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Abstract  

 Infrared (IR) glucuronide probes that can track β-glucuronidase (G) activity in vivo 

would substantially aid preclinical development of G-based imaging and therapies. 

However, IR glucuronide probes are not yet available. Here, we developed IR- and 

fluorescein (FITC-) difluoromethyphenol-glucuronide trapping (TrapG) probes. Upon 

G-mediated hydrolysis of the glucuronly bond of TrapG, a highly reactive alkylating 

group attaches the fluorochrome to nucleophilic moieties nearby G. FITC-TrapG was 

selectively trapped on purified E. Coli G (eG) or G-expressing CT26 cells 

(CT26/mG), but not on control bovine serum albumin (BSA) or CT26 cell in vitro. 

G-activated FITC-TrapG did not interfere with G activity and was found to label 

bystander proteins near G. For in vivo imaging, both FITC-TrapG and IR-TrapG 

specifically targeted subcutaneous CT26/mG tumors. However, only IR-TrapG could 

image CT26/mG tumors transplanted deep in the liver. Thus IR-TrapG may provide a 

valuable tool for imaging G activity to optimize G-based imaging and therapies. 
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Introduction 

-glucuronidase (G) has been widely used in prodrug-activating therapies1-4 and as 

a reporter gene to track the location of gene delivery vectors in preclinical studies5-8. The 

ability to image G activity in vivo will greatly aid in the optimization of G-based 

imaging and therapies. However, most G probes are suitable only for in vitro studies but 

not yet available for in vivo imaging of G activity. For example, Naphthol AS-BI 

β-D-glucuronide9,10, p-nitrophenyl--D-glucuronide (PNPG)11 and 

5-bromo-4-chloro-3-indolyl--D-glucuronic acid (X-GlcA, X-Gluc)12,13 are commonly 

used to detect G activity in cultured cells and in histological sections. However, these 

colorimetric substrates have poor sensitivities and relatively narrow dynamic ranges. A 

wide variety of fluorogenic substrates, such as fluorescein di--D-glucuronide (FDGlcU)7 

and 4-methylumbelliferyl -D-glucuronide (MU-GlcA)12 have been developed to 

increase detection sensitivity. Our pervious study demonstrated that fluorescein 

di--D-glucuronide (FDGlcU) can assess G activity in vitro and in vivo.7 The 

penetrability of the FDGlcU spectrum, however, is insufficient to monitor G-expressing 

tumors in deep organs in a living animal. Moreover, the signal generated with the 

FDGlcU probe rapidly diffuses away from G-expressing sites and thus only allows 

imaging of subcutaneous G-expressing tumors over a relatively narrow time window.7 
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Development of infrared glucuronide probes (800 nm) may facilitate imaging of deep 

tissues and improve imaging resolution for G.  

In this study, we developed an infrared (IR) fluorescent 

difluoromethyphenol-glucuronide (TrapG) probe. G-mediated hydrolysis of the 

glucuronly bond generates a highly reactive quinine methide intermediate that can attach 

the fluorochrome to nucleophilic side chains near G-expressing sites (Figure 1). The 

IR-TrapG probe is advantageous in that it provides a specific and direct “activity-based” 

enzyme profile for G. In addition, the high penetrability of IR signals could make this 

strategy useful for deep tissue imaging.14-16 Here we report the design and synthesis of 

two fluorescent probes for G: IR-TrapG and fluorescein FITC-TrapG. We first 

examined the specificity of these trapping probes by incubating FITC-TrapG with 

recombinant E. coli G (eG) or G-expressing mouse colon cancer cells (CT26/mG) 

in vitro. We investigated whether alkylation by activated FITC-TrapG affects G activity 

and whether FITC-TrapG could label bystander proteins in the vicinity of G activity. 

Finally, we examined whether IR-TrapG or FITC-TrapG could specifically image the 

location of G-expressing CT26 tumors transplanted under the skin or deep in the livers 

of mice. IR-TrapG displays high tissue penetrability and may be a useful tool for tracking 

G activity in vivo and for optimizing preclinical G-based therapies and imaging 
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systems. 
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Results 

Development of glucuronide trapping probes 

To develop novel glucuronide trapping probes, FITC and IR were linked to a 

glucuronide group via a difluoromethylphenol trapping moiety, to from FITC-TrapG and 

IR-TrapG. The glucuronide group acts as a hydrophilic and cell impermeable G 

substrate. G-mediated hydrolysis of the glucuronly bond in the probe exposes the 

quinine methide group which can crosslink FITC or IR to nearby nucleophiles (Figure 1). 

