摘要: | 工業發展對台灣經濟之影響佔舉足輕重之地位,但對環境之污染亦為民眾及相關單位所 重視,而廢棄污泥之處理處置問題對環境影響甚鉅。一般工業廢棄物實質上可視為資源,適 當之處理可減輕或避免破壞環境,並達節用資源之目的。 本研究為三年之計畫,彙整過去傳統以管狀高溫爐污泥熱解特性資料及相關之操作參 數,以省能資源方式及降低污染排放為設計理念,建構微波污泥之脫水、熱解資源化發展清 潔再利用技術。第一年為建構生物污泥微波脫水、熱解爐,選擇不同產業(食品、石化業)及 工業區廢水生物處理產生之污泥,以不同配比組合,經熱解處理後,探討所衍生之液態產物(燃 料油)特性,評估不同來源污泥及組成特性與液態產物特性間之關係。此外,亦評析熱解所生 焦碳殘餘物以酸或鹼活化處理後衍生吸附材料之可行性。期間將探討污泥資源化中各程序生 成物之特性,建立單一複合程序以將污泥資源化衍生燃料油及吸附材料之較佳操作條件,並 建立燃料油與吸附劑之物化特性資料。第二年則為提高污泥資源化效率,探討生物/有機污泥 經微波脫水、熱解產生之液態產物特性及衍生生質能之可行性;更添加催化劑於污泥中,評 估催化熱解對污泥衍生燃料及吸附材料操作條件、程序之影響;進而評估微波脫水、熱解及 催化熱解對生成燃料油及吸附材料物化特性之影響。第三年則為組合較完整生物污泥微波脫 水、熱解爐污染防制設備進行污染控制模擬, 評估生物污泥經熱解衍生吸附劑對染 料廢水及廢氣中之VOCs 處理效能, 並評估熱解有機生物污泥所需搭配之較適 化污染防制設備,對未來污泥處理再利用及衍生生質能提供先導性之研究。執行期間更將 密切與產業界合作,瞭解業界對技術發展之需求,建立未來污泥資源化技術推廣之機會。 第一年選取食品廠、石化廠及工業區廢水處理廠之生物污泥為熱解衍生燃料及研製吸附 劑之原料。先以元素分析儀、ICP-AES 分析乾污泥之組成元素成份;另以SEM 分析乾污泥外 觀特性,再以Micrometric ASAP2010 分析乾污泥之比表面積、孔隙體積及孔隙分佈等數據以 充分瞭解乾污泥之物化特性。熱解產生液態產物經由分餾、萃取所得之燃料,分析其物理化 學(包括比重、黏度、成份組成、熱值、閃火點等)特性;而熱解產生之焦碳殘餘物經不同之 活化劑(NaOH 及HCl)、添加濃度活化後,探討污泥吸附劑之生成特性與各活化劑濃度、熱解 溫度及時間等操作條件之關係。另外亦分析各熱解程序污染物(揮發性有機物、PAHs、碳煙、 SOx、NOx 及CO)生成特性。由乾污泥及污泥吸附劑之表面積、孔隙體積、孔隙分佈、組成 元素成份、表面官能基及表面帶電荷特性。 第二年除延續第一年之組成分析及基本資料建置等工作外,建立液態燃料分餾萃取回 收、氣態成分冷凝回收、熱解焦碳殘餘物活化處理、污染防制之較佳控制系統。並將精餾後 之生物柴油應用於一般柴油發電機,評估生物柴油與原油煉製柴油熱效能特性及污染程度之 差異性。第三年則彙整微波技術操作參數資料,並評估污泥經微波熱解特性,比較與一般熱 解之差異性,此外並探討添加催化劑後,催化熱解作用對污泥熱解衍生燃料及吸附材料之影響;另亦評析催化劑對燃料品質及吸附材料吸附效能之影響。評估污泥熱解資源化技術應用 之市場及可能遭遇之困難,建立相關資料以利未來實廠推廣應用,經由產學合作將理論與實 務結合,以豐碩本研究之成果,亦達成研發成果,實際應用之目標。
Industries influence greatly and directly the economic of Taiwan. However, the pollution of petroleum industry is concerned by people and related authorization, especially the pollution of waste sludge disposal and VOCs. In fact, industrial waste can be regarded as resource, because industrial waste can be reduced, avoid destroying environment and save resource by proper treatment. The research project is planned for three years. The topic of the first year is to investigate the bio-sludge of wastewater treatment plant of industries (foodstuff industry, petrochemical industry and industrial park) that is produced into the biofuel and adsorbent by the microwave furnace and tradition thermal furnace. In the first year, the physicochemical characteristics of bio-sludge, bio-fuel, dry sludge, and pyrolytic residue are investigated. The pyrolytic kinetics is conducted by thermogravimetric analysis. Besides, during the drying, pyrolytic, condensation and activation processes, the pollutants formed are also measured. The optimal activation reagents concentration and activation time of pyrolytic residue are selected for the manufacture of sludge adsorbent. The second year is to explore the characteristics of bio-sludge by a microwave pyrolysis process and the catalyst is added into the pyrolytic process. The catalyst is used to enhance the efficiency of bio-sludge pyrolysis. The influence of catalyst in the pyrolytic process is investigated. Specially, the study is focused on the efficiency of pyrolytic processes, the quality and quantity of biofuel and sludge adsorbent. The third year is to comprehend the data of pilot plant for resource the organic-/bio-sludge to derive the biofuel and sludge adsorbent. The optimal pyrolytic conditions and pollution control equipment is evaluated in this system. The biodiesel is obtained from the distillation of liquid product that is generated from the pyrolysis of biosludge. The characteristics of biodiesel and commercial diesel and the application in generator are also investigated in this study. Besides, the pyrolytic tar, oil, coke and pollution formed are used to assess the potential of resource the bio-sludge. The results of this research can be regarded as the baseline information and the leadership research for the reuse of bio-sludge. The sludge of wastewater treatment plant of industry is selected as the raw material. The gel permeation chromatography (GPC), high performance liquid chromatography (HPLC), and nuclear magnetic resonance (NMR) are used to analyze the composition of pyrolytic liquid product. Theelement composition of sludge, biofuel and sludge adsorbent are analyzed by element analyzer and inductively coupled plasma atomic emission Spectrometer (ICP-AES), and the appearance of dry sludge and sludge adsorbent are measured by scanning electron microscope (SEM). The pollutant formed in gas phase and soot particle are analyzed by gas chromatography (GC) and gas monitors. Besides, the Micrometric ASAP 2010 is used to analyze the specific surface area, pore volume and pore size distribution. According to the above analysis, we can understand the physicochemical characteristics of dry sludge, biofuel and sludge adsorbent. This investigation measures the characteristics of sludge adsorbent and the pollutants formed at different kinds of activation agents, concentration of activation agent, pyrolysis temperature and time. The variations of dry sludge, biofuel and sludge adsorbent are assessed by the physicochemical characteristics. Besides, the CCl4 is used to assess the adsorption capacity. According to the results of the operation, the goal of this study is to design a pilot plant to pyrolyze the bio-sludge, and the optimal processes of pollution control system, activation of pyrolytic residue, condensation recovery of gas phase constituents and fractional distillation recovery of liquid fuel are included in the pilot plant. Finally, the application of market and difficulties of sludge-reuse which ay be met in the future are evaluated. |