English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 29490/55136 (53%)
造訪人次 : 1995884      線上人數 : 464
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CMUR管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.cmu.edu.tw/ir/handle/310903500/6940


    題名: Regenerative therapy for stroke.
    作者: (Ying-Chao Chang);徐偉成;林欣榮(Shinn-Zong Lin);李鴻(Hung Li)*
    貢獻者: 醫學院分子系統生物醫學研究所;中國附醫院長室
    關鍵詞: Stem cells;SDF-1/CXCR4;Hypoxic-inducible factor-1;β2-integrins;β1-integrins
    日期: 2007-04
    上傳時間: 2009-08-26 16:05:05 (UTC+8)
    摘要: Stroke remains a leading cause of death and disability worldwide. An increasing number of animal studies and preclinical trials have, however, provided evidence that regenerative cell-based therapies can lead to functional recovery in stroke patients. Stem cells can differentiate into neural lineages to replace lost neurons. Moreover, they provide trophic support to tissue at risk in the penumbra surrounding the infarct area, enhance vasculogenesis, and help promote survival, migration, and differentiation of the endogenous precursor cells after stroke. Stem cells are highly migratory and seem to be attracted to areas of brain pathology such as ischemic regions. The pathotropism may follow the paradigm of stem cell homing to bone marrow and leukocytes migrating to inflammatory tissue. The molecular signaling therefore may involve various chemokines, cytokines, and integrins. Among these, stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) signaling is required for the interaction of stem cells and ischemia-damaged host tissues. SDF-1 is secreted primarily by bone marrow fibroblasts and is required for BMSC homing to bone marrow. Overexpression of SDF-1 in ischemic tissues has been found to enhance stem cell recruitment from peripheral blood and to induce neoangiogenesis. Furthermore, SDF-1 expression in the lesioned area peaked within 7 days postischemia, in concordance with the time window of G-CSF therapy for stroke. Recent data have shown that SDF-1 expression is directly proportional to reduced tissue oxygen tension. SDF-1 gene expression is regulated by hypoxic-inducible factor-1 (HIF-1), a hypoxia-dependent stabilization transcription factor. Thus, ischemic tissue may recruit circulating progenitors regulated by hypoxia through differential expression of HIF-1α and SDF-1. In addition to SDF-1, β2-integrins also play a role in the homing of hematopoietic progenitor cells to sites of ischemia and are critical for their neovascularization capacity. In our recent report, increased expression of β1-integrins apparently contributed to the local neovasculization of the ischemic brain as well as its functional recovery. Identification of the molecular pathways involved in stem cell homing into the ischemic areas could pave the way for the development of new treatment regimens, perhaps using small molecules, designed to enhance endogeneous mobilization of stem cells in various disease states, including chronic stroke and other neurodegenerative diseases. For maximal functional recovery, however, regenerative therapy may need to follow combinatorial approaches, which may include cell replacement, trophic support, protection from oxidative stress, and the neutralization of the growth-inhibitory components for endogenous neuronal stem cells.
    關聯: CELL TRANSPLANTATION 16(2)171 ~181
    顯示於類別:[分子系統生物醫學研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    58KbUnknown406檢視/開啟


    在CMUR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

     


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