The design and synthesis of FITC-TrapG and IR-TrapG are shown in Schemes 1-5. 

Details of synthesis are described in the experimental section and supporting information. 

 

Characterization of glucuronide trapping probes in vitro 

To examine if G can specifically activate FITC-TrapG and expose the reactive 

alkylating group in vitro, graded amounts of FITC-TrapG were incubated with either 

purified E. coli G (eG) or bovine serum albumin (BSA) absorbed in microtiter plates. 

FITC that became attached to proteins in the wells was then detected using an anti-FITC 

antibody. Figure 2A shows that absorbance at 405 nm increased with the concentration of 

the probe added to eG. Conversely, incubation of FITC-TrapG with BSA did not result 

in accumulation of FITC in the wells. Similarly, mouse G (mG) tethered on the surface 
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of CT26 cells also activated FITC-TrapG and retained FITC (Figure 2B). No color 

development was noted after addition of FITC-TrapG to parental CT26 cells. These 

results indicate that the glucuronide trapping probes were specifically activated by G 

and stably retained. Furthermore, activated FITC-TrapG did not hamper G activity since 

100% enzymatic activity was maintained even at the highest concentration (40 g/mL) of 

FITC-TrapG (Figure 2C and 2D). We conclude that activated FITC-TrapG can be 

retained at sites of G activity without affecting its enzymatic activity.  

Conceptually, activated FITC-trapG probe can alkylate any nucleophile in close 

proximity to G. To test whether the activated probes could label bystander nucleophiles, 

we added FITC-TrapG to a mixture of eG and BSA in solution. Addition of 

FITC-TrapG resulted in labeling of FITC groups on both eG (74 kDa) and BSA (66 kDa) 

(Figure 3). In the absence of G-mediated activation, FITC-TrapG did not label the 

control protein BSA. We conclude that activated FITC-TrapG can label bystander 

nucleophiles in the vicinity of G enzyme activity. 

 

Imaging of G activity in subcutaneous tumors  

To examine whether the glucuronide trapping probes can specifically detect G 

activity in vivo, we intravenously injected FITC-TrapG to BALB/c nude mice bearing 
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subcutaneous CT26 or CT26/mG tumors. Fluorescent signals were measured in live 

mice with a noninvasive optical imaging system. Figure 4A shows that the fluorescent 

intensity (defined as photons/sec/cm2/sr) in the CT26/mG tumors were greater than in 

the control CT26 tumors at 24, 48 and 72 hours, respectively. In line with the imaging 

results, FITC-derived fluorescence was retained in CT26/mG tumors but not control 

CT26 tumors, which was consistent with X-GlcA staining for G activity (Figure 4B). 

Similarly, IR-TrapG could specifically label G-expressing cells in vitro (Figure 5A) and 

subcutaneous G-expressing tumors in vivo. Cell-associated IR intensity was 2.4, 2.6, 

and 2.8-fold greater in CT26/mG cells than in control CT26 cells (Figure 5A). IR 

signals also increased over time in subcutaneous CT26/mG tumors as compared to the 

control CT26 tumors at 24, 48, and 72 hours (Figure 5B). We conclude that the 

glucuronide trapping probes can image G activity in live animals. 

 

Imaging of G activity in tumors transplanted in livers 

Deep tissues present a major technical challenge to optical imaging. To test whether 

IR-TrapG can be used for deep tissue imaging, we injected IR-TrapG to BALB/c nude 

mice that had CT26 or CT26/mG tumors transplanted under their liver capsule. 

