Chloroacetic acid induced cell apoptosis through ROS/endoplasmic reticulum stress pathway in neuronal cell

Dong-Zong Hung¹, Chun-Hung Chen², Feng-Cheng Tang³, Cheng-Chieh Yen⁴, Tien-Hui Lu⁵, Shing-Hwa Liu⁶, Ya-Wen Chen⁵, Chun-Fa Huang⁷

¹Toxicology Center, China Medical University Hospital, Taichung, Taiwan ²Department of Emergency, China Medical University Hospital, Taichung, Taiwan ³Department of Occupational Medicine, Changhua Christian Hospital, Changhua, Taiwan

⁴Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan

⁵Department of Physiology and Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan

⁶Institute of Toxicology, National Taiwan University, Taipei, Taiwan

⁷School of Chinese Medicine, China Medical University, Taichung, Taiwan

Abstract:

Chloroacetic acid (CA), a toxic chlorinated analog of acetic acid, is widely used as an herbicide and in the synthesis of many organic compounds. Some studies have reported that CA can cause histopathological alterations and functional impairment in brain. However, the toxicological effects and underlying mechanisms of CA-induced neurotoxicity are mostly unclear. Here, we investigated the effects and possible mechanisms of CA in cultured neuron cells (Neuro-2a cells). Treatment of Neuro-2a cells with CA for 24h significantly induced cytotoxicity, reduced cell viability, and oxidative stress damage (membrane LPO production) which accompanied by several features of apoptosis, including the increases in Annexin V-binding cells and caspase-3/-7 activity. CA also triggered endoplasmic reticulum (ER) stress as indicated by the enhancement in ER stress-related mRNA and protein molecules induction (such as glucose-regulated protein 78 (GRP78), GRP94, C/EBP homologue protein (CHOP), X-box binding protein 1 (XBP-1)), procaspase-12 cleavage, and calpain activation. Transfection of cells with GRP78 or GRP94 siRNA reduced CA-induced caspase-3 expression in Neuro-2a cells. Meanwhile, these CA-induced apoptosis and ER stress-related signals could be effectively reversed by antioxidant *N*-acetylcysteine (NAC). Therefore, our results suggest that CA caused neuron cell apoptosis via oxidative stress-triggered ER stress signaling pathway.

Keywords: Chloroacetic acid; Neurotoxicity; apoptosis; Oxidative stress; ER stress