English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 29490/55136 (53%)
造訪人次 : 1576860      線上人數 : 236
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CMUR管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.cmu.edu.tw/ir/handle/310903500/690


    題名: 紋理特徵參數分析用於偵測乳房攝影微小鈣化群;Textural Features Analysis for Detection of Clustered Microcalcifications on Mammograms
    作者: 黃乙哲;Yi-Jhe Huang
    貢獻者: 中國醫藥大學:臨床醫學研究所碩士班
    關鍵詞: 乳房攝影;微小鈣化群;電腦輔助偵測系統;紋理特徵參數;共同發生矩陣;特徵參數選擇;支援向量機;Mammography;Clustered Microcalcification;Computer-aided detection system;Texture feature;Grey level co-occurrence matrix;Feature selection;Support vector machine
    日期: 2009-06-15
    上傳時間: 2009-08-12 14:23:31 (UTC+8)
    摘要: 在台灣,乳癌已是國內婦女最常見的癌症疾病。除了常規女性自我乳房檢查之外,乳房攝影檢查被視為是早期診斷最有效的工具。臨床上,乳房攝影影像中的微小鈣化群常是惡性變化的指標。然而,其本身的細小構造以及與背景組織的低對比度,時常造成臨床醫師判讀上的困難。在本研究中,發展一套電腦輔助偵測系統用於偵測微小鈣化群上,藉以減少放射科醫師漏看的機率,提高診斷效率。
    經由一系列影像前處理步驟找出可疑微小鈣化點。之後擷取共同發生矩陣(GLCM)相關紋理特徵參數用以訓練分類器,達到偵測微小鈣化群目的。在此使用逐次前饋式搜尋法(SFS)、逐次後饋式搜尋法(SBS)和F分數(F-score)來找出對分辨微小鈣化有較佳能力的特徵參數子集合。本研究使用111張自中國醫藥大學附設醫院放射科所提供的全域數位式乳房攝影原始影像,其中57張當作訓練組,54張當測試組。此外,效能評估方法則是使用ROC曲線及曲線下面積(Az)當作比較標準。
    根據實驗結果,Laws濾波影像中的LS影像提供的紋理特徵參數對分辨個別微小鈣化有最好的結果,其ROC曲線下面積值達0.9896。合併使用Laws濾波影像中的LS和LE影像的紋理特徵參數可以提升分辨效能到0.9897。本研究所提出的方法對於偵測微小鈣化群可得到90%的敏感度且平均每張影像只有0.74個偽陽性產生。

    Breast cancer is the most common type of cancer among women in Taiwan. Except regular breast self-exams, mammography is regarded as the most effective tool for early detection. Clinically, clustered microcalcifications (MCCs) on mammograms are considered to be a strong indicator of malignancy. However, their tiny size and low contrast to surrounding tissues always make radiologists hard to interpret. In this study, we develop a computer-aided detection system (CADe) for MCCs, which is able to help radiologists reducing missing rates as well as arising diagnostic efficiencies.
    Via image pre-processing procedures, some candidates of MCCs were found. Afterwards, the textural features were extracted from the GLCM (gray-level co-occurrence matrix) and the SVM (Support Vector Machine) classifier was well trained to detect MCCs. Sequential forward selection, sequential backward selection and F-score were used to find discriminative features. We took 111 full-field digital mammography raw images obtained from CMUH, among them 57 images were used as training, and the rest 54 images were used for test. The performance of the proposed scheme was evaluated by means of the receiver operating characteristic (ROC) curves and area under curve (Az).
    According to the experimental results, the texture features extracted from Laws’ LS method have the best accuracy in MCCs detection, which Az is equal to 0.9896. The composition of texture features extracted from LS and LE images has the performance of Az = 0.9897. The proposed method has 90% of sensitivity and 0.74 FPs/image in detection of MCCs.
    顯示於類別:[臨床醫學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    cmu-98-9683003-1.pdf2872KbAdobe PDF1060檢視/開啟
    index.html0KbHTML20檢視/開啟


    在CMUR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

     


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