FITC-TrapG was also injected in separate mice with liver tumors. Figure 6A shows that 
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IR signals were detected in live mice bearing CT26/mG tumors in their liver. Consistent 

with the noninvasive imaging results, significantly stronger IR signals were recorded in 

livers isolated from mice bearing CT26/mG tumor transplants than in mice bearing 

control CT26 tumors. On the contrary, no FITC signal was detected in live mice; FITC 

signals were only detected when animals were killed and livers were placed directly 

under the detector (Figure 6B). Collectively, these results demonstrate that IR-TrapG can 

detect G activity in deep tissues. 
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Discussion 

We have developed an IR glucuronide trapping probe (IR-TrapG) for in vivo 

imaging of G expression in deep tissues. G-mediated hydrolysis of the glucuronyl 

bond of IR-TrapG led to crosslinking of the probe onto nearby nucleophiles at 

G-expressing sites. The in vitro analyses demonstrated that this novel glucuronide 

trapping probe did not affect G activity and the activated probe could label bystander 

proteins. The high penetrability of IR signals through tissues renders this probe especially 

useful for noninvasive optical imaging of G expression in deep tissues. 

IR fluorescent dyes are useful for biomedical studies. IR fluorochromes (700 

nm~900 nm) have high signal/background ratios and penetrate tissues better than those 

with shorter wavelengths.17-19 A -galatosidase (LacZ) activated far red probe (DDOAG, 

659nm) was reported to allow non-invasive monitoring of the expression and activity of 

LacZ in vivo.20 Moreover, a PEGylated near-IR probe (PEG-NIR797, 797nm) could 

detect lung metastasis in vivo.21 Adams and colleagues also reported that an IR Dye 

(800nm) conjugated epidermal growth factor produced better imaging of EGF receptor 

positive tumors than Cy5.5 (710nm).22 In this report, we demonstrate that IR-TrapG 

(820nm), but not FITC-TrapG, can be used to visualize G-expressing tumors in deep 

tissues (liver).  
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Activity-based probes have gained marked success for in vivo profiling of enzymatic 

activities including proteases19,23, thymidine kinase24,25, and galatosidase20,26. This 

concept depends heavily on the specific binding of the probe to the active site of the 

target enzyme. In most cases, activity-based probes irreversibly inactivate the target 

enzyme. By contrast, enzymatic activation of noninhibitory probes leads to signal 

amplification and thus improves detection. In addition, noninhibitory imaging probes do 

not interfere with therapeutic efficiency of enzyme-based prodrug therapies. 

Difluoromethylphenol has been demonstrated to display trapping activity after enzymatic 

activation,27 but does not irreversibly inactivate enzymes.28 Our glucuronide trapping 

probe does not appear to inhibit G activity, which should enhance imaging by 

continuous activation. As many glucuronide antitumor prodrugs have been developed, 

such as 9-aminocamptothecin glucuronide (9ACG)29 and p-hydroxyaniline 

mustard glucuronide (BHAMG)30, to selectively kill G over-expressing cancers29,31,  

the glucuronide trapping probes may be useful for (1) screening G over-expressing 

tumors and, (2) monitoring anti-cancer efficacy by glucuronide prodrugs in personalized 

therapy. 

The trapping moiety (difluoromethylphenol) may be a versatile linker for multiple 

imaging systems because difluoromethylphenol could be, at least conceptually, coupled 
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to other imaging probes to detect G activity. In this report, we have demonstrated that 

difluoromethylphenol could be conjugated to two fluorescent probes (FITC and IR-820) 

for optical imaging. Following derivative chemical principles, difluoromethyphenol is 

expected to be able to link a glucuronide group to different imaging agents, such as 

1,4,7-tricarboxymethylene-1,4,7,10-tetraazacyclododecane (DO3A)32 and 

1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA)25 for magnetic 

resonance imaging, or radioiodinated tyramine4 and fluoroethylamine33 for nuclear 

imaging (PET and SPECT). Development of G-specific probes along these lines may 

further broaden selection of tools to monitor G expression in vivo. Furthermore, the 

trapping strategy may hold great potential for developing a variety of novel imaging 

probes to detect other enzymes relevant to human diseases. 
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Conclusions: 

The IR glucuronide trapping probe possesses several attractive attributes. The probe 

has high penetrability for noninvasive imaging of G activity in deep tissues. The 

trapping moiety (difluoromethylphenol) does not inhibit G activity, allowing 

enhancement of image intensity. The trapping strategy may be extended to other imaging 

systems or other enzymes. Based on these advantages, we believe that the glucuronide 

trapping probe may provide a valuable tool for imaging G activity in preclinical studies. 
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Figures: 

