Ultrasound has many medical applications. Previous animal and clinical studies have clearly shown a positive effect of ultrasound on the rate of osseous repair. The present in vitro study was designed to elucidate the specific response of bony tissue to ultrasound treatment. Bilateral femora were obtained from 36 mature male Wistar rats. A bone defect was created at the center of each distal metaphysis. The femora were maintained for either 7 or 14 days in in vitro tissue culture and received 15 min of ultrasound stimulation or a sham exposure. The ultrasound intensity used was either 320 or 770 mW/cm(2). Healing of the bone defect was evaluated by histomorphological examination and by analysis for the synthesis and secretion of prostaglandin E-2. The results showed that ultrasound stimulation can accelerate both defect healing and trabecular bone regeneration. All experimental femoral defects treated with ultrasound healed faster than the untreated cortical defects, but only the defects receiving 770 mW/cm(2) reached a level that was significantly different. The healing rate for the 320-mW/cm(2) stimulated defects was intermediate between that of the 770-mW/cm(2) and sham-exposed defects. With ultrasound stimulation, prostaglandin E-2 secretion by the experimental femora decreased significantly. Changes in the prostaglandin synthesis and concentration were found to correspond to changes in the amount of trabecular regeneration and to acceleration of bone healing. This highly controlled and well-studied model of ultrasound stimulation of bone healing in vitro can be used to further examine the biological mechanisms involved. (C) 1999 John Wiley & Sons, Inc.