CaMKK, calcium/calmodulin-dependent protein 

kinase. 

 