 

Figure 1. Mechanism of the G activity-based trapping probe. Upon G-mediated 

hydrolysis of the glucuronly bond, a highly reactive quinine methide intermediate is 

generated that leads to crosslinking of the probe to nearby nucleophiles. 
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Scheme 1. Chemical structure and synthesis of methyl 

1-O-(2-difloromethyl-4-amino)--D-glucopyranuronate 

 

Scheme 2. Autodegradation of N’-fluorescein–N”-[4-O-(methyl-2,3,4-tri-O-acetyl- 

-D-glucopyranuronate)-3-difloromethylphenylthiourea 
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Scheme 3. Chemical structure and synthesis of 

N’-fluorescene-N”-[4-O-(-D-glucopyranuronate)-3-difloromethylphenyl-S-methyllthi

ourea (FITC-TrapG) 

Reagents:
i, TEA, CH2Cl2, rt, 1h
ii, CH3I, rt, 24 h
iii, Potassium trimethylsilanolate, THF, rt
iv, 1N HCl, 0oC
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Scheme 4. Chemical structure and synthesis of IR-820.SPh.NCS 
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Scheme 5. Chemical structure and synthesis of N’-(p-aminophenylthioether of 

IR-820-N”-[4-O-(-D-glucopyranuronate)-3-difloromethylphenyl-S-methyllthiourea 

(IR-TrapG) 

Reagents:
i, Compound 13, THF or DMF, rt, 4-5 h
ii, CH3I, rt, 2 h
iii, Potassium trimethylsilanolate, THF, rt
iv, 1N HCl, 0oC

O
HO

HO
OH

O NH2

H3COOC
H

F
F

7

i; ii

O
HO

HO
OH

H3COOC

O

N
H

CHF2

N

S

S

N+
N

R
R

O
HO

HO
OH

HOOC

O

N
H

CHF2

N

S

S

N+
N

R
R

IR-TrapG, R = -(CH2)4SO3H

14, R = -(CH2)4SO3H

iii, iv

 

 

 

 page 17.

Page 17 of 43

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Figure 2. G-specific activation of FITC-TrapG in vitro. Graded amounts of 

FITC-TrapG were incubated with (A) G (filled squares) or BSA (open squares) or (B) 

CT26/mG (filled squares) or CT26 (open squares) precoated in the wells of a microtiter 

plate. Activation and trapping of FITC-TrapG was determined by ELISA using an 

anti-FITC antibody. After FITC-TrapG treatment, G activity was determined by 

hydrolysis of p-NPG substrate in (C) purified proteins (eG, BSA) or (D) cells 

(CT26/mG, CT26). 
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Figure 3. Bystander trapping by FITC-TrapG. FITC-TrapG was incubated with eG, 

BSA or a mixture of eG and BSA. Activation and trapping of FITC-TrapG to proteins 

was detected by Western blotting using an anti-FITC antibody (right panel). Protein 

loading was visualized by Coomassie blue staining (left panel). 

 

Figure 4. Specific activation of FITC-TrapG in vivo. FITC-TrapG was intravenously 

injected to BALB/c nude mice bearing CT26/mG (right flank) and CT26 (left flank) 

tumors. (A) In vivo optical imaging of FITC-TrapG at 24, 28, 72 hours after probe 

injection. Tumor tissue was also harvested to confirm specific fluorescent signals. (B) 

CT26/mG and CT26 tumors were resected at 24 hours after FITC-TrapG injection, 

stained with X-GlcA and examined under bright field and fluorescent field illumination. 

Scale bar: 100 m. 
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Figure 5. Optical imaging using IR-TrapG. (A) Optical imaging of CT26/mG or 

CT26 cells (3106/well) pretreated with 2, 1, 0.5, and 0 g/ml of IR-TrapG. (B) Optical 

imaging of subcutaneous CT26/mG and CT26 tumors in mice at 24, 28, 72 hours after 

probe injection. 

