摘要: | 壹、利用藥理學和轉基因秀麗隱感線蟲模型研究chiisanoside的抗帕金森的功用
帕金森氏症(PD)是老年人中第二種常見的中樞神經退化性疾病。有兩個主要的病理特徵,中腦黑質緻密部(SNpc)中多巴胺能神經元的漸進式喪失,以及神經元中α-突觸核蛋白(α-syn)的聚集,最終導致運動功能障礙。目前用於PD的治療藥物提供症狀緩解並不能治愈。現今對於PD的治療策略包括通過改善疾病特異性致病過程來阻斷PD進展的新藥物。 Chiisanoside(CSS)是刺五加科植物中含有的成分,具有抗發炎,治療糖化相關的疾病(糖尿病)等功能。在這個研究中發現CSS降低了轉基因秀麗隱桿線蟲模型中α-syn的堆積。 CSS也可以減少6-羥基多巴胺誘導的多巴胺能神經元變性,減少了線蟲食物敏感行為異常,並逆轉了藥理學線蟲模型中壽命的減少。此外,我們發現CSS是藉由降低凋亡途徑的相關基因egl-1表達和增加自噬相關基因lgg-1的產生為改善PD病理學的分子機制。
貳、人類小膠質細胞模型中環核?酸結合域2(CNBD2)蛋白質在炎症相關α-突觸核蛋白病中的角色:聚焦於帕金森病
帕金森病(PD)是第二常見且與年齡相關的神經退行性疾病。其病理特徵包括黑質緻密部中多巴胺(DA)神經元的喪失,以及α-突觸核蛋白(α-Syn)聚集,而後形成路易體。 PD伴有慢性神經炎症,線粒體功能障礙和氧化應激。 NLRP3激活的小膠質細胞是PD中錯誤折疊的α-Syn觸發的神經炎症的常見途徑。在這項研究中,透過酵母雙雜交篩?和共免疫沉澱技術,我們發現了一個新的與α-Syn*A53T交互作用的夥伴:環核?酸結合結構域2(CNBD2)蛋白質。我們想探討CNBD2是否影響人腦小膠質細胞模型(HMC3細胞系)中炎性體相關α-突觸核蛋白病的分子和細胞機制。結果表明,抑制CNBD2表達不影響突變體α-Syn誘導的NF-κB活化,但可顯著降低突變體α-Syn預處理的HMC3細胞中ASC,p20和p17的表達。此外,使用來自突變體α-Syn-預處理和抑制CNBD2表現的HMC3細胞的培養基來處理人神經母細胞瘤SH-SY5Y細胞系,可降低SH-SY5Y細胞中的乳酸脫氫?釋放和細胞死亡蛋白-3(ced-3)活性。這表明CNBD2的下調抑制小膠質細胞的炎症小體活化,然後抑制炎性體相關的SH-SY5Y細胞凋亡。我們將進一步使用包括SNCA * A53T小鼠,iPSC衍生的小膠質細胞和CNBD2剔除的小鼠在內的幾種生物模型來探索CNBD2在炎性體相關的α-突觸核蛋白病中的生理角色,並通過阻斷CNBD2和α-突觸核蛋白的交互作用來建立新穎的PD治療方式。
Ⅰ、A study of the antiparkinsonian effect of chiisanoside using the pharmacological and transgenic Caenorhabditis elegans model
Parkinson’s disease (PD) is the second most common degenerative disorder of the central nervous system in the elderly. There are two main pathological features ,progressive loss of dopaminergic neurons in the substantia nigra pars compacta(SNpc),and aggregation of α-synuclein (α-syn) in neurons.These features ultimately caused motor dysfunction. Current therapeutics for PD provides satisfactory symptom relief but not a cure.Treatment strategies include identify new drugs that will prevent the progressive course of PD by correcting disease-specific pathogenic process. Chiisanoside (CSS) is manily component of Acanthopanax sessiliflorus,and it have some function,such as anti-inflammation,anti-diabets.In this study,We demonstrated that CSS decreased α-syn accumulation in the transgenic Caenorhabditis elegans model. CSS also reduced 6-hydroxydopamine-induced dopaminergic neuron degeneration, reduced food-sensing behavioral abnormalities, and reversed life-span decreases in a pharmacological C. elegans model. Moreover, We found that the molecular mechanism of PD pathology can be improved by reducing the expression of the related gene egl-1 of the apoptotic pathway and increasing the production of autophagy related gene lgg-1.
Ⅱ、The Role of Cyclic Nucleotide Binding Domain Containing 2(CNBD2) in Inflammasome-Associated α-Synucleinopathies in Human Microglia Cell Model: Focus on Parkinson’s disease
Parkinson’s disease (PD) is second most common and age-related neurodegenerative disorders. Its pathological features include the loss of dopamine (DA) neurons in the substantia nigra pars compacta, and α-synuclein (α-Syn) aggregation and then formation of Lewy bodies. PD accompanied with chronic neuroinflammation, mitochondria dysfunction, and oxidative stress. NLRP3 activated microglia is a common pathway of neuroinflammation that was trigged by misfolded α-Syn in PD. In this study, we found a novel interacting partner: cyclic nucleotide binding domain containing 2 (CNBD2), which interacted with α-Syn A53T by yeast two hybrid screen and co-immunoprecipitation. We examined whether CNBD2 affects molecular and cellular mechanisms of inflammasome-associated α-synucleinopathies in human brain microglia cell model (HMC3 cell line). The results showed that knockdown of CNBD2 expression didn’t influence mutant α-Syn induced NF-κB activation, but can significantly decrease expression of ASC, p20, and p17 in mutant α-Syn-pretreated HMC3 cell. Moreover, using culture medium from mutant α-Syn-pretreat and CNBD2-downregulated HMC3 to treat human neuroblastoma SH-SY5Y cell line decreased lactate dehydrogenase release and caspase-3 activity in SH-SY5Y cell. These indicated that downregulation of CNBD2 inhibited inflammasome activation of microglia and then inflammasome-related SH-SY5Y cell apoptosis. We will further used several biological model including SNCA*A53T mice, it’s iPSC-derived microglia and CNBD2 knockout mice to explore the physiological role of CNBD2 in inflammasome-associated α-synucleinopathies, and seek the possible therapeutic for PD by blocking CNBD2 and α-Syn interaction. |