English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 29490/55136 (53%)
造訪人次 : 1503554      線上人數 : 271
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CMUR管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.cmu.edu.tw/ir/handle/310903500/36044


    題名: A Comparison of MICU Survival Prediction Using the Logistic Regression Model and Artificial Neural Network Model
    比較邏輯迴歸模式與類神經網路模式對內科加護病房存活率之預測
    作者: 林淑萍(Shu-Ping Lin);李奇學(Chi-Hsueh Lee);呂陽樞(Yang-Shu Lu);許玲女(Ling-Nu Hsu)
    貢獻者: 中國醫藥大學總務處
    關鍵詞: 存活率;內科加護病房;類神經網路模式;邏輯迴歸模式;survival rate;medical intensive care unit MICU;Artificial Neural Network Model;Logistic Regression Model
    日期: 2006-12
    上傳時間: 2010-12-23 10:32:00 (UTC+8)
    摘要: 在醫療費用支出緊縮的政策下,隨著醫療技術的發展與人口老化的雙重壓力下,將可預見重症醫療照護對有限醫療資源將造成更大的壓力。因此本研究的目的係比較邏輯迴歸與類神經網路二種模式,對內科加護病房病人存活率之預測能力,提供一更倫理與客觀的存活率預測系統,以進一步促使內科加護病房資源能更有效率之營運。此二個模式使用於2002年1月至2004年1月期間住進台灣某醫學中心內科加護病房1,496位病人的APACHE-II(Acute Physiology and Chronic Health Evaluation-II)及GCS(Glasgow Coma Scale)分數來進行存活率之預測。研究結果顯示類神經網路模式相較於邏輯迴歸模式在存活者(86.7%,n=361)與整體病患(74.7%,n=498)之預測能力均較佳。
    Under the policy of restraint in medical expenditure and with the dual pressures of medical technology development and population aging, the critical care services will exert even greater pressure on the limited medical resources. Therefore, the objective of this study is to compare the abilities of two models, the Logistic Regression Model and the Neural Network Model, to predict the survival of critical care patients, in order to provide a more ethical and objective survival prediction system, as well as to promote more effective management of the resources of the medical intensive care unit (MICU). The two models use the Acute Physiology and Chronic Health Evaluation-II (APACHE-II) and Glasgow Coma Scale (GCS) scores of 1,496 patients stayed who in the MICU of a Taiwan medical center during January 2002-January 2004 to conduct the survival prediction. The study results show that the Neural Network Model has a better predictive ability than the Logistic Regression Model both with regard to the survivors (86.7%, n=361) and with regard to the entire population of patients studied (74.7%, n=498).
    關聯: The Journal of Nursing Research 14(4):306-314
    顯示於類別:[學務處] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Comparison of MICU.pdf503KbAdobe PDF1293檢視/開啟


    在CMUR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

     


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