 

 

Figure 6. Deep tissue imaging of G-expressing tumors using IR-TrapG. IR-TrapG or 

FITC-TrapG was injected into BALB/c mice bearing CT26 or CT26/mG tumor 

transplants in livers. Noninvasive optical imaging of (A) IR-TrapG or (B) FITC-TrapG 

was performed at 24 hours after probe injection. Livers were harvested to confirm 

location of tumors and specificity of the fluorescent signal. Red dotted lines indicate 

tumor locations in the liver. 
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Experimental Section 

Design and synthesis of FITC-TrapG and IR-TrapG 

The detailed chemistry procedures are described in supporting information. To 

develop novel glucuronide trapping probes, FITC or IR was linked to a glucuronide 

group by a trapping moiety, difluoromethylphenol, to from FITC-TrapG or IR-TrapG as 

activity-based probes. FITC-TrapG and IR-TrapG were prepared from methyl 

1-α-bromo-1-deoxy-2,3,4-tri-O-acetyl--D-glucopyranuronate (3) and 

2-hydroxy-5-nitrobenzaldehyde using a previously published method for the synthesis of 

glucuronide derivates,34 with minor modifications. The aldehyde group in 4 was 

fluorinated to a difluoromethyl group with diethylaminosulfur triflouride (DAST). The 

nitro group in 5 was reduced in a palladium-catalyzed reaction to obtain 6 (Scheme 1). 

For synthesis of FITC-TrapG, the aniline in 6 was reacted with fluorescein isothiocyanate 

(FITC) to obtain a methyl O-acetyl protected FITC-TrapG (8). However, when 

compound 8 was deprotected with sodium methoxide, the thiourea linkage was 

hydrolyzed (Scheme 2), indicating that the thiourea linkage is susceptible to hydrolysis at 

basic or physiological pH. We modified the synthesis pathway to enhance stability. The 

acetyl group in compound 6 was deprotected by sodium methoxide to give 7 (Scheme 1). 

The aniline in 7 was condensed with FITC, following by addition of methyl iodide (CH3I) 
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to create a S-methyl pseudothiourea linkage35 in FITC-TrapG (9). Next, 9 was 

deprotected with potassium trimethylsilanolate, followed by acidification with 1N HCl to 

obtain FITC-TrapG (10) (Scheme 3). 

For synthesis of IR-TrapG, the fluorescein group in FITC-TrapG was replaced by an 

IR dye (IR-820). The commercial IR-820 chlorocyanine dye was condensed with 

p-nitrothiophenol by nucleophilic substitution to obtain compound 11. The nitro group in 

11 was reduced by SnCl2.2H2O to generate an aminothioether dye, compound 12. The 

amino group in 12 was reacted with thiophosgene to generate the isothiocyanate, 

compound 13 (Scheme 4). IR-TrapG was prepared from compound 7 which was reacted 

with isothiocyanate 13, followed by addition of CH3I to create the S-methyl 

pseudothiourea linkage of IR-TrapG (14). Next, compound 14 was deprotected with 

potassium trimethylsilanolate, followed by acidification by 1N HCl to obtain IR-TrapG 

(15) (Scheme 5). 

 

Cells and mice 

CT26 and CT26/mG cells7 were maintained in Dulbecco’s minimal essential medium 

(DMEM) (Sigma-Aldrich, St Louis, MO, USA) supplemented with 10% bovine calf 

serum, 100 g/ml penicillin and 100 g/ml streptomycin at 37℃ in an atmosphere of 5% 
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CO2. Female BALB/c nude (BALB/cAnN.Cg-Foxn1nu/CrlNarl) mice, 5~6 weeks old, 

were purchased from the National Laboratory Animal Center, Taiwan. The animal 

experiments were conducted in accordance with the standards set forth by the Kaohsiung 

Medical University Institutional Animal Care and Use Committee. 

 

Specific activation of FITC-TrapG in vitro 

Purified eG (5 g/well) and bovine serum albumin (5 g/well) (Sigma-Aldrich) 

were coated overnight in 96 well microtiter plates in phosphate-buffered saline (PBS) 

(pH 8.0) and then blocked with 5% skin milk at room temperature for 2 hours. 

CT26/mG and control CT26 cells were seeded at 1.5105 cells/well in 96 well microtiter 

plates in culture medium overnight. FITC-TrapG was 2-fold serially diluted (starting 

from 40 g/mL) in PBS, and then added to the proteins or cells at 37℃ for 1 hour. The 

plates were washed with PBS and then stained with a mouse anti-FITC antibody 

(Sigma-Aldrich), followed by a horseradish peroxidase-conjugated goat anti-mouse IgG 

antibody (Jackson ImmunoResearch Laboratories, West Grove, PA, USA). Following 

three washes with PBS, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) 

(Sigma-Aldrich) with 0.03% hydrogen peroxide (H O2 2) (Sigma-Aldrich) was added to 

the wells, and color development was measured on a microplate reader (Molecular 
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Device, Menlo Park, CA) at OD 405 nm. 

 

G enzymatic activity after FITC-TrapG treatment 

To test whether activated FITC-TrapG inactivates G enzyme activity, plate-bound 

eG or CT26/mG cells were incubated with FITC-TrapG as described above. Following 

proper washing in PBS, p-nitrophenyl -D-glucuronide (PNPG) (Sigma-Aldrich) was 

added to the plates. Color development was measured on a microplate reader at OD 405 

nm. 

 

Bystander trapping of FITC-TrapG  

Purified eG, BSA, or a mixture of eG/BSA (50 g/each in PBS) were incubated 

with FITC-TrapG (40 g/ml) at 37℃ for 1 h. Proteins were precipitated by cold acetone 

and centrifuged at 12,000xg for 15 min, then electrophoresed on a 10% reducing 

SDS-PAGE (0.5 g/lane) and transferred to a NC membrane (Pall, Port Washington, NY, 

USA). Membranes were blocked with 5% skim milk in PBS. FITC attached on proteins 

was detected by immunoblotting using a mouse anti-FITC antibody (Sigma-Aldrich), a 

horseradish peroxidase-conjugated goat anti-mouse IgG antibody (Jackson 

ImmunoResearch Laboratories) and an enhanced chemiluminescence kit (Millipore, 
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Billerica, MA, USA). 

 

In vitro imaging of IR-TrapG 

CT26 and CT26/mG cells (3106) were stained with 2, 1, 0.5 or 0 g/ml IR-TrapG in 

PBS containing 0.05 BSA at 37℃ for 2 h. The cells were washed with PBS 3 times, 

and the fluorescence was detected on an IVIS50 optical imaging system (excitation: 

760nm, emission: 835 nm, Caliper Life Sciences, MA, USA). 

 

In vivo imaging of FITC-TrapG and IR-TrapG 

BALB/c nude mice (n3) bearing CT26 (in left flanks) and CT26/mG (in right flanks) 

tumors (50-100 mm3) were intravenously injected with 500 µg/mouse of FITC-TrapG or 

100 g/mouse of IR-TrapG in 100 L PBS. Tumor-associated fluorescence was recorded 

on an IVIS50 at 24, 48 and 72 hours after probe injection. We also tested 100 g/mouse 

of FITC-TrapG, but there was no significant difference (data not shown).  

 

Histological analysis  

Tumors were excised at 24 hours after FITC-TrapG injection, embedded in OCT 

compound (Tissue-Tek, CA, USA) at 80℃, and sectioned into 10 m slices. Adjacent 
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tumor sections were stained for G activity with the -glucuronidase Reporter Gene 

Staining Kit (Sigma-Aldrich). The sections were viewed in bright field and fluorescence 

modes on an Eclipse TE2000-U Inverted Microscope (Nikon, Tokyo, Japan). 

 

Tumor transplantation into liver and tumoral imaging using FITC-TrapG or 

IR-TrapG 

BALB/c nude mice were anesthetized with ketamine/xylazine (135 mg/kg; 15 mg/kg) 

and abdomen cavities were surgically opened. 0.1  0.2 cm pieces of CT26/G or CT26 

tumors were transplanted under the capsule of the livers (n3 for each group). One week 

after the transplantation, mice were intravenously injected with 500 g/mouse of 

FITC-TrapG or 100 µg/mice of IR-TrapG in 100 L PBS. Whole body fluorescent 

signals were recorded on an IVIS50 optical imaging system at 24 hours after probe 

injection. After noninvasive imaging, livers were harvested and placed directly under the 

detector of an IVIS50 system to reaffirm the location of tumors.  

 

Supporting information 

The detailed chemistry procedures and nuclear magnetic resonance (NMR) data of FITC- 

and IR- TrapG are described in supporting information. This material is available free of 
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charge via the Internet at http://pubs.acs.org. 
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Figure 1. Mechanism of the βG activity-based trapping probe. Upon βG-mediated hydrolysis of the 
glucuronly bond, a highly reactive quinine methide intermediate is generated that leads to 

crosslinking of the probe to nearby nucleophiles.  
44x33mm (300 x 300 DPI)  

 
 

Page 32 of 43

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Scheme 1. Chemical structure and synthesis of methyl 1-O-(2-difloromethyl-4-amino)-β-D-
glucopyranuronate  

109x73mm (600 x 600 DPI)  
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Scheme 2. Autodegradation of N’-fluorescein–N”-[4-O-(methyl-2,3,4-tri-O-acetyl-β-D-

glucopyranuronate)-3-difloromethylphenylthiourea  
77x34mm (600 x 600 DPI)  

 
 

Page 34 of 43

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Scheme 3. Chemical structure and synthesis of N’-fluorescene-N”-[4-O-(β-D-glucopyranuronate)-3-
difloromethylphenyl-S-methyllthiourea (FITC-TrapG)  

96x53mm (600 x 600 DPI)  
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Scheme 4. Chemical structure and synthesis of IR-820.SPh.NCS  

108x69mm (600 x 600 DPI)  
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Scheme 5. Chemical structure and synthesis of N’-(p-aminophenylthioether of IR-820-N”-[4-O-(β-

D-glucopyranuronate)-3-difloromethylphenyl-S-methyllthiourea (IR-TrapG)  
105x64mm (600 x 600 DPI)  
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Figure 2. βG-specific activation of FITC-TrapG in vitro. Graded amounts of FITC-TrapG were 
incubated with (A) βG (filled squares) or BSA (open squares) or (B) CT26/mβG (filled squares) or 
CT26 (open squares) precoated in the wells of a microtiter plate. Activation and trapping of FITC-

TrapG was determined by ELISA using an anti-FITC antibody. After FITC-TrapG treatment, βG 
activity was determined by hydrolysis of p-NPG substrate in (C) purified proteins (eβG, BSA) or (D) 

cells (CT26/mβG, CT26).  
99x83mm (600 x 600 DPI)  
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Figure 3. Bystander trapping by FITC-TrapG. FITC-TrapG was incubated with eβG, BSA or a mixture 
of eβG and BSA. Activation and trapping of FITC-TrapG to proteins was detected by Western 

blotting using an anti-FITC antibody (right panel). Protein loading was visualized by Coomassie blue 
staining (left panel).  
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Figure 4. Specific activation of FITC-TrapG in vivo. FITC-TrapG was intravenously injected to BALB/c 
nude mice bearing CT26/mβG (right flank) and CT26 (left flank) tumors. (A) In vivo optical imaging 
of FITC-TrapG at 24, 28, 72 hours after probe injection. Tumor tissue was also harvested to confirm 

specific fluorescent signals. (B) CT26/mβG and CT26 tumors were resected at 24 hours after FITC-
TrapG injection, stained with X-GlcA and examined under bright field and fluorescent field 

illumination. Scale bar: 100 µm.  
65x31mm (300 x 300 DPI)  
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Figure 5. Optical imaging using IR-TrapG. (A) Optical imaging of CT26/mβG or CT26 cells 
(3×106/well) pretreated with 2, 1, 0.5, and 0 µg/ml of IR-TrapG. (B) Optical imaging of 

subcutaneous CT26/mβG and CT26 tumors in mice at 24, 28, 72 hours after probe injection.  
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Figure 6. Deep tissue imaging of βG-expressing tumors using IR-TrapG. IR-TrapG or FITC-TrapG 
was injected into BALB/c mice bearing CT26 or CT26/mβG tumor transplants in livers. Noninvasive 
optical imaging of (A) IR-TrapG or (B) FITC-TrapG was performed at 24 hours after probe injection. 

Livers were harvested to confirm location of tumors and specificity of the fluorescent signal. Red 
dotted lines indicate tumor locations in the liver.  
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